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ABSTRACT This paper investigates the fractional order chaotic systems synchronization with input delay.
To reduce the utilization of communication resources and achieve system synchronization, an adaptive neural
network backstepping sliding mode controller is proposed based on event-triggered scheme without Zeno
behavior. To avoid ‘‘explosion of complexity’’ and obtain fractional derivatives for virtual control functions
continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller.
The sliding term is introduced to enhance robustness. The Pade delay approximationmethod is used to handle
the input delay, which can reduce the analysis complexity of fractional order chaotic systems with input
delay. The unknown nonlinear functions and uncertain disturbances are approximated by the RBF neural
network. An observer is used for state estimation of the fractional order system. By applying the Lyapunov
stability theory, we can prove that the all closed-loop signals are bounded. Examples and simulations prove
the feasibility of the proposed control method.

INDEX TERMS Fractional order chaotic systems synchronization, event-triggered, dynamic surface control,
neural network, observer, input delay.

I. INTRODUCTION
In practice, most coupled dynamic systems have complex
dynamics. The dynamical systems have the chaotic dynamics
characteristics whenever its evolution sensitively depends on
the initial conditions. It is observed that chaotic dynamics
exist in many naturally occurring systems [1]–[3]. It is an
ideal treatment of actual chaotic systems to describe chaotic
systems through integer-order calculus. Fractional calculus
has unique memory properties and the ability to accurately
model the system [4]. Therefore, the fractional order dynamic
systems can more truly reflect the situation of the system
itself and present the physical phenomena reflected by the
system, so the use of fractional calculus can more accurately
describe the chaotic phenomenon [5], [6].

The chaotic systems synchronization is an important
research field of chaotic system dynamics and it plays
an important role in the field of control and industrial
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applications, especially in the application of physical sys-
tems, electrical circuits and secure communication [7]–[9].
To date, the chaotic systems synchronization has made many
progresses in the field of integer order control, such as adap-
tive control [10]–[12], linear matrix inequality (LMI) control
[2], [13], sliding mode control (SMC) [14]–[16] and so on.
Up to present, there are some progresses in the research
on the synchronization problem of fractional order chaotic
systems. In [17], a fractional order adaptive synchronization
controller was proposed for a new four-scroll chaotic sys-
tems. In [18], the authors studied adaptive terminal sliding
mode synchronization for fractional chaotic systems with
uncertainty and nonlinearity. In [19], the authors studied the
fractional order chaotic systems with randomly occurring
uncertainties and proposed a feedback controller based on
LMI control to reach chaos synchronization. To deal with
the uncertain of nonlinear systems, the universal approxi-
mation theories of neural networks(NNs) and fuzzy logic
systems can be employed to approach the unknown non-
linear functions [20]. For example, by introducing radial
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basis function (RBF) into the backstepping control method,
[21] developed an adaptive NN controller for an uncertain
fractional order chaotic systems synchronization. [22] intro-
duced fuzzy neural network technology into sliding mode
controller to approximate those uncertain terms and unknown
parameters. For fractional multi-agent systems with unknown
uncertainty, [23] designed a distributed controller based on
NN control method, the NN was used to approximate the
system unknown uncertainty. Based on RBFNN, an adaptive
backstepping control method was proposed by [24] for the
consensus problem of fractional order nonlinear multi-agent
systems. In most practical applications, the system states can-
not be fully accessed. In this case, observer-based control is
usually required. For example, [13] introduced a disturbance
observer to estimate disturbance and uncertainty and [25]
designed a state observer to obtain the system unmeasurable
state for fractional order chaotic systems.

Due to the limited information processing and transmis-
sion speed, the time delay is common in actual engineering
systems. The time delay phenomenon can easily cause the
stability of the controlled system to decrease [26]. Therefore,
it is important and necessary to consider the time delay prob-
lem of nonlinear systems. For example, Pade approximation
method was introduced to cope with small delay and the
designed controller was robust to the uncertain input delay to
some degree in [27] and [28]. [29] applied Pade approxima-
tion technology to nonlinear systems to deal with input delay,
and designed backstepping controller based on fuzzy logic
system. [30] considered the control problem of fractional
order systems with time-varying delays. [31] studied two dif-
ferent fractional order chaotic systems synchronization with
time delay and introduced the delayed function to solve time
delay.

Furthermore, the above-mentioned work input control
signal must be continuously updated, which may cause
unnecessary resource consumption. In terms of reducing the
utilization of communication resources, the event-triggered
control scheme has proven to be superior. It has been
shown in [32] that the proposed dynamic triggering mech-
anism, wherein the threshold involves an internal dynamic
variable, can allow for the larger minimum interevent
times than a static counterpart. Based on event-triggered
scheme, [33], [34] designed an adaptive backstepping con-
troller to ensure that the tracking error converges in finite
time for fractional order system and gave a proof pro-
cess to avoid the Zeno behavior. [35] studied the prob-
lem of adaptive consensus tracking control for uncertain
nonlinear fractional-order multi-agent systems with unmea-
surable states and unknown nonlinearities and proposed
an event-triggered mechanism with a decreasing threshold
function. Aiming at the fractional order chaotic systems,
[36] proposed impulsive control and event-triggered con-
trol to achieve systems synchronization. [37] investigated
the adaptive networked synchronization communication for
nonlinear uncertain fractional order chaotic systems based on
the event-triggered mechanism. And the author proposed a

novel event-triggered mechanism by combining two types of
event-triggered conditions.

Based on the previous discussion, this paper designs an
adaptive neural network backstepping sliding mode con-
troller to reach fractional order chaotic systems synchro-
nization. A dynamic event-triggered scheme is considered to
reduce the number of transmissions of control input signals.
It should be pointed out that the theoretical results obtained
in this paper is not a simple extension from integer-order
systems to fractional systems. We use some properties of
the Caputo fractional derivative and the integral inequal-
ity to overcome the adverse effects from the incorporation
of weakly singular kernels in fractional derivative. Com-
pared with the current research, this work has the following
contributions:

1) Aiming at the fractional order chaotic systems synchro-
nization, an event-triggered adaptive neural network back-
stepping sliding controller is proposed for the first time.

2) In comparison with [12], [21], the sliding mode con-
trol technology is introduced into the proposed method to
enhance robustness. An event-triggered schemewithout Zeno
phenomenon is proposed, which can reduce the frequency of
network governance. The fractional order dynamic surface
control technology is introduced into the controller to avoid
‘‘explosion of complexity’’ and obtain fractional derivatives
for virtual control functions continuously. The state observer
is used to estimate system states. Compared with the pre-
vious works in [36], the RBF neural network is developed
to estimate uncertain parts. And in our design, the proposed
fractional update laws estimate the unknown parameters and
the upper limit of the approximation errors.

3) Compared with the previous works in [33] and [36],
we consider that fractional order chaotic systems synchro-
nization problem contains input delay, and introduce Pade
delay approximation method into fractional order control
system to solve input delay problem. By using this method,
the original system can be converted to the system without
input delay.

The rest of the paper is organized as follows. Section II
introduces basic theory about fractional calculus and the
fractional order chaotic systems model. In Section III, First,
we construct an observer to estimate the system state, then
we propose an event-triggered adaptive backstepping sliding
mode controller and finally analyze the stability and Zeno
behavior. In Section IV, the effectiveness of the proposed
control method is proved by example. In Section V, we sum-
marize the paper and give some conclusions.

II. PRELIMINARIES
A. FRACTIONAL CALCULUS
The Caputo fractional derivative [4] is defined as

C
0 D

α
t f (t) =

1
0 (n− α)

∫ t

0

f (n) (τ )

(t − τ)1+α−n
dτ (1)

where n ∈ N and n− 1 < α ≤ n, 0 (z) =
∫
∞

0 tz−1e−tdt is
the Gamma function.
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The Laplace transfer of equation (1) is given as∫
∞

0
e−stC0 D

α
t f (t) = sαF (s)−

n−1∑
k=0

sα−k−1f (k) (0) (2)

where F (s) is the Laplace transform of f (t), and α ∈ (0 , 1].
Definition 1 [4]: The Mittag–Leffler function is given as

Eα,γ (ς) =
∞∑
k=0

ςk

0 (αk + γ )
(3)

where ς is complex number and α, γ > 0. Its Laplace trans-
form is given by

L
(
tγ−1Eα,γ (ς)

)
=

sα−γ

sα + a
(4)

Lemma 1 [38]: For a complex number β and two real
numbers α, v satisfying α ∈ (0, 1) and

πα

2
< v < min {π, πα} (5)

For all integer n ≥ 1, we can obtain

Eα,β (ς) = −
∞∑
j=1

1
0 (β − αj)

+ o
(

1

|ς |n+1

)
(6)

when |ς | → ∞, v ≤ |arg (ς)| ≤ π .
Lemma 2 [38]: Let α ∈ (0, 2) and β be an arbitrary

real number, and for ∀υ > 0 such that
(
πα
/
2
)
< υ ≤

min {π, πα}, one has∣∣Eα,β (ς)∣∣ ≤ µ

1+ |ς |
(7)

where µ > 0, υ ≤ |arg (ς)| ≤ π , and |ς | ≥ 0.
Lemma 3 [39]: Let x (t) = [x1 (t) , . . . , xn (t)] ∈ Rn be a

vector of continuous and differentiable function. And then,
the following relationship holds

1
2
Dα

(
xT (t)Px

)
≤ xT (t)PDαx (t)

∀α ∈ (0, 1) ,∀t > t0 (8)

where P=diag (p1, p2, . . . , pn) and pi > 0, i = 1, 2, . . . , n.
Lemma 4 [40]: For any x, y ∈ Rn, the following inequality

relationship holds

xT y ≤
ca

a
‖x‖a +

1
bcb
‖y‖b (9)

where a > 1, b > 1, c > 0, and (a− 1) (b− 1) = 1.
Lemma 5 [41]: The following inequality relationship holds

Dα (af (t)+ bg (t)) = aDαf (t)+ bDαg (t) (10)

where a, b ∈ R.
Lemma 6 [42]: The following inequality relationship holds

Dα
(
Dβx (t)

)
= Dβ

(
Dαx (t)

)
= Dα+βx (t) = ẋ (t) (11)

where x (t) = [x1 (t) , . . . , xn (t)] ∈ Rn, α, β ∈ R∗ and
α + β=1.

Lemma 7 [43]: The following inequality holds

0 ≤ |a| −
a2

√
a2 + b2

≤ b (12)

where a ∈ R and b > 0.
Lemma 8 [4], [33]: In fractional-order nonlinear sys-

tem, if the α-order derivative of Lyapunov function V (t, x)
satisfying

DαV (t, x) ≤ −CV (t, x)+ D

we can obtain

V (t, x) ≤ V (0)Eα (−Ctα)+
Dµ
C , t ≥ 0 (13)

where 0 < α < 1, C > 0 and D ≥ 0. Then, V (t, x)
is bounded on [0, t] and fractional order systems are stable,
where µ is defined in Lemma 2.

B. SYSTEMS MODEL
In synchronization task, there are two dynamic systems,
called the master system and the slave system. From a control
point of view, the task is to design a controller that obtains
signals from the master system to adjust the behavior of
the slave system. This article describes the fractional order
master system as

Dαx1 (t) = x2 + f1 (x)
Dαxi (t) = xi+1 + fi (x)
Dαxn (t) = fn (x)
v = x1

(14)

The fractional order slave system with input delay is
described as

Dαy1 (t) = y2 + g1 (y)+ d1 (t)
Dαyi (t) = yi+1 + gi (y)+ di (t)
Dαyn (t) = u (t − τ)+ gn (y)+ dn (t)
µ = y1

(15)

where i = 2, . . . , n− 1, α ∈ (0, 1); x = (x1, x2, . . . , xn)T ∈
Rn and y = (y1, y2, . . . , yn)T ∈ Rn are the system state vec-
tors, u (t − τ) is the control input of the system with delay,
µ and v are the systems outputs. fi (x) and gi (y) are unknown
nonlinear functions. di (t) is the external disturbance,
|di| ≤ d∗i .
Defining the synchronization error as zi = yi− xi. Accord-

ing to Lemma 5, the designed synchronization error system
can be defined as

Dαz1 (t) = z2 + h1 (z)+ d1 (t)
Dαzi (t) = zi+1 + hi (z)+ di (t)
Dαzn (t) = u (t − τ)+ hn (z)+ dn (t)
ϑ = z1

(16)

where z = (z1, z2, . . . , zn)T ∈ Rn, hi (z)=gi (y)− fi (x) is the
new nonlinear function by the difference between the nonlin-
ear functions gi (y) and fi (x).
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To solve the input delay problem in the system (16),
the Pade delay approximation method is extended to frac-
tional order systems, which converts the original system into
system without input delay. Then we can have

L {u (t − τ)} = e−τ sL {u (t)} =
e−τ s/2

eτ s/2
L {u (t)} (17)

where L {u (t)} is the Laplace transform of u (t) and s is
Laplace variable.

According to the Taylor formula, e−τ s/2
/
eτ s/2 can

be approximately equal to
(
1−τ s

/
2
)/(

1+ τ s
/
2
)
. There-

fore, we introduce a variable m (t) to satisfy the following
equation.

1− τ s
1+ τ s

L {u (t)} = L {m (t)} − L {u (t)} (18)

so that

u−
τ u̇
2
= m+

τ ṁ
2
− u−

τ u̇
2

(19)

Then, we can obtain

ṁ = −ηm+ 2ηu (20)

where η=2
/
τ .

Dα
(
D1−αm

)
= −ηm+ 2ηu (21)

we set

D1−αm (t) = n (t) (22)

so that, we have

Dαn (t) = −ηm (t)+ 2ηu (t)

D1−αm (t) = n (t) (23)

Introducing the above transformation into the synchroniza-
tion error system, the synchronization error system (16) can
be written as

Dαz1 (t) = z2 + h1 (z)+ d1 (t)
Dαzi (t) = zi+1 + hi (z)+ di (t)
Dαzn (t) = m (t)− u (t)+ hn (z)+ dn (t)
ϑ = z1

(24)

Rewrite the system (24) by

Dαz = Az+ Kϑ +
n∑
i=1

Bi [hi (z)+ di]+ B (m− u)

ϑ = Cz (25)

where A =

−k11...
−k1n

In−1
0 . . . 0

, K =
 k11...
k1n

, B =
 0
...

1

,
Bi = [0 . . . 1 . . . 0]T , C = [1 . . . 0 . . . 0] and given a positive
matrix QT = Q, there exists a positive matrix PT = P
satisfying

ATP+ PA = −2Q (26)

Remark 1 [27]: Due to the increasing complexity of the
engineering environment, input delay may bring some devia-
tions, which leads to an uncertain η. In the analysis process,
the variablem (t) is introduced in the system.When deviation
in η occurs, m (t) will be uncertain (i.e., the time-varying
case). Since the designed controller u (t) can be used to
eliminate such item, it is robust to the uncertain input delay
to some degree.
Remark 2 [28]: Pade approximation method is introduced

to cope with the small unknown delay. Since Pade approxi-
mation has some limitations in handling delay, the proposed
scheme can not work in long-delay case. Relaxed control
design for systems with long delay and output constraint
deserves further investigation.
Control Objectives: This paper aims to take the system

(14) as the driving system, the system (15) to respond to
the system, construct the synchronization error system (16),
and design the fractional order controller based on the state
observer to make the synchronization error converge as close
to the origin as possible.

III. MAIN RESULTS
A. OBSERVER DESIGN
Assumption 1: The unknown function hi (x), i = 1, . . . , n

can be expressed as

hi (z |θi )=θTi ϕi (z) , 1 ≤ i ≤ n (27)

where θi is the ideal constant vector, ϕi (z) is the basis function
vector and Gaussian basis function is used in this paper.

Assuming that the states of the system are not available.
In this case, the system states need to be estimated by an
observer, and the observer is designed as

Dα ẑ = Aẑ+ Kϑ +
n∑
i=1

Biĥi
(
ẑ |θi

)
+ B (m− u)

ϑ̂ = Cẑ (28)

where ẑ =
(
ẑ1, ẑ2, . . . , ẑn

)T is the estimated value of
z = (z1, z2, . . . , zn)T .

Define the state observation error e = z − ẑ, from
(25) and (28), we can obtain

Dαe = Ae+
n∑
i=1

Bi
[
hi
(
ẑ
)
− ĥi

(
ẑ |θi

)
+1hi + di

]
(29)

where 1hi = hi (z)− hi
(
ẑi
)
.

According to Assumption 1, we can obtain

ĥi
(
ẑ |θi

)
= θTi ϕi

(
ẑ
)

(30)

Defining the vector of optimal parameters as

θ∗i = arg min
θi∈�i

[
supẑi∈Ui

∣∣∣ĥi (ẑ |θi )− hi (ẑ)∣∣∣] (31)

where 1 ≤ i ≤ n, �i and Ui are compact regions for θi, zi
and ẑi.
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Defining error of the optimal approximation and parame-
ters estimation as

εi = hi
(
ẑ
)
− ĥi

(
ẑ
∣∣θ∗i )

θ̃i = θ
∗
i − θi, i = 1, 2, . . . , n (32)

Assumption 2: The optimal approximation error remain
bounded, there exists positive constants εi0 and θ∗i , satisfying∣∣εi,l ∣∣ ≤ εi0, |θi| ≤ θ∗i .
Assumption 3: There exists a set of known constants γi,

the following relationship holds∣∣hi (z)− hi (ẑ)∣∣ ≤ γi ∥∥z− ẑ∥∥ (33)

Combining (29) and (30) together gives rise to

Dαe = Ae+
n∑
i=1

Bi
[
hi
(
ẑ
)
− ĥi

(
ẑ |θi

)
+1hi + di

]
= Ae+

n∑
i=1

Bi
[
εi +1hi + θ̃Ti ϕi

(
ẑ
)
+ di

]
= Ae+1h+ κ +

n∑
i=1

Bi
[
θ̃Ti ϕi

(
ẑ
)]

(34)

where κ = [ε1 + d1, . . . , εn + dn], 1h = [1h1, . . . ,1hn].
Constructed Lyapunov function:

V0 =
1
2
eTPe (35)

According to Lemma 3, we can obtain

DαV0 ≤
1
2
eT
(
PAT + AP

)
e+ eTP (κ +1h)

+

n∑
i=1

eTPBi
[
θ̃Ti ϕi

(
ẑ
)]

≤ −eTQe+ eTP (κ +1h)+ eTP
n∑
i=1

Biθ̃Ti ϕi
(
ẑ
)
(36)

By Lemma 4 and Assumption 3, we obtain

eTP (κ +1h)

≤

∣∣∣eTPκ∣∣∣+ ∣∣∣eTP1h∣∣∣
≤

1
2
‖e‖2 +

1
2
‖Pκ‖2 +

1
2
‖e‖2 +

1
2
‖P‖2‖1h‖2

≤ ‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2
‖P‖2

n∑
i=1

|1hi|2

≤ ‖e‖2 +
1
2
‖e‖2‖P‖2

n∑
i=1

γi
2
+

1
2

∥∥Pκ∗∥∥2
≤ ‖e‖2

(
1+

1
2
‖P‖2

n∑
i=1

γi
2

)
+

1
2

∥∥Pκ∗∥∥2 (37)

and

eTP
n∑
i=1

Biθ̃Ti ϕi
(
ẑ
)

≤
1
2
eTPTPe+

1
2

n∑
i=1

θ̃Ti ϕi
(
ẑ
)
ϕTi
(
ẑ
)
θ̃i

≤
1
2
λ2max (P) ‖e‖

2
+

1
2

n∑
i=1

θ̃Ti θ̃i (38)

where κ∗ =
[
ε10 + d∗1 , . . . , εn0 + d

∗
n
]
.

By equations (36), (37) and (38), we obtain

DαV0 ≤ −q0‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i (39)

where q0 = λmin (Q)−
(
1+ 1

2‖P‖
2

n∑
i=1
γ 2
i +

1
2λ

2
max (P)

)
.

B. CONTROLLER DESIGN
Theorem 1: Consider the master system (14) and the slave

system (15), construct the synchronization error system (24)
and design state observer. Suppose that Assumptions 1-3
hold. The following designs can ensure that all the sig-
nals remain semi-global uniformly ultimately bounded in
the closed-loop system and the synchronization errors can
converge to near zero, the error variables{

S1 = z1
Si = ẑi − vi, i = 2, . . . , n

(40)

the intermediate controllers
α1 =−

[
c1S1 + θT1 ϕ1

(
ẑ
)
+ sign (S1) δ1

]
αi =−

[
Si−1 + ciSi + θTi ϕi

(
ẑ
)
+ sign (Si) δi

−
αi−1 − vi

λi

] (41)

the parameter adaptive laws{
Dαθi = σiϕi

(
ẑ
)
Si − ρiθi

Dαδi = ri |Si| − ηiδi
(42)

the event-triggered controller

αn (t) = Sn−1 + cnSn + θTn ϕn
(
ẑ
)
+ sign (Sn) δn

−
αn−1 − vn

λn

ū (t) = −αn −
Sn(κ1αn)2√
(Snκ1αn)2 + κ22

−
SnM2

1√
(SnM1)

2
+ κ22

u (t) = ū (tk) ,∀ [tk , tk+1) , k ∈ N ∗

(43)

where i = 2, . . . , n− 1, ci, σi, ρi, ri, ηi are design constant
parameters, ci > 0, σi > 0, ρi > 0, ri > 0, ηi > 0. δ̃i =
δ∗i −δi is the upper bound estimation error. Si is defined as the
sliding mode surface. sign (Si) is the sliding term to enhance
robustness. tk denotes the update time of controller.

Proof: In this section, we combine backstepping control,
DSC technology and Lyapunov method to design virtual
control laws, control input and fractional parameter adaptive
laws.
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Step 1: Definde the error variable

S1 = ϑ = z1 (44)

According to e2=z2 − ẑ2, the Caputo fractional derivative
of S1 is given by

DαS1 = Dαz1
= z2 + h1 (z)+ d1
= ẑ2 + h1 (z)+ d1 + e2
= ẑ2 + θT1 ϕ1

(
ẑ
)
+ θ̃T1 ϕ1

(
ẑ
)
+ d1 + ε1 +1h1 + e2

(45)

Define the second error surface S2 and the output error w2
of a fractional order filter

S2 = ẑ2 − v2
w2 = v2 − α1 (46)

Substituting it into (45) generates

DαS1 = S2 + w2 + α1 + θ
T
1 ϕ1

(
ẑ
)
+ θ̃T1 ϕ1

(
ẑ
)
+ d1

+ε1 +1h1 + e2 (47)

Constructing Lyapunov function:

V1 = V0 +
1
2
S21 +

1
2σ1

θ̃T1 θ̃1 +
1
2r1

δ̃21 (48)

And we can obtain the following Caputo fractional deriva-
tive DαV1:

DαV1 ≤ DαV0 + S1DαS1 +
1
σ1
θ̃T1 D

α θ̃1 +
1
r1
δ̃1Dα δ̃1

≤ −q0‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i

+ S1
(
S2 + w2 + α1 + θ

T
1 ϕ

(
ẑ
)
+ θ̃T1 ϕ

(
ẑ
))
+ S1e2

+ S1 (ε1 +1h1 + d1)−
1
σ1
θ̃T1 D

αθ1 −
1
r1
δ̃1Dαδ1

≤ −q0‖e‖2+
1
2

∥∥Pκ∗∥∥2+S1(S2+w2 + α1 + θ
T
1 ϕ1

)
+ S1e2+S1 (ε1+1h1+d1)+ θ̃T1

(
ϕ1S1 −

1
σ1
Dαθ1

)
−

1
r1
δ̃1Dαδ1 +

1
2

n∑
i=1

θ̃Ti θ̃i (49)

Designing the virtual controller α1 together with the
parameter adaptation laws θ1 and δ1 as follows:

α1 = −
[
c1S1 + θT1 ϕ1

(
ẑ
)
+ sign (S1) δ1

]
(50)

Dαθ1 = σ1ϕ1
(
ẑ
)
S1 − ρ1θ1 (51)

Dαδ1 = r1 |S1| − η1δ1 (52)

Substituting (49),(50) and (51) into (48) produces

DαV1 ≤ −q0‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + S1 (S2 − c1S1 − θT1 ϕ1
−sign (S1) δ1 + θT1 ϕ1

)
+ S1 (ε1 +1h1 + d1)

+ S1e2 + S1w2 + θ̃
T
1

(
ϕ1S1−

1
σ1
(σ1ϕ1S1 − ρ1θ1)

)
−

1
r1
δ̃1 (r1 |S1| − η1δ1)+

1
2

n∑
i=1

θ̃Ti θ̃i

≤ −q0‖e‖2 +
1
2

∥∥Pκ∗∥∥2 − c1S21 + S1S2
− |S1| δ1 + S1e2 + S1w2 + S1 (ε1 +1h1 + d1)

+
ρ1

σ1
θ̃T1 θ1 − δ̃1 |S1| +

η1

r1
δ̃1δ1 +

1
2

n∑
i=1

θ̃Ti θ̃i (53)

where ε1 + 1h1 + d1 = 11, and S111 ≤ |S111| ≤

|S1| |11| ≤ |S1| δ∗1 = |S1|
(
δ̃1 + δ1

)
.

Further, we can obtain

DαV1 ≤ −q0‖e‖2 +
1
2

∥∥Pκ∗∥∥2 − c1S21 + S1S2
− |S1| δ1 + S1e2 + S1w2 + S1δ∗1 +

ρ1

σ1
θ̃T1 θ1

− |S1| δ̃1 +
η1

r1
δ̃1δ1 +

1
2

n∑
i=1

θ̃Ti θ̃i

≤ −q0‖e‖2 +
1
2

∥∥Pκ∗∥∥2 − c1S21 + S1χ2
− |S1| δ1 + S1e2 + S1w2 + |S1|

(
δ̃1 + δ1

)
+
ρ1

σ1
θ̃T1 θ1 − |S1| δ̃1 +

η1

r1
δ̃1δ1 +

1
τ

n∑
i=1

θ̃Ti θ̃i

≤ −q0‖e‖2 +
1
2

∥∥Pκ∗∥∥2 − c1S21 + S1S2 + S1e2
+ S1w2 +

ρ1

σ1
θ̃T1 θ1 +

η1

r1
δ̃1δ1 +

1
2

n∑
i=1

θ̃Ti θ̃i (54)

According to Lemma 4, we have

S1e2 ≤
1
2
|S1|2 +

1
2
|e2|2 (55)

S1w2 ≤
1
2
|S1|2 +

1
2
|w2|

2 (56)

Substituting (55) and (56) into (54), we arrive at

DαV1 ≤ −q1‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i − c1S
2
1

+ S1S2 +
ρ1

σ1
θ̃T1 θ1 +

η1

r1
δ̃1δ1 + |S1|2 +

1
2
|w2|

2

(57)

where q1 = q0 − 1
/
2.

By using DSC technique, we can obtain the state variable
v2 as

λ2Dαv2 + v2 = α1, v2 (0) = α1 (0) (58)

according to (58), we have

Dαw2 = Dαv2 − Dαα1

= −
v2 − α1
λ2

− Dαα1

= −
w2

λ2
+ B2 (59)
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where λ2 represents a constant, B2 is a continuous function
of variables S1, S2,w2, θ1, δ1, S3,w3.
Step 2: Define the error surface S3 and the output error of

the fractional order filter

S3 = ẑ3 − v3
w3 = v3 − α2 (60)

And the Caputo fractional derivative of S2 is given by

DαS2 = ẑ3 + θT2 ϕ2 + θ̃
T
2 ϕ2

+k12e1 + ε2 +1h2 + d2 − Dαv2
= S3 + w3 + α2 + θ

T
2 ϕ2 + θ̃

T
2 ϕ2

+k12e1 + ε2 +1h2 + d2 − Dαv2 (61)

We construct the Lyapunov function candidate as

V2 = V1 +
1
2
S22 +

1
2σ2

θ̃T2 θ̃2 +
1
2r2

δ̃22 +
1
2
w2
2 (62)

According to Lemma 3 and the solution of (61), we can
obtain the fractional derivative DαV2:

DαV2 ≤ DαV1 + S2DαS2 +
1
σ2
θ̃T2 D

α θ̃2 +
1
r2
δ̃2Dα δ̃2

+w2Dαw2

≤ −q1‖e‖2 +
1
2

∥∥Pκ∗∥∥2 − c1S21 + S1S2
+ S2

(
S3 + w3 + α2 + θ

T
2 ϕ2 + θ̃

T
2 ϕ2 − D

αv2
)

+k12S2e1 + S2 (ε2 +1h2 + d2)+
ρ1

σ1
θ̃T1 θ1

+
η1

r1
δ̃1δ1 + |S1|2 +

1
2
|w2|

2
+

1
2

n∑
i=1

θ̃Ti θ̃i

+
1
σ2
θ̃T2 D

α θ̃2 +
1
r2
δ̃2Dα δ̃2 −

w2
2

λ2
+ B2w2

≤ −q2‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i − c1S
2
1

+ S2
(
S1 + S3 + α2 + θT2 ϕ2 + θ̃

T
2 ϕ2 −D

αv2
)

+ S212 −
1
σ2
θ̃T2 D

αθ2 −
1
r2
δ̃2Dαδ2 +

ρ1

σ1
θ̃T1 θ1

+
η1

r1
δ̃1δ1 + |S1|2 + |S2|2 −

w2
2

λ2
+ B2w2

+
1
2
|w2|

2
+

1
2
|w3|

2 (63)

where q2 = q1 − k212
/
2 and note that k12S2e1 ≤ |S2|2

/
2 +

k212|e1|
2/2. Further, we have

DαV2 ≤ −q2‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i − c1S
2
1

+ S2
(
S1 + S3 + α2 + θT2 ϕ2 + θ̃

T
2 ϕ2 −

α1 − v2
λ2

)
+ |S2|

(
δ̃2 + δ2

)
−

1
σ2
θ̃T2 D

αθ2 −
1
r2
δ̃2Dαδ2

−
w2
2

λ2
+ B2w2 +

ρ1

σ1
θ̃T1 θ1 +

η1

r1
δ̃1δ1 + |S1|2

+|S2|2 +
1
2
|w2|

2
+

1
2
|w3|

2 (64)

where ε2 + 1h2 + d2 = 12, and S212 ≤ |S212| ≤

|S2| |12| ≤ |S2| δ∗2 ≤ |S2|
(
δ̃2 + δ2

)
.

Selecting the second virtual controller α2 together with the
parameter adaptation laws as follows:

α2 = −
[
c2S2 + S1 + θT2 ϕ2

(
ẑ
)
+ sign (S2) δ2

−
α1 − v2
λ2

]
(65)

Dαθ2 = σ2ϕ2
(
ẑ
)
S2 − ρ2θ2 (66)

Dαδ2 = r2 |S2| − η2δ2 (67)

Substituting (65),(66) and (67) into (64) produces

DαV2

≤ −q2‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i − c1S
2
1

+ S2 (S1 + S3 − c2S2 − S1 − θT2 ϕ2 − sign (S2) δ2

+
ρ1

σ1
θ̃T1 θ1 +

η1

r1
δ̃1δ1 + |S1|2 + |S2|2 +

1
2
|w2|

2

+
1
2
|w3|

2
−
w2
2

λ2
+ B2w2

≤ −q2‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i − c1S
2
1

−c2S22 + S2S3 − |S2| δ2 + θ
T
2 ϕ2S2

+ |S2|
(
δ̃2 + δ2

)
− θ̃T2 ϕ2S2 +

ρ2

σ2
θ̃T2 θ2 − |S2| δ̃2

+
η2

r2
δ̃2δ2 +

ρ1

σ1
θ̃T1 θ1 +

η1

r1
δ̃1δ1 + |S1|2 + |S2|2

+
1
2
|w2|

2
+

1
2
|w3|

2
−
w2
2

λ2
+ B2w2 (68)

By employing Young’s inequality, we havew2B2 ≤
w2
2B

2
2

2µ +

2µ. Then, we have

DαV2

≤ −q2‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i − c1S
2
1 − c2S

2
2

+ S2S3 +
ρ2

σ2
θ̃T2 θ2 +

η2

r2
δ̃2δ2 +

ρ1

σ1
θ̃T1 θ1 +

η1

r1
δ̃1δ1

+|S1|2 + |S2|2 +
1
2
|w2|

2
+

1
2
|w3|

2
−
w2
2

λ2
+
w2
2B

2
2

2µ
+ 2µ

(69)

Step i: According to Theorem 1, design the error surface
Si+1 and the output error of a fractional order filter.

Si+1 = ẑi+1 − vi+1
wi+1 = vi+1 − αi (70)

100874 VOLUME 9, 2021



T. Chen et al.: Event-Triggered Adaptive NN Backstepping Sliding Mode Control

The intermediate control function αi and the update laws
are designed as

αi = −
[
Si−1 + ciSi + θTi ϕi

(
ẑ
)
+ sign (Si) δi

−
αi−1 − vi

λi

]
(71)

Dαθi = σiϕi
(
ẑ
)
Si − ρiθi (72)

Dαδi = ri |Si| − ηiδi (73)

Employing DSC technique, vi can be obtain as

λiDαvi + vi = αi−1, vi (0) = αi−1 (0) (74)

by (74), we have

Dαwi = −
wi
λi
+ Bi (75)

where λi represents a constant and Bi=− Dααi−1.
Selecting the Lyapunov function candidate as follows:

Vi = Vi−1 +
1
2
S2i +

1
2σi

θ̃Ti θ̃i +
1
2ri
δ̃2i +

1
2
w2
i (76)

We can obtain the following fractional derivative DαVi:

DαVi ≤ −qi‖e‖2 −
i∑

m=1

cmS2m + SiSi+1 +
1
2

n∑
i=1

θ̃Ti θ̃i

+

i∑
m=1

ρm

σm
θ̃Tmθm +

i∑
m=1

ηm

rm
δ̃mδm

+

i∑
m=1

|Sm|2 +
1
2

∥∥Pκ∗∥∥2
+

i∑
m=2

(
B2m
2µ
−

1
λm
+

1
2

)
w2
m +

1
2
w2
i+1 + 2µ (i− 1)

(77)

where qi = qi−1 − k21i
/
2 and wiBi ≤

w2
i B

2
i

2µ + 2µ.
Step n: At this step, we will design the event-triggered

controller. Because of input delay in system, we define the
new error variable Sn and the output error of a fractional order
filter

Sn = ẑn − vn +
1
η
n (t)

wn = vn − αn−1 (78)

Constructing the Lyapunov function as follows:

Vn = Vn−1 +
1
2
S2n +

1
2σn

θ̃Tn θ̃n +
1
2rn

δ̃2n +
1
2
w2
n (79)

We can obtain the Caputo fractional derivative of Vn as
follows:

DαVn ≤ DαVn−1 + SnDαSn +
1
σn
θ̃Tn D

α θ̃n

+
1
rn
δ̃nDα δ̃n + wnDαwn

≤ −qn−1‖e‖2 −
n−1∑
i=1

ciS2i + Sn−1Sn +
1
2

n∑
i=1

θ̃Ti θ̃i

+

n−1∑
i=1

ρi

σi
θ̃Ti θi +

n−1∑
i=1

ηi

ri
δ̃iδi +

n−1∑
i=1

|Si|2 +
1
2

∥∥Pκ∗∥∥2
+

n−1∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i +

1
2
w2
n + 2µ (n− 2)

+ SnDαSn −
1
σn
θ̃Tn D

αθn −
1
rn
δ̃nDαδn + wnDαwn

(80)

Combining (77), (79) and the Caputo fractional derivative
of Sn together leads to

DαVn ≤ −qn−1‖e‖2 −
n−1∑
i=1

ciS2i + Sn−1Sn +
1
2

n∑
i=1

θ̃Ti θ̃i

+

n−1∑
i=1

ρi

σi
θ̃Ti θi +

n−1∑
i=1

ηi

ri
δ̃iδi +

n−1∑
i=1

|Si|2 +
1
2

∥∥Pκ∗∥∥2
+

n−1∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i +

1
2
w2
n + 2µ (n− 2)

+ Sn
(
m− u+ k1ne1 + θTn ϕn + θ̃

T
n ϕn − D

αvn

+
1
η
(−ηm+ 2ηu)

)
+ Sn (εn +1hn + dn)

−
1
σn
θ̃Tn D

αθn −
1
rn
δ̃nDαδn + wnDαwn

≤ −qn−1‖e‖2 −
n−1∑
i=1

ciS2i + Sn−1Sn +
1
2

n∑
i=1

θ̃Ti θ̃i

+

n−1∑
i=1

ρi

σi
θ̃Ti θi +

n−1∑
i=1

ηi

ri
δ̃iδi +

n−1∑
i=1

|Si|2 +
1
2

∥∥Pκ∗∥∥2
+

n−1∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i +

1
2
w2
n + 2µ (n− 2)

+ Sn
(
u+ k1ne1 + θTn ϕn + θ̃

T
n ϕn − D

αvn
)

+ Sn (εn +1hn + dn)−
1
σn
θ̃Tn D

αθn

−
1
rn
δ̃nDαδn + wnDαwn (81)

The event-triggered controller ū (t) and the parameter
adaptation laws can be given by

Dαθn = σnϕn
(
ẑ
)
Sn − ρnθn (82)

Dαδn = rn |Sn| − ηnδn (83)

αn = Sn−1 + cnSn + θTn ϕn
(
ẑ
)
+ sign (Sn) δn

−
αn−1 − vn

λn
(84)

ū (t) = −αn −
Sn(κ1αn)2√
(Snκ1αn)2 + κ22

−
SnM2

1√
(SnM1)

2
+ κ22

(85)
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The actual controller and the triggering condition for the
sampling instants are as follows:

u (t) = ū (tk) ,∀ [tk , tk+1)

tk+1 = inf { t ∈ R| |1(t)| ≥ κ1 |u (t)| +M1} (86)

where 1(t)=ū (t) − u (t) is the event sampling error, 0 <
κ1 < 1,M1 is a positive constant, tk , k ∈ N ∗ is the controller
update time.

C. STABILITY ANALYSIS
From (86), the following equation can be arrived at

1(t)=ū (t)− u (t)=β1 (t) κ1u (t)+ β2 (t)M1 (87)

where β1 (t), β2 (t) are time-varying parameters satisfying
|β1 (t)| ≤ 1 and |β2 (t)| ≤ 1. Accordingly, one can obtain

u (t)=
ū (t)− β2 (t)M1

1+ β1 (t) κ1
(88)

Thus, substituting (88) into (81) produces

DαVn ≤ −qn−1‖e‖2 −
n−1∑
i=1

ciS2i + Sn−1Sn +
1
2

n∑
i=1

θ̃Ti θ̃i

+

n−1∑
i=1

ρi

σi
θ̃Ti θi +

n−1∑
i=1

ηi

ri
δ̃iδi +

n−1∑
i=1

|Si|2 +
1
2

∥∥Pκ∗∥∥2
+

n−1∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i +

1
2
w2
n + 2µ (n− 2)

+Sn

(
ū (t)− β2 (t)M1

1+ β1 (t) κ1
+ k1ne1 + θTn ϕn + θ̃

T
n ϕn

−Dαvn
)
+ Sn (εn +1hn + dn)−

1
σn
θ̃Tn D

αθn

−
1
rn
δ̃nDαδn + wnDαwn (89)

where εn + 1hn + dn = 1n, and Sn1n ≤ |Sn1n| ≤

|Sn| |1n| ≤ |Sn| δ∗n ≤ |Sn|
(
δ̃n + δn

)
.

Further, we can obtain

DαVn ≤ −qn−1‖e‖2 −
n−1∑
i=1

ciS2i + Sn−1Sn +
1
2

n∑
i=1

θ̃Ti θ̃i

+

n−1∑
i=1

ρi

σi
θ̃Ti θi +

n−1∑
i=1

ηi

ri
δ̃iδi +

n−1∑
i=1

|Si|2 +
1
2

∥∥Pκ∗∥∥2
+

n−1∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i +

1
2
w2
n + 2µ (n− 2)

+Sn

(
ū (t)− β2 (t)M1

1+ β1 (t) κ1
+ αn

)
− knS2n − Sn−1Sn

− |Sn| δn + k1nSne1 + θ̃Tn Snϕn + |Sn|
(
δn + δ̃n

)
−

1
σn
θ̃Tn (σnφnSn − ρnθn)−

1
rn
δ̃n (rn |Sn| − ηnδn)

+wnDαwn

≤ −qn−1‖e‖2 −
n∑
i=1

ciS2i +
1
2

n∑
i=1

θ̃Ti θ̃i

+

n∑
i=1

ρi

σi
θ̃Ti θi +

n∑
i=1

ηi

ri
δ̃iδi +

n−1∑
i=1

|Si|2 +
1
2

∥∥Pκ∗∥∥2
+

n−1∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i +

1
2
w2
n + 2µ (n− 2)

+Sn

(
ū (t)− β2 (t)M1

1+ β1 (t) κ1
+ αn

)
+ k1nSne1

+wn

(
−
wn
λn
+ Bn

)
(90)

By employing Young’s inequality, we have

wnBn ≤
w2
nB

2
n

2u
+ 2u (91)

Further, we can obtain

DαVn ≤ −qn‖e‖2 −
n∑
i=1

ciS2i +
1
2

n∑
i=1

θ̃Ti θ̃i +
1
2

∥∥Pκ∗∥∥2
+

n∑
i=1

ρi

σi
θ̃Ti θi +

n∑
i=1

ηi

ri
δ̃iδi +

n−1∑
i=1

|Si|2 +
1
2
S2n

+

n∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i + 2µ (n− 1)

+Sn

(
ū (t)− β2 (t)M1

1+ β1 (t) κ1
+ αn

)
≤ −qn‖e‖2 +

1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i −

n∑
i=1

ciS2i

+

n∑
i=1

ρi

σi
θ̃Ti θi +

n∑
i=1

ηi

ri
δ̃iδi +

n∑
i=1

|Si|2 +
2κ2

1− κ1

+

n∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i + 2µ (n− 1) (92)

where qn = qn−1 − k21n
/
2.

According to Lemma 4, the following equation can be
given

θ̃Tl θl ≤ −
1
2
θ̃Tl θ̃l +

1
2
θ∗Tl θ∗l

δ̃lδl ≤ −
1
2
δ̃2l +

1
2
δ̃∗2l (93)

Substituting (93) into (92) produces

DαVn ≤ −qn‖e‖2 +
1
2

∥∥Pκ∗∥∥2 + 1
2

n∑
i=1

θ̃Ti θ̃i −

n∑
i=1

ciS2i

−
1
2

n∑
i=1

ρi

σi
θ̃Ti θ̃i −

1
2

n∑
i=1

ηi

ri
δ̃2i +

1
2

n∑
i=1

ρi

σi
θ∗Ti θ∗i

+
1
2

n∑
i=1

ηi

ri
δ∗2i +

n∑
i=1

|Si|2 +
2κ2

1− κ1
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+

n∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i + 2µ (n− 1)

≤ −qn‖e‖2 −
n∑
i=1

ciS2i −
1
2

n∑
i=1

(
ρi

σi
− 1

)
θ̃Ti θ̃i

−
1
2

n∑
i=1

ηi

ri
δ̃2i +

n∑
i=2

(
B2i
2µ
−

1
λi
+

1
2

)
w2
i + ξ

(94)

note that ξ =
1
2

n∑
i=1

(
ρi
σi
θ∗Ti θ∗i +

ηi
ri
δ∗2i + 2|Si|2

)
+

1
2‖Pκ

∗‖
2
+ 2µ (n− 1)+ 2κ2

1−κ1
.

Define

C = min

{
2qn−1

/
λmin (P) , 2ci, (ρi − σi) ,

ηi

(
B2i
2µ
−

2
λi
+

1
2

)}
(95)

Combining (95) into (94) together leads to

DαVn ≤ −CVn + ξ (96)

Along with (96) and Lemma 8, we can obtain

Vn ≤ V (0)Eα
(
−Ctα

)
+
ξµ

C
, (97)

Then we can obtain

lim
t→∞
|Vn (t)| ≤

ξµ

C
(98)

Since 1
2 |S (t)|

2
≤ Vn (t), we can obtain

lim
t→∞
|S (t)| ≤

√
2ξµ
C

(99)

Then we can summarize that all the signals remain
bounded in the closed-loop system and the synchronization
errors converge to near zero.

To ensure that the proposed control method can avoid Zeno
phenomenon, the proof is as follows:

By 1(t)=ū (t)− u (t) and u (t) = ū (tk), we have

Dα (1 (t)) = Dα (ū (t)− u (t)) = Dα (ū (t)− ū (tk))

= Dα (ū (t)) (100)

According to (1), we can obtain

Dα |1(t)| =
1

0 (n− α)

∫ t

0

|1(τ)|(n)

(t − τ)1+α−n
dτ

=
1

0 (n− α)

∫ t

0

(sign (1 (τ))1 (τ))(n)

(t − τ)1+α−n
dτ

=
sign (1 (t))
0 (n− α)

∫ t

0

1(n) (τ )

(t − τ)1+α−n
dτ

= sign (1 (t))Dα (1 (t)) (101)

Combining (100) into (101) together leads to

Dα (|1(t)|) = sign (1 (t))Dα (1 (t)) ≤
∣∣Dα ū (t)∣∣ (102)

According to equation (85), we can conclude that ū (t) is
α-th differentiable and Dα (ū (t)) a bounded function. There-
fore, we get that there exist ς > 0 such that |Dα (ū (t))| ≤ ς .
From1(tk) = 0 and limt→tk+11(t) = m1. Thus, there exists
t∗ such that t∗ ≥ m1

/
ς . Therefore, there exists t∗ ≥ 0 such

that ∀k ∈ N ∗, {tk+1 − tk} ≥ t∗, the Zeno phenomenon will
not occur.
Remark 3:The systemmatrixA is Hurwitz stable by appro-

priate selection of a vector K . It is shown that the changing
trends of z and ẑ coincide well and the boundedness of e
is well validated. It should be noted that the observer and
controller are designed synchronously in this paper, which
does not satisfy the separation principle. That is to design the
observer to be bounded while ensuring that the controller is
bounded.
Remark 4: It should be noted that the parameters κ1, M1

that will affect the synchronization accuracy of the system
and theminimum trigger interval. According to (86), it is easy
to know that when κ1 andM1 change, the trigger interval and
the number of trigger will change. However, inappropriate
parameters will affect the synchronization accuracy. Accord-
ing to equations (94) and (99), it can be concluded that if κ1
changes, ξ will change accordingly, thereby affecting the syn-
chronization error accuracy. Therefore, it is very necessary to
select the appropriate parameters.

IV. SIMULATIONS
In this section, we use the following examples to verify the
validity of the proposed method.

A. EXAMPLE 1
we consider the fractional order Duffing-Holmes chaotic sys-
tem [44], and select the master system as follows:{

Dαx1 = x2
Dαx2 = x1 − ax2 − x31 + b cos t

(103)

where α = 0.98, a = 0.25, b = 0.3, x (0) = [0.2, 0.2].
The slave system is as follows:

Dαy1 = y2
Dαy2 = y1 − ay2 − y31 + b cos t

+1f (t, y)+ d (t)+ u (t − τ)

(104)

where τ=0, y (0) = [0.1,−0.2], the nonlinear function is

1f (t, y) = 0.1 sin (t)
√
y21 + y

2
2, d (t) = 0.1 sin (t). Accord-

ing to Theorem 1, we design the controller as follows

ū (t) = −α2 −
S2(κ1α2)2√
(S2κ1α2)2 + κ22

−
S2M2

1√
(S2M1)

2
+ κ22

(105)

u (t) = ū (tk) , ∀ ∈ [tk , tk+1) (106)

where α2 = S1+ c2S2+ θT2 ϕ2
(
ẑ
)
+ sign (S2) δ2−

α1−v2
λ2

and

α1 = −c1S1. Choose the design parameters as c1 = 15, c2 =
35, θ (0) = [0.01, . . . , 0.01]T ,δ (0) = 0.1, ρ = η = 40,
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FIGURE 1. Fractional order Duffing-Holmes system and its slave system.

FIGURE 2. The state trajectories of the fractional Duffing-Holmes system
and its slave system.

FIGURE 3. The synchronization trajectories of the master system and its
slave system in Example 1.

σ = r = 1. κ1 = 0.5, κ2 = 2, M1 = 0.5, K = [40, 1600].
Figure. 1-Figure. 5 show the simulation results of Example 1.
Figures. 1-2 show that the states trajectories of the master
system and the slave system, which can be seen from the

FIGURE 4. The trajectories of the synchronization errors and its
estimation in Example 1.

FIGURE 5. The trajectories of ū, u and release interval in Example 1.

FIGURE 6. Fractional order Arneodo system and its slave system.

figure that there is difference in the states trajectories between
the master system and the slave system. Figure. 3 shows the
states synchronization trajectories of the master system and
the slave system. Figure. 4 shows the synchronization errors
and the estimated errors. It can be seen that the controller
designed by the method in this paper has satisfactory control
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FIGURE 7. The state trajectories of the fractional order Arneodo system
and its slave system.

FIGURE 8. The synchronization trajectories of the fractional order
Arneodo system in Example 2.

performance. Figure. 5 shows the trajectories of ū, u and
release interval and it can illustrate the boundness of ū and u
in Example 1.

B. EXAMPLE 2
Consider the fractional order Arneodo chaotic system [45]
and the master system is as follows:

Dαx1 (t) = x2 (t)

Dαx2 (t) = x3 (t)

Dαx3 (t) = f (x)

(107)

where α = 0.97, f (x) = x31 (t) + 5.5x1 (t) − 3.5x2 (t) −
0.8x3 (t) is the unknown function, the initial conditions are
given as x (0) = [−0.2, 0.2, 0.2].

FIGURE 9. The state synchronization trajectories of the master system
and its slave system in Example 2.

FIGURE 10. The synchronization error trajectories of the master system
and its slave system in Example 2.

The slave system is given as
Dαy1 (t) = y2 (t)
Dαy2 (t) = y3 (t)
Dαy3 (t) = u (t − τ)+ g (y)+1g (t, y)+ d (t)

(108)

where τ = 0.01 is input delay, y (0) = [0.1, 0.1, 0.1],

1g (t, y) = sin
(√

y21 + y
2
2

)
.and g (y) = y31 (t) +

5.5y1 (t) − 3.5y2 (t) − 0.8y3 (t) are the system nonlinearity.
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FIGURE 11. The trajectories of ū, u and release interval in Example 2.

FIGURE 12. The triggered number of different sampling step size.

d (t) = 0.1 sin (t) is the external disturbance. Choose the
design parameters as c1 = 20, c2 = c3 = 10, σ = r = 1, ρ =
η = 40, κ1 = 0.7, κ2 = 2, M1 = 2, K = [60, 1200, 8000].
Figure. 6-Figure. 11 show the simulation results of Exam-

ple 2. Figures. 6-7 show that the states trajectories of the
master system and the slave system. Figures. 8-9 show the
states synchronization trajectories of the master system and
the slave system. Figure. 10 shows the synchronization errors
and the estimated errors. Figure. 11 shows the trajectories of
ū, u and release interval in Example 2. We have simulated the
number of event triggers with different sampling time steps
(see Figure. 12), in which variable-step sampling is used for
simulation in this paper. It can be seen from the simulation
results that different sampling times have some effects on the
number of event triggers. Therefore, the appropriate sampling
time will reduce the number of triggers to a certain extent.

V. CONCLUSION
This paper investigates the synchronization problem for
fractional order chaotic systems with input delay and
nonlinear dynamics, and designs an event-triggered adap-
tive neural network backstepping sliding mode controller.

An event-triggered scheme is considered to reduce the num-
ber of transmissions of control input signals. The fractional
order dynamic surface control technology is introduced into
the controller to avoid ‘‘explosion of complexity’’ and obtain
fractional derivatives for virtual control functions continu-
ously. The sliding term is introduced, which can enhance
robustness. The nonlinear functions and external disturbance
of systems are approximated by the RBF neural network
and the state observer is designed for states estimation of
system. By utilizing the Pade delay approximation method,
the original systems can be converted into systems without
input delay. Under the Lyapunov stability theory, the stability
of systems is ensured by the proposed controller. Exam-
ple and simulation results show the feasibility and effec-
tiveness of the proposed results. In addition, the method
proposed in this paper can be applied to the synchronization
of high-dimensional fractional order chaotic systems, so the
results of this paper have great theoretical significance, espe-
cially in the field of communication security.
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