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ABSTRACT Traffic interruption is very easy to cause traffic congestion. For the problem of traffic interrup-
tion, a novel car-following model in this paper is presented to correct the effect of traffic self-interruption
probability with the combination of the anticipation information communication under V2X environment.
The stability condition concerning the self-interruption probability correction is acquired via linear anal-
ysis. The mKdV equation involving the self-interruption probability correction is deduced from nonlinear
analysis. Moreover, numerical simulation demonstrates that the self-interruption probability correction can
effectively relieve traffic jam, which agrees with analytical results.

INDEX TERMS Optimal velocity model, numerical simulation, self-interruption probability.

I. INTRODUCTION
There are many factors affecting traffic behaviors with the
rapid growth of the number of vehicles, whichmay cause traf-
fic congestions. With the rapid increase of traffic flux, traffic
accidents randomly occur more frequently though they are
very disgusting. To investigate the impact of traffic accidents,
some scholars [1]–[5] have proposed several traffic mod-
els resulted from the traffic interruption. Moreover, a novel
macroscopic continuum model [6] and a novel car-following
model [7] have been presented by taking into account the
traffic interruption probability of leading vehicle’s velocity.
Furthermore, a two-lane macroscopic continuum model [8]
was developed to observe the traffic jams caused by the traffic
interruption probability factor besides lane changing behav-
iors. Different from the interruption probability of leading
car’s speed in [6]–[8], Peng et al. [9] established a novel
type of lattice model by considering the traffic interruption
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probability of traffic flux. Recently, based on the expansion
of the Newell’s car-following model [10], Bando et al. [11]
proposed an optimal velocity (OV) model to adjust vehicle’s
acceleration. Subsequently, considerable car-following mod-
els [12]–[32] have been constructed by considering different
traffic information on the basis of the OV model, which
shows that OV model has a high advantage in analyzing
traffic flow. However, previous car-following models did not
consider the self-interruption probability involving the com-
pensation algorithm of the anticipation optimal velocity.With
the development of V2X(Vehicle to X) technology, traffic
interruption information can be acquired by drivers. There-
fore, the self-interruption probability involving the anticipa-
tion effect can be collected by applying V2X technology.
In real traffic situation, to avoid traffic accidents, the drivers
will adjust running speed by estimating their optimal speed
when the traffic interruption occurs. Therefore, based on
this consideration point of view, we in this paper propose a
novel optimal velocity model with the consideration of the
self-interruption probability of current vehicle’s velocity on
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traffic stability involving the anticipation optimal velocity.
Subsequently, the theoretic analyses and numerical simula-
tions will be executed to explore the impact of traffic self-
interruption probability with anticipation optimal velocity on
traffic stability, which will demonstrate that it is necessary
and meaningful to reveal the factors of traffic interruption in
our consideration.

II. MODELING
The OV model proposed by Newell [10] was described as
below:

dvn(t)
dt
= a[V (1xn(t))− vn(t)] (1)

Here xn(t), vn(t) and a respectively indicate the position,
velocity of car n at time t and the sensitivity of a driver;
1xn = xn+1− xn denotes the headway; V (1xn(t)) represents
the optimal velocity function as

V (1xn(t)) = 0.5vmax tanh [1xn(t)− hc] (2)

where vmax and hc respectively express themaximumvelocity
and the safe distance. When the self-interruption problem of
current vehicle’s velocity occurs, it will stimulate the driver’s
anticipation of optimal velocity. Consequently, a novel opti-
mal velocity model is established with the self-interruption
probability involving the anticipation optimal velocity as
below:
dvn(t)
dt
= a[V (1xn(t))− vn(t)](1− pn)

+ aV (1xn(t + ϑτ )pn (3)

where pn means the traffic interruption probability of cur-
rent vehicle’s velocity. For simplicity, the traffic interruption
probability pn is assumed as a constant, i.e.. pn = p. ϑ is
the response coefficient for driver’s anticipation ability and
the delay time τ = 1/a. Moreover, by series expansion and
ignoring higher order terms for 1xn(t + ϑτ ) = 1xn(t) +
ϑτ1vn(t) and V (1xn(t + ϑτ )) = V (1xn(t))+ ϑτV ′1vn(t),
we deduce the following equation:

dvn(t)
dt
= a[V (1xn(t))− vn(t)]

+ apvn(t)+ ϑpV ′1vn(t) (4)

Here V ′ = dV (1x)/d1x. Henceforth, by discretizing
Eq. (4), we get the difference form as below:

1xn(t + 2τ ) = 1xn(t + τ )+ τ [V (1xn+1(t))

−V (1xn(t))]+ p[1xn(t + τ )−1xn(t)]

+τpϑV ′[1xn+1(t + τ )−1xn+1(t)

−1xn(t + τ )+1xn(t)] (5)

III. LINEAR STABILITY ANALYSIS
We chose the optimal velocityV (b) corresponding to constant
headway b for the uniform steady state. Hence, the position
for the uniformly steady state can be displayed as below:

xn,0(t) = hn+ V (b), b = L/N (6)

Here N and L show respectively the number of cars and
the length of the road. Suppose a small deviation yn(t) for the
uniform solution xn,0(t): xn(t) = xn,0(t)+ yn(t). Then Eq. (5)
can be rewritten for yn(t) with linearization as below:

1yn(t + 2τ ) = 1yn(t + τ )+ τV ′(b)[1yn+1(t)

−1yn(t))]+ p[1yn(t + τ ))−1yn(t))]

+τpϑV ′[1yn+1(t + τ )−1yn+1(t)

−1yn(t + τ )+1yn(t)] (7)

where V ′(b) = dV (1x)|1x=b. By expanding 1yn(t) =
A exp(ikn+ zt), we win

e2zτ − ezτ − τV ′(eik − 1)− p(ezτ − 1)

− τpϑV ′(eik − 1)(ezτ − 1) = 0 (8)

Making z = z1(ik)+z2(ik)2+· · · and neglecting the greater
terms than two, we gains:

z1 = V ′(b)/(1− p),

z2 =
1

2(1− p)
[V ′(b)− 3τ z21

−pτ z21 + 2τϑpV ′(b)z1] (9)

Accordingly, traffic flow falls into unstable state for z2 < 0
and remains stable as z2 > 0 by contrary. Correspondingly,
the neutral stability condition is inferred as below:

τ =
(1− p)2

(3− p− 2ϑp)V ′(b)
(10)

Consequently, the linear stable condition is derived natu-
rally for the uniform traffic flow as below:

τ <
(1− p)2

(3− p− 2ϑp)V ′(b)
(11)

Obviously, both the self-interruption probability p and the
response coefficient ϑ play a considerable role on traffic
stability. Spontaneously, the neutral stability lines can be
described for different p and ϑ as shown in Fig. 1 (solid
line). In view of Fig. 1(a), the stable region becomes gradually
smaller with the self-interruption probability p increasing at
ϑ = 0 (no anticipation in optimal velocity), which shows that
the self-interruption probability of current vehicle’s velocity
deteriorates the stability of traffic flow. However, the stable
region expands wider and wider in the opposite direction with
the increase of the response coefficient ϑ for the anticipation
in optimal velocity when the self-interruption probability
of current vehicle’s velocity happens from Fig. 1(b). The
result shows that we can eliminate the negative impact of
self-interruption probability of current vehicle’s velocity by
providing a modified compensation method of anticipation
in optimal velocity under V2X environment.

IV. NONLINEAR ANALYSIS
In this section, the nonlinear analysis is executed to achieve
the mKdV equation. Firstly, the slow variables X and T are
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FIGURE 1. Phase diagram in parameter space (b; a).

assumed with space variable n and time variable t for a small
positive scaling parameter ε as follows:

X = ε(n+ bt) and T = ε3t, (12)

Here b is a constant. And the headway is adopted as below

1xn(t) = hc + εR(X ,T ) (13)

Subsequently, by expanding Eq. (5) to the fifth order of ε,
one gets:

ε2m1∂XR+ ε3m2∂
2
XR

+ε4(∂TR+ m3∂
3
X
R+ m4∂XR3)

+ε5(m5∂T ∂XR+ m6∂
4
XR+ m7∂

2
XR

3) = 0 (14)

m1 = b− V ′/(1− p) (15a)

m2 =
(3− p)b2τ − V ′ − 2τϑpV ′

2(1− p)
(15b)

m3 =
(7− p)b3τ 2 − V ′ − 3τϑpV ′b(bτ + 1)

6(1− p)
(15c)

m4 = −
V ′′′

6(1− p)
,m5 =

(3− p)bτ − τϑpV ′

1− p
(15d)

m6 =
(15− p)b4τ 3 − V ′ − 2τϑpV ′b(2b2τ 2 + 3bτ + 2)

24(1− p)
(15e)

m7 = −
V ′′′

12(1− p)
(15f)

where V ′ = dV (1x)/d1x|1x=hc , V
′′′
= d3V (1x)/d1x3

|1x=hc . Near the critical point (ac, hc), make ac/a = 1 + ε2

and b = V ′/(1 − p). Then we can eliminate the second- and
third-order terms of ε in Eq. (15a) to obtain:

ε4[∂TR− g1V ′∂3XR+ g2∂XR
3]

+ ε5[g3∂2XR− g4∂
4
XR+ g5∂

2
XR

3] = 0 (16)

where

g1 = −
(7− p)b3τ 2c − V

′
− 3τcϑpV ′b(bτc + 1)

6(1− p)
(17a)

g2 = −
V ′′′

6(1− p)
; g3 =

V ′ + 2τcϑpV ′b
2(1− p)

(17b)

g4 =
(15− p)b4τ 3c − V

′

24(1− p)

−
2τcϑpV ′b(2b2τ 2c + 3bτc + 2)

24(1− p)

−
[(3− p)bτc − τcϑpV ′]

6(1− p)2

[(7− p)b3τ 2c − V
′
− 3τcϑpV ′b(bτc + 1)]

6(1− p)2
(17c)

g5 =
2[(3− p)bτc − τcϑpV ′]V ′′′ − V ′′′

12(1− p)
(17d)

Furthermore, a transformation for Eq.(16) is chosen as
follows:

T ′ = g1V ′T ,R =
√
g1
g2
R′ (18)

As a result, the mKdV equation can be derived with cor-
rection terms O(ε) as below:

∂TR′ − ∂3XR
′
+ ∂XR′3 + εM [R′] = 0 (19)

Here

M [R′] =

√
1
g1

[g3 ∂2XR
′
+
g1g4
g2

∂2XR
′3
+g4∂4XR

′

]
(20)

By ignoring the term O(ε), the kink-antikink soliton solu-
tion is educed for the standard mKdV equation as below:

R′0(X ,T
′) =
√
c tanh

√
c/2(X − cT ′) (21)

where c means the propagation velocity of wave. To deter-
mine the propagation velocity, solvability conditions need to
be satisfied as below:

(R′0,M [R′0]) =
∫
+∞

−∞

dXR′0(X ,T
′)M [R′0(X ,T

′)] = 0 (22)

where M [R′0] = M [R′]. By integrating Eq. (20), the solution
of propagation velocity is obtained:

c =
5g2g3

2g2g4 − 3g1g5
(23)

Thereby, the kink-antikink soliton solution is obtained for
the mKdV equation as below:

R(X ,T ) =
√
g1c
g2

(
ac
a
− 1)× tanh

√
c/2(X − cg1T ) (24)
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Therefore, we gain the general kink-antikink soliton solu-
tion of the headway as below:

1xj(t) = hc +
√
g1c
g2

(
τ

τc
− 1) tanh

√
c
2
(
τ

τc
− 1)

×

[
j+ (1− g1cV ′(

τ

τc
− 1))t

]
(25)

The amplitude A of the kink–antikink soliton solution can
be written as below:

A =
√
g1c
g2

(
τ

τc
− 1) (26)

So we can draw the coexisting curves according to
1x = hc ± A as shown in Fig. 1 (dashed curves), which
shows that the phase space is divided into three regions
involving stable, metastable and unstable domains. It can
be seen from Fig. 1(b) that the coexisting line and the neu-
tral stability lines are increasing with the increase of the
self-interruption probability of current vehicle’s velocity at
ϑ = 0 (no anticipation in optimal velocity), which indicates
that the traffic self-interruption probability of current vehi-
cle’s velocity deteriorates the traffic stability. However, the
coexisting lines and the neutral stability lines fall down with
the increase of anticipation coefficient ϑ in optimal velocity
under the same self-interruption probability p, which implies
that the anticipation coefficient ϑ in optimal velocity can
improves the traffic stability to offset the negative impact of
the self-interruption probability of current vehicle’s velocity.

V. NUMERICAL SIMULATION
Periodic boundary conditions are adopted for numerical sim-
ulation. The parameters are chosen: hc = 4m, vmax = 2m/s,
a = 2.96s−1, the total cars N = 100. And the initial
disturbance is considered as follows:

1xn(0) = 1xn(1) = 4, n 6= N/2, n = N/2+ 1
1xn(0) = 1xn(1) = 4− 0.1, n 6= N/2
1xn(0) = 1xn(1) = 4+ 0.1, n = N/2+ 1

(27)

Fig. 2 respectively delivers the headway evolution after
104 time steps for different self-interruption probability p
at ϑ = 0. Fig. 3 respectively shows the headway profiles
corresponding to Fig. 2 at t = 10, 300. In view of Fig. 2
and Fig. 3, the kink–antikink soliton solution occurs and
traffic waves propagate backward under a small perturbation
since the stability condition Eq. (11) is broken. Unfortunately,
with the increase of the self-interruption probability under
no consideration of anticipation effect in optimal velocity,
the traffic fluctuation becomes greater from Fig. 2 and Fig. 3.
That is to say, the self-interruption probability of current
vehicle’s velocity is a negative factor affecting traffic stability.

To overcome the defect of the self-interruption probability
factor, we propose a new correction method by introducing
the anticipation effect in optimal velocity. Fig. 4 respectively
expresses the headway evolution after 104 time steps for
different anticipation coefficient ϑ when the self-interruption
probability p = 0.3. Fig. 5 respectively represents the

FIGURE 2. The spatiotemporal evolution of headway for different
self-interruption probability of current vehicle’s velocity without the
anticipation effect.

headway profiles corresponding to Fig. 4 at t = 10, 300.
Brightly seen in Fig. 4 and Fig. 5, it’s worth celebrating that
a positive effect was found by considering the anticipation
effect in optimal velocity under the self-interruption occur-
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FIGURE 3. Profile of headway at time step 10300 corresponding to Fig. 2.

ring. On the basis of Fig. 4 and Fig. 5, what’s more interesting,
the headway fluctuation shrinks gradually with the antici-
pation coefficient ϑ increasing else if the self-interruption

FIGURE 4. The spatiotemporal evolution of headway for different
anticipation coefficient ϑ at p = 0.3.

probability destroys the stability of the traffic flow. Finally,
according to Fig. 5(d), traffic flow entirely enters into the
stable state when ϑ = 3 at p = 0.3 because of the
stability condition Eq. (11) being satisfied. It is conclusion
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FIGURE 5. Profile of headway at time step 10300 corresponding to Fig. 4.

that the anticipation effect in optimal velocity can elimi-
nate the negative impact resulted from the self-interruption
probability of current vehicle’s velocity. It is adequately cer-
tificated that the traffic stability is efficiently enhanced by
considering the anticipation effect in optimal velocity when

the self-interruption probability of current vehicle’s velocity
happens.

VI. CONCLUSION
A novel car-following model is constructed by considering
the anticipation effect in optimal velocity to overcome the
negative effect resulted from the self-interruption probability
of current vehicle’s velocity under V2X environment. The
linear stable condition and the mKdV equation have been
deduced via linear stability analysis and nonlinear analysis.
Numerical simulation affirms that the self-interruption proba-
bility of current vehicle’s velocity is easy to destroy the traffic
stability. But the negative impact of traffic self-interruption
can be effectively eliminated by the correction algorithm of
the anticipation effect in optimal velocity in our new model.
Therefore, although traffic self-interruption is one of the
important factors causing traffic congestion, we can make
up for the adverse effects caused by traffic self-interruption
through certain compensation methods under V2X environ-
ment.
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