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ABSTRACT Wi-Fi systems based on the IEEE 802.11 standards are the most popular wireless interfaces that
use Listen Before Talk (LBT) method for channel access. The distinctive feature of a majority of LBT-based
systems is that the transmitters use preambles that precede the data to allow the receivers to perform packet
detection and carrier frequency offset (CFO) estimation. Preambles usually contain repetitions of training
symbols with good correlation properties, while conventional digital receivers apply correlation-based
methods for both packet detection and CFO estimation. However, in recent years, data-based machine
learning methods are disrupting physical layer research. Promising results have been presented, in particular,
in the domain of deep learning (DL)-based channel estimation. In this paper, we present a performance
and complexity analysis of packet detection and CFO estimation using both the conventional and the
DL-based approaches. The goal of the study is to investigate under which conditions the performance of
the DL-based methods approach or even surpass the conventional methods, but also, under which conditions
their performance is inferior. Focusing on the emerging IEEE 802.11ah standard, our investigation uses both
the standard-based simulated environment, and a real-world testbed based on Software Defined Radios.

INDEX TERMS Deep learning, packet detection, carrier frequency offset estimation, IEEE 802.11ah.

I. INTRODUCTION
Wireless communication systems based on the orthogonal
frequency division multiplexing (OFDM) dominate current
wireless research and development. In order to ensure fair-
ness, wireless systems operating in unlicensed bands share a
common channel using Listen Before Talk (LBT) methodol-
ogy. Common approach in a majority of LBT systems is that
the transmitters send preambles prepended to data packets in
order to ensure that the receivers detect signal and acquire
initial synchronization. Preambles usually contain a sequence
of symbols with good correlation properties, allowing the
receiving end to identify packet start samples and establish
initial timing and frequency offset synchronization. Con-
ventional model-based signal processing methods at OFDM
receivers are well understood and are currently used as a basis
for the receiver design [1]–[9].
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Conventional methods are recently challenged by
the data-based approaches relying on deep learning
(DL) [10]–[12]. DL-based methods have been evaluated
across the physical layer (PHY), ranging across signal detec-
tion [13], channel estimation [14], [15] and error correction
coding [16], demonstrating promising performance as com-
pared to the conventional methods. Moreover, the DL-based
positioning services that exploit channel state information
as fingerprints have been explored recently [17]. However,
in most of the DL-based PHY studies, signal detection at
the receiver that includes procedures that precede channel
estimation, such as packet detection and carrier frequency
offset (CFO) estimation, are assumed to be perfectly known.
In addition, studies on DL-based PHY methods focusing
specifically on preamble-based LBT OFDM systems are
also missing, with an exception in the domain of channel
estimation [18].

In this paper, we fill this gap by focusing on the
DL-based methods for packet detection and CFO estimation
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in IEEE 802.11 systems. In order to provide a detailed,
standard-specific investigation, we consider an emerg-
ing IEEE 802.11ah standard for low-power Internet
of Things (IoT) applications [20]. We use both the
standard-based simulated environment, and a real-world
testbed based on Software Defined Radios (SDRs) to evaluate
our results.

The paper is topically divided in two parts. In the first
part of the paper, we focus on the packet detection problem
and provide a detailed complexity vs. performance eval-
uation and comparison between the conventional and the
DL-based packet detection. Our results demonstrate that the
DL methods based on the one-dimensional Convolutional
Neural Networks (1D-CNN) may outperform conventional
methods under reduced computational effort, while being
inferior in miss detection and false alarm rates.

In the second part of the paper, we investigate theDL-based
CFO estimation methods and compare them to the conven-
tional methods. Our results show that, for the CFO estima-
tion at the IEEE 802.11ah receiver, long short-term memory
(LSTM)-based recurrent neural network (RNN) are able to
match the performance of the conventional methods, and
even surpass them at low-to-medium signal-to-noise ratios
(SNR). However, despite their excellent accuracy, DL-based
methods suffer from higher complexity as compared to the
conventional methods.

Our goal in this paper is to discuss both the benefits
and drawbacks of DL-based methods in the context of a
specific wireless standard (IEEE 802.11ah) and provide fair
comparison with the conventional methods. In other words,
the main message of the paper is not in advocating the usage
ofDL-based solutions, but in pointing out, in a given scenario,
when it is advantageous to use such methods and when it is
not.

A. RELATED WORK AND PAPER CONTRIBUTIONS
Using DL for PHY processing is a very active research
area. However, most of the recent work is focused on
the channel estimation, assuming that the signal detection
and synchronization is ideal. Nevertheless, several recent
papers address the DL-based signal detection in several
scenarios.

Li et al. [21] address the problem of CFO in the uplink
of the OFDM access (OFDMA) system, where DL is used
to suboptimally estimate CFOs corresponding to different
users. The DL-based CFO for the received signals after
a low resolution analog-to-digital conversion in emerging
mmWave multiple-input multiple-output (MIMO) systems is
investigated in [22], demonstrating improved performance
as compared to the conventional methods. For OFDM-based
unmanned aerial vehicle communications, DL methods for
CFO are proposed in [23]. Our work on the CFO estimation
part is influenced by [13], an early study on DL-based CFO
estimation in single-carrier systems. Finally, a comprehensive
overview of DL methods for the IEEE 802.11ax receiver
design is presented in [24].

The contributions of this work are summarized as follows:
• We introduce a DL-based packet detection in preamble-
based IEEE 802.11 systems and provide systematic
performance and complexity comparison with the con-
ventional packet detectors. The initial results, presented
in [19], are here expanded with additional numerical
results and SDR-based real-world demonstrations;

• We present a systematic performance and complexity
comparison of the DL-based and the conventional CFO
methods in preamble-based IEEE 802.11 systems;

• Our results are demonstrated using standard-based IEEE
802.11ah simulated environment and verified in a
real-world setup using SDRs;

• The study provides clear insights under which condi-
tions the performance of the DL-based methods may
approach or even surpass the conventional methods for
packet detection and CFO estimation, but also, under
which conditions their performance is inferior.

To summarize, compared to [19], this paper extends our
work to a more challenging problem of CFO estimation,
provides extensive simulation and SDR-based real-world per-
formance results, and presents a detailed discussion on imple-
mentation complexity for both packet detection and CFO
estimation.

The paper is organized as follows. In Sec. II, we present
a system model and review IEEE 802.11ah frame struc-
ture. Sec. III deals with the packet detection problem,
where the conventional and the DL-based methods are first
described, and then evaluated using numerical simulations
and the real-world SDR experiments. In a similar manner,
Sec. IV describes and compares the conventional and the
DL-based CFO estimation methods, including simulated and
real-world SDR-based results. The paper is concluded in
Sec. V.

II. BACKGROUND AND SYSTEM MODEL
A. OFDM COMMUNICATION SYSTEM MODEL
Weconsider a conventional OFDMsystemwithN subcarriers
separated by 1f in the frequency domain. At the transmitter
side, the binary information sequence is mapped onto the
sequence of complex modulation symbols XXX allocated to dif-
ferent subcarriers and converted into the time-domain signal
xxx via Inverse Discrete Fourier Transform (IDFT) [1]. The
resulting discrete-time complex baseband signal is obtained
as:

xn =
1
N

N−1∑
k=0

Xke
j(2πkn)
N , n = 0, 1, . . . ,N − 1, (1)

where Xk are the complex samples in the frequency domain.
Cyclic prefix (CP) of length greater than the expected

channel delay spread is inserted in order to mitigate
Inter-Symbol Interference (ISI) and preserve the orthogo-
nality of the subcarriers [2]. After oversampling and fil-
tering, the oversampled signal xxxos will propagate through
the indoor multipath channel. Focusing on the discrete-time
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FIGURE 1. Generic architecture of the OFDM wireless receiver.

complex-baseband model, the channel is represented via
an equivalent discrete-time impulse response hhh. After the
complex additive white Gaussian noise (AWGN) www samples
are added, the discrete-time complex-baseband signal at the
receiver side can be obtained as:

yyyos = xxxos ~ hhh+www, (2)

where ~ represents the circular convolution.
The receiver side, which is in the focus of this paper,

is illustrated in Fig. 1. After the signal passes through a
reverse pulse shaping filter, it is downsampled, time and fre-
quency offsets are corrected, and the cyclic prefix is removed.
In order to demodulate the received signal, DFT is performed,
and the frequency-domain signal is written as:

Yk =
N−1∑
n=0

yn · e−
j(2πkn)
N , k = 0, 1, . . . ,N − 1 (3)

Next, the signal correction using channel estimation tech-
niques (usually based on inserted pilot symbols) is executed
and the data is passed to the signal demapper block for
the demodulation and channel decoding. Lastly, the binary
information data is obtained back.

Note that, besides the channel impairment and the noise,
the received signal (yyyos) is affected by the time sampling
offset (ε = τoff

T , where T represents duration of one OFDM
symbol) and the carrier frequency offset (1 = foff

1f ), which
needs to be estimated and corrected. A carrier frequency off-
set (CFO) of foff causes a phase rotation of 2π tfoff . If uncor-
rected, this causes both a rotation of the constellation and
a spread of the constellation points similar to the AWGN.
A timing error will have a little effect as long as all the
taken samples are within the length of the cyclically-extended
OFDM symbol [3].

B. IEEE 802.11ah FRAME STRUCTURE
In this paper, we focus on listen-before-talk (LBT)-based
IEEE 802.11 OFDM technologies, whose frame structure is
shown in Fig. 2. In LBT systems, the sequence of data sym-
bols is preceded by a preamble of known data needed to estab-
lish the initial synchronization and/or channel estimation [4].

FIGURE 2. IEEE 802.11 preamble and frame structure.

The initial synchronization includes the frame detection (esti-
mation of the initial time sample of the incoming frame)
and frequency offset estimation. Preamble structure is usually
based on a certain repeated pattern, representing sequences
with good correlation properties that provide for good time
and frequency synchronization [5].

For the purpose of detailed implementation and evaluation,
in this paper, we restrict our attention to the IEEE 802.11ah
(Wi-Fi HaLow) standard. The 802.11ah 1MHz packet pream-
ble is a pilot sequence with a fixed length of 14 OFDM sym-
bols (for single-antenna transmission) where each OFDM
symbol has N = 32 subcarriers of subcarrier spacing 1f =
31.25 kHz. Normal cyclic prefix of 8 µs duration is applied,
resulting in 40 µs OFDM symbol [6]. Note that the compo-
sition of the preamble remains the same as in conventional
802.11 systems, further adapted to specific 802.11ah require-
ments [4], [6], [20]:
Short Training Field (STF) - The short training field,

which lasts 160 µs, consists of 4 OFDM symbols in the
frequency domain which, after IDFT, represent 10 repetitions
of the same short training symbol (16 µs each) in the time
domain. Short training symbol is a sequence with good cor-
relation properties and a low peak-to-average power whose
features are preserved even after clipping or compression
by an overloaded analog front end. Because of that, a short
training field is suitable for coarse timing synchronization
(packet detection) and (coarse) frequency offset estimation.
Long Training Field 1 (LTF1) - The first long training

field also contains 4 OFDM symbols of 160 µs duration.
Two repetitions of the same long training symbol enables fine
timing synchronization, fine frequency offset estimation and
channel estimation.
Signal Field (SIG) - The signal field, which is made of 6

OFDM symbols, contains packet information to configure the
receiver: rate (modulation and coding), length (amount of
data being transmitted in octets), etc.
Long Training Field 2 (LTF2) - The second long training

field is used for MIMO channel estimation, and in our case,
because only SISO transmission is applied, this part does not
exist.

In this paper, we focus on the problem of initial syn-
chronization, which depends only on the packet pream-
ble. To reduce the complexity of both the simulations and
real-world experiments, 802.11ah Null Data Packet (NDP)
[25] is used, containing only the preamble (without data
field). The transmit waveform of the NDP packet is shown
in Fig. 3.
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FIGURE 3. 802.11ah packet preamble – the transmitted waveform.

III. PREAMBLE-BASED PACKET DETECTION
A. CONVENTIONAL PACKET DETECTION METHODS
Conventional algorithms for packet detection, which are
nowadays widely used, use repetitive preamble structure
through complex correlation between two subsequently
received training symbols. If we suppose that the number of
complex samples in one training symbol is L, such complex
correlation can be expressed as:

3τ =

L−1∑
i=0

y∗τ+iyτ+i+L (4)

In [3] and [8], the authors proposed a packet detection
algorithm which relies on the assumption that the channel
effects will be annulled if the conjugated sample from one
training symbol is multiplied by the corresponding sample
from the adjacent training symbol. Consequently, products
of these sample pairs at the start of the frame will have
approximately the same phase, thus the magnitude of their
sum will be a large value. In order to reduce the complexity
of the algorithm, they introduced a window of 2L samples
which slides along the time τ as the receiver searches for the
first training symbol, i.e., the packet start sample τS . Timing
metric used for the packet detection is:

M (τ ) =
|3τ |

2

P2τ
, (5)

where Pτ is the sum of the powers of L subsequent samples:

Pτ =
L−1∑
i=0

|yτ+i+L |2 (6)

From the timing metric M (τ ), one may find the ini-
tial packet sample by finding the sample that maximizes
M (τ ). In addition, except finding themaximum sample-point,
observing the points to the left and right in the time domain
which are at the 90% of the maximum, and averaging these
two 90%-time samples, may result in more accurate timing

estimation. A threshold which triggers the above algorithm
should be chosen in a way that the algorithm minimizes
the probability of miss detection while controlling for the
probability of false alarm.

Packet detection in IEEE 802.11 is usually separated
into two steps: coarse and fine synchronization, where the
main principles from conventional algorithms are reused
and adapted to the specific system requirements. The coarse
packet detection, denoted as τ̂S , may follow [3] (Eq. 5),
setting L = 80 samples (one half of the STF duration):

τ̂S = argmax
τ

|3τ |
2

(Pτ )2

= argmax
τ

(
|
∑τ+LS−lS

n=τ y∗nyn+lS |
2

(
∑τ+LS−lS

n=τ |yn+lS |2)2
), (7)

where lS is the STS sample-length and LS represents the
sample-lengths of the STF field. After calculating τ̂S , we can
extract the whole preamble because the peaks from the
correlation between a single long training symbol and the
entire preamble are used to derive more accurate time
estimation [4].

B. DEEP-LEARNING BASED PACKET DETECTION
The packet detection problem can be formulated as a regres-
sion problem, where DNN needs to learn a mapping between
the input signal and the output value representing the packet
start instant while distinguishing from the noise. We suppose
that DNN-based packet detection operates over the consecu-
tive fixed-length blocks |yyy| of the received signal amplitude
samples:

τ̂S = f (|yyy|), (8)

after the received signal is downsampled and filtered. Next,
we will describe the DNN architecture used for packet detec-
tion task, as well as the training procedure.

1) CONVOLUTIONAL NEURAL NETWORKS FOR PACKET
DETECTION
Motivated by recent investigation in [13] and the initial results
obtained in [19], we consider Wi-Fi packet detection using
one-dimensional convolutional neural networks (1D-CNN).

CNNs are DL architectures that achieved outstanding
results in computer vision and image classification prob-
lems, due to their ability to extract features from local input
patches through the application of relevant filters. CNNs can
effectively learn the hierarchical features to construct a final
feature set of a high level abstraction, which are then used to
form more complex patterns within higher layers [26]. The
same ideas can be applied to 1D-sequences of data, where
1D-CNNs are proven to be effective in deriving features from
fixed-length segments of the data set. This characteristic of
the 1D-CNN, together with the fact that the 1D convolution
layers are translation invariant, which means that a pattern
learned at a certain position in the signal can be latter rec-
ognized at a different position (e.g., the start instant of the
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FIGURE 4. Structure of 1D convolution layer.

packet), makes this architecture suitable for packet detection
task.

Two types of layers are applied in compact 1D-CNNs:
i) 1D-CNN layer, where 1D convolution occurs, and ii) Fully
Connected (FC) layer. Each hidden CNN layer performs a
sequence of convolutions, whose sum is passed through the
activation function [27]. The main advantage of 1D-CNN
represents fusing feature extraction and classification opera-
tions into a single process that can be optimized to maximize
the network performance, because CNN layers process the
raw 1D data and extract features used by FC layers for
prediction tasks (Fig. 4). As a consequence, low computa-
tional complexity is provided and if compared to 2D-CNNs,
1D-CNN can use larger filter and convolution window sizes
since the only expensive operation is a sequence of 1D
convolutions.

2) TRAINING PROCEDURE
To train DNN models, the mean-squared error (MSE) loss:
LMSE (τS , τ̂S ) =

∑
i(τSi − τ̂Si )

2 is minimized, which achieves
better performances as compared to the mean-absolute
error (MAE) and Huber loss functions. The training set is
separated into mini-batches of size 80, and 400 epochs are
sufficient for the loss function convergence. In order to opti-
mize network parameters, stochastic gradient descent (SGD)
with Adam at the learning rate α = 0.001, β1 = 0.9 and
β2 = 0.999 is used [28].

The same 1D-CNN architecture (Table 1) is used for all
experiments. Filter size of the first convolution layer is chosen
as a half of the STS sample-length (8 samples), and stride
of 1 sample is applied (Fig. 4). Note that we do not exploit
full flexibility of 1D-CNN architecture since we apply a
fixed number of input channels as well as the fixed-length
filters. We apply such fixed architecture to make the analysis
of the proposed algorithm in terms of its performance and
complexity easier. We note that the further optimization of
the number of input channels and the input filter lengths may
further improve performance vs. complexity trade-off.

TABLE 1. 1D-CNN network parameters for packet detection.

C. DATA SET GENERATION
1) SIMULATED ENVIRONMENT
The data set consists of (|yyy|, τS ) pairs, where τS indicates
a packet start sample inside the block. Within the data set,
we included about 50% of the blocks that do not contain a
packet start instance, tagged with the value of τS = −1.
Among such blocks, roughly half contain only noise samples,
while the other half contain intermediate or tail-parts of NDP
packets. For data set blocks containing packet start instants
τS , its value is set uniformly at random among the input block
samples. Data sets are created for input blocks |yyy| of lengths:
40, 80, 160, 320, 800, 1600 samples, where the number of
received blocks in each data set is 50000. Note that the larger
the length of the input block, the complexity of the first layer
increases, however, the number of blocks to be processed per
unit time decreases. Careful complexity analysis is presented
in Sec. III-D. From the data set, 70% records are used for
training, 15% for validation and 15% for testing.

Regardless of the input block size, all packets are simu-
lated under the same conditions using the standard-compliant
IEEE 802.11ah physical layer simulator. In order to examine
estimator robustness to varying signal-to-noise-ratio (SNR),
SNR values are uniformly and randomly selected from range
[1 dB, 25 dB]. During the simulations, indoor multipath fad-
ing channel - model B [29] is applied.

2) REAL-WORLD ENVIRONMENT
In order to evaluate the proposed method in a real-world
environment, we collect data sets using Software-Defined
Radio (SDR) implementation. We deploy our real-world
setup in an indoor environment, placing the transmitter along
a sequence of predefined grid points, while the receiver is
stationary, as shown in Fig. 5. Note that 12 out of 20 trans-
mitter positions are in the same room as the receiver, while
the remaining 8 are in the neighboring room, thus providing
us with the data set of a wider range of received SNRs.

Both the transmitter and the receiver include standard-
compliant MATLAB-based 802.11ah PHY implementation
and USRP B210 SDR platforms, as shown in Fig. 6. From
each point, the transmitter sends 1000 1 MHz NDP packets
with the measured SNR range ∈ [−6 dB, 31 dB]). At the
receiver side, the complex baseband data samples obtained
after filtering and downsampling are collected and separated
into the input blocks |yyy| of lengths: 40, 80, 160, 320, 800 and
1600 samples. Roughly 50% of blocks that do not contain
packet start instance are included, resulting in a data set that
consists of 40,000 (|yyy|, τS ) pairs (70% for training, 15% for
validation and 15% for testing). Other system assumptions
and parameters are the same as in the simulated environment.
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FIGURE 5. Real world setup - transmitter and receiver positions.

FIGURE 6. Real world setup - USRP B210 SDR platforms.

D. NUMERICAL RESULTS
In this subsection, we discuss the packet detection perfor-
mance of both CNN-based and conventional methods in
terms of themean absolute error (MAE) under different SNRs
in the simulated environment. In the real-world environment,
we present MAE averaged across the entire SNR range. Also,
miss detection and false alarm rates are investigated and taken
into account. Furthermore, we investigate the computational
complexity of the proposed CNN-based algorithm for packet
detection for different input block lengths, and compare them
to the conventional method in terms of the approximate num-
ber of floating point operations per second (FLOPS).

The complexity of the DL-based algorithms considered
in this paper are evaluated for an inference phase only.
In other words, we assume that the training process is
done offline. Note that the offline training can be made
more efficient by first pretraining the model on a realistic
system simulator, and then extending the training with an

FIGURE 7. MAE performance of 1D-CNN vs. conventional packet
detection for different received SNR.

additional, usually smaller, set of training samples collected
from a real-world environment [14]. This process can be
further improved by techniques of deep transfer learning,
which can speed up the model design, as suggested in [30].
Also, Elbir and Coleri [31] propose effective combining of
the trained models using the concept of federated learning in
order to arrive at more robust and efficient models.

1) SIMULATED ENVIRONMENT
In the simulated experiments, the number of 1D-CNN input
channels is set to 4 for all input block lengths. Fig. 7 presents
MAE packet detection performance of 1D-CNN architectures
as a function of the received SNR evaluated over the test set.
The figure also includes the results obtained by using conven-
tional method after both coarse and fine packet start sample
estimation is applied. We note that the 1D-CNN approach
demonstrates better robustness to the variations of SNR as
compared to the conventional method that deteriorates at
lower SNRs. In addition, as the input block lengths decrease,
the 1D-CNN packet detector outperforms the conventional
method. Although this can be attributed to the fact that the
estimated packet start sample value τS is bounded by the input
block size (thus the estimation error naturally reduces by
decreasing the input block length), we still note that 1D-CNN
processing input blocks as large as 320 samples performs
comparably with the conventional detector that slides across
input blocks of 80 samples (Sec. III-A), while outperforming
the conventional detector for SNRs below 7 dB. Finally,
it is interesting to compare the performance of different
algorithms at SNR equal to 10 dB, since the authors in
[32] emphasize this SNR value as critical for different IEEE
802.11ah use cases. From Fig. 7 we note that the conventional
algorithm has comparable performances with the CNN-based
algorithm for an input block of 320 samples, while for the
smaller input blocks, the CNN-based algorithm outperforms
the conventional one.

99858 VOLUME 9, 2021



V. Ninkovic et al.: DL-Based Packet Detection and CFO Estimation in IEEE 802.11ah

FIGURE 8. 1D-CNN packet detection miss detection and false alarm rates
for different input block sizes.

For the same setup, Fig. 8 presents the miss detection and
false alarm rates for different input block sizes. The results
are expressed as a percentage ofmiss or false detected packets
averaged across the entire test set (i.e., across all SNRs). For
comparison, for the same testing conditions, the conventional
method exhibits superb performance of miss detection rate
equal 0.0012% and false alarm rate equal 0.0016%. For
1D-CNN-based packet detectors, although the results vary
across the range of input block lengths showing particularly
high false alarm rates for small input block sizes, the per-
formance gradually improves for larger input block lengths,
achieving sub-0.1% miss detection and false alarm rates.

2) REAL-WORLD ENVIRONMENT
Next, we explore the performance of the 1D-CNN-based
packet detector in the real-world environment. The number
of 1D-CNN input channels is kept at 4 for all input block
lengths. Note that, in the simulated environment, the test
data set contains approximately the same number of pack-
ets at each SNR value, thus we present MAE performance
as a function of the received SNR (Fig. 7). However, in a
real-world environment, we do not have such control over
received SNRs, and our data set is highly irregular in terms
of recorded received SNR values. For this reason, average
MAE across the whole range of SNR values is presented
for each input block size, along with the performance of the
conventional algorithm included as a benchmark.

Fig. 9 shows that the proposed CNN-based algorithm out-
performs the conventional method in terms of the averaged
MAE. Moreover, such performance is achieved for input
block lengths up to 800 samples, while for the input block
length of 1600 samples, the performances of the two methods
are similar.

Fig. 10 shows probability of miss detection for different
input block sizes averaged across all SNRs. The obtained

FIGURE 9. 1D-CNN MAE performance for different input block sizes in
the real-world environment.

FIGURE 10. 1D-CNN miss detection rate for different input block lengths
in the real-world environment.

rates are promising as, even in the worst-case input block size
of 40 samples, the obtained rates are below 0.5%. For larger
block lengths, the miss detection rates drop significantly,
reaching as low as 0.01% for input block size of 1600 sam-
ples. The conventional method is an order of magnitude better
achieving the miss detection rate of 0.0026%.

In terms of the false alarm rate, the proposed CNN-based
algorithm for packet detection shows deteriorated perfor-
mances. From Fig. 11, one can note that for small input
block sizes, the false alarm rate can be as high as 5% while
with the increase in the input block length, the false alarm
performance improves. The best achieved false alarm rate
for the CNN-based estimator of 0.015% (input block length
of 1600 samples) still falls short of the conventional algorithm
whose false alarm rate is 0.0027%. Finally, we note that the
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FIGURE 11. 1D-CNN false alarm rates for different input block lengths in
the real-world environment.

performance trends observed in the simulated environment
are preserved in the real-world environment.

3) COMPUTATIONAL COMPLEXITY ANALYSIS
Assuming the sampling rate of 1 MHz for IEEE 802.11ah
scenario used in our experiments, Fig. 12 shows the approx-
imate number of FLOPS of the 1D-CNN architecture as a
function of the input block lengths, with the conventional
method included for reference. The complexity of each layer
of 1D-CNN may be computed by calculating the number
of additions and multiplications within each layer. The total
number of FLOPS for a CNN depends on the input block
size, however, note that although larger input blocks lead to
more complex network, they also reduce the number of blocks
processed per second. According to [13], the complexity of a
single convolution layer depends on filter length F , number
of input (chi) and output (cho) channels, and output width
K , while the complexity of FC layer is determined by the
input (Ni) and the output (No) size. Mathematical expres-
sions used for calculating an approximate number of FLOPS
(multiplications and additions) in a single layer are given
in Table 2 [13].

TABLE 2. 1D-CNN and FC approximate layer complexity.

Regarding the conventional method, it consists of two
parts: coarse and fine estimation. During the coarse estima-
tion, it uses sample-by-sample processing of input blocks of
length 80 samples. The FLOPS count for the coarse packet
detection is derived by calculating the number of multi-
plications and additions for a single input block of length
80 samples, multiplied by the number of blocks processed

FIGURE 12. Computation complexity comparison for 1D-CNNs and
conventional packet detectors.

per second. Complexity of the fine estimation, which is run
onlywhen the coarse estimation detects the start of the packet,
is neglected.

For smaller input block lengths, Fig. 12 shows that
the complexity of 1D-CNNs is lower or comparable with
the conventional algorithm. Taking the overall results into
account, 1D-CNN offers a relatively wide operational range
for balancing between MAE, computational complexity in
MFLOPs, miss detection and false alarm rates. We summa-
rize our findings as follows: 1D-CNNs are able to outperform
conventional methods under reduced computational effort,
while being inferior in miss detection and false alarm rates.

IV. PREAMBLE-BASED CFO ESTIMATION
In the second part of the paper, we consider implementation
of deep-learning based CFO estimation in IEEE 802.11ah and
compare its performance with the conventional method.

A. CONVENTIONAL CFO ESTIMATION
A common approach to CFO estimation uses the fact that the
samples of two consecutive identical short training symbols
differ by the phase shift proportional to the CFO foff :

yτ+L = yτ ej2π foff Ts , (9)

where Ts represents the sample period [7]. Maximum like-
lihood CFO estimate uses the phase of complex correlation
3τ (Eq. 4) between the repeated training symbols, denoted
as φ̂ = 6 (3τ ), to estimate CFO [3], [8]:

f̂off =
fsφ̂
2πN

, (10)

where fs = N
Ts

is the sample frequency.
In the IEEE 802.11ah scenario, the CFO estimation can

be separated into two steps. The coarse CFO, denoted as
f̂ (1)off , is carried out using auto-correlation of two adjacent
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STS within STF, taken at the estimated packet start sample
time τS [4]:

3(1)
τS
=

τS+P−lS∑
n=τS

y∗nyn+lS = e
j2π f̂ (1)off lS

fs

τS+P−lS∑
n=τS

|yn|2 (11)

where P is equal to or is a multiple of lS . Using (10) and (11),
and φ̂(1) = 6 (3(1)

τS ), we get:

f̂ (1)off =
fs

2π lS
φ̂(1). (12)

After correcting f̂ (1)off over the signal yyy, the coarse
CFO-compensated signal ŷyy is obtained. Using LTF field of
ŷyy, the fine CFO estimation f̂ (2)off can be expressed as [4]:

3(2)
τL
=

τL+LL−lL∑
n=τL

ŷ∗nŷn+lL = e
j2π f̂ (2)off lL

fs

τL+LL−lL∑
n=τL

|ŷn|2, (13)

where τL = τS + LS is the initial LTF sample, LL is a
sample-length of LTF field, and lL is a sample-length of a
long training symbol. Using φ̂(2) = 6 (3(2)

τL ) the fine CFO is
estimated as:

f̂ (2)off =
fs

2π lL
φ̂(2) (14)

Finally, the CFO of the received signal is estimated as the
sum of the coarse and fine CFOs: f̂off = f̂ (1)off + f̂

(2)
off .

B. DEEP-LEARNING BASED CFO ESTIMATION
In this paper, we test the ability of selected DNN architectures
to estimate the CFO from the phase of received STF samples:

f̂off = f (6 (yyySTF )). (15)

In other words, a DNN architecture learns the mapping
between the received 6 (yyySTF ) and foff . Note that we test the
DNN-based CFO estimation only on the STF field, unlike
the conventional methods that use both STF and LTF fields.
Finally, we note that in both simulation and real-world exper-
iments in this paper, the CFO estimation is applied sequen-
tially after the conventional packet detection is applied. Thus
the effects of imperfect packet detection are included in the
CFO estimation results in Sec. IV-D. Next, we detail the DNN
architectures considered for CFO estimation, and describe the
data set and training procedure.

1) FULLY CONNECTED FEED-FORWARD NEURAL NETWORKS
This neural network architecture consists of an input, an out-
put and the set of hidden layers, and is a simple and
well-understood DNN model. The relation between the input
x and the output y is a layer-wise composition of computa-
tional units:

y = f (x,2) = fo(gM−1(fM−1(. . . (g1(f1(x)))))), (16)

where 2 denotes the set of network parameters: weights
Wi and biases bi, fi(x) = Wix + bi and gi(·) are the
linear pre-activation and activation function of the ith hid-
den layer, respectively, fo(·) represents the linear function

FIGURE 13. The structure of recurrent neural network.

of the output layer, and M is the number of layers. Among
the non-linear activation functions, we focus on rectified
linear units (ReLU), as ReLU DNNs are known universal
piece-wise linear function approximators for a large class of
functions [33].

2) RECURRENT NEURAL NETWORKS
RNNs represent sequence-based models able to establish
temporal correlations between the previous and the current
circumstances. As such, RNN represent a suitable solution for
the CFO estimation problem, given that the estimated CFO
values between the samples of the subsequent symbols in the
past have influence on the current CFO estimate.

A simple example of a single-layer RNN is given in Fig. 13,
where the output of the previous time step t − 1 becomes a
part of the input of the current time step t , thus capturing past
information. Computation result performed by one RNN cell
can be expressed as a following function [34]:

ht = tanh(Wihxt + bih +Whhht−1 + bhh), (17)

where tanh represents the hyperbolic tangent function, ht
and ht−1 are the hidden states at time steps t and t − 1,
respectively, Wih, Whh and bih, bhh are the weights and the
biases which need to be learned, and an input at time t is
denoted as xt .
Basic RNN cells fail to learn long-range dependencies

due to the vanishing or exploding gradients. To solve this,
Long Short-TimeMemory (LSTM) [35] cells are put forward
that contain special units called memory blocks in recurrent
hidden layer, which enhance its capability to model long-term
dependencies. This block is a recurrently connected subnet
that contains functional modules called memory cells and
gates. The former remembers the network temporal state
while the latter controls the information flow from the pre-
vious cell state.

Besides standard LSTM cells, we also consider Gated
Recurrent Unit (GRU) [36]. The main ideas from LSTMs
are preserved, but GRU introduces only two gates, update
gate and reset gate, to control the information flow. GRUs
perform similarly to LSTM, but with reduced execution
time [37].
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TABLE 3. ReLU DNN network parameters for CFO estimation.

TABLE 4. RNN network parameters for CFO estimation.

3) TRAINING PROCEDURE
To train DNN models, we minimize the MSE loss:
LMSE (foff , f̂off ) =

∑
i(foffi − f̂offi )

2. The training set is divided
into mini-batches of size 100, and 500 epochs are sufficient
for the loss function convergence. Network parameters are
optimized the same way as in Sec. III-B, i.e., by using SGD
with Adam at the learning rate α = 0.001, β1 = 0.9 and
β2 = 0.999 [28].

The parameters of the proposed ReLU DNN and RNN
architectures are described in Table 3 and Table 4, respec-
tively. Unlike ReLU DNN, where the input is the whole
sequence 6 (yyySTF ), at RNN, this sequence is split into STSs
(16 samples), and one STS is input into one LSTM/GRU unit.

C. DATA SET GENERATION
1) SIMULATED ENVIRONMENT
Using the simulated environment, we generate the data set
of pairs (6 (yyySTF ), foff ), where foff represents a CFO intro-
duced during transmission. After downsampling and filtering,
yyySTF consists of 160 samples (10 repetitions of 16-sample
STS).We simulated transmission of 50, 000NDP packets and
extracted STF phase vectors, while the corresponding true
CFO values are generated within the simulation uniformly
at random from [−1f2 ,

1f
2 ] = [−15.625 kHz, 15.625 kHz].

From the data set, 70% of the records are used for training,
15% for validation and 15% for testing purposes. In order to
examine estimator robustness, NDP packets are received with
different SNRs ranging between 1 dB and 25 dB. Depending
on the simulated channel model, two data sets are created:
i) AWGN channel, and ii) indoor multipath fading channel -
model B [29].

2) REAL WORLD ENVIRONMENT
The setup used for data set generation in the real-world envi-
ronment is the same as in Sec. III-C. From each grid point,
the transmitter sends 1000 1 MHz NDP packets with the
measured SNR range ∈ [−6 dB, 31 dB]. At the receiver side,
after the packet detection, the STF phase vectors (6 (yyySTF ))
are extracted. The collected data set consists of 20,000
( 6 (yyySTF ), f̂off ) pairs (70% for training, 15% for validation,
and 15% for testing), where as a label f̂off we use a CFO
estimated using the conventional algorithm. This is due to the
fact that, in the real-world conditions, we do not have a priori

FIGURE 14. MAE performance of different CFO algorithms for different
received SNRs under AWGN channel.

knowledge on CFO introduced during the transmission. Thus,
in this case, we train the DL-based CFO estimator to replicate
the conventional method performance. Note also that, in con-
trast to the simulated environment where the CFO values
are generated uniformly at random from a given interval,
in real-world experiments, estimated CFO values between
two SDR devices are nearly stationary.

D. NUMERICAL RESULTS
In this subsection, the performance of the DL-based method
is compared with the conventional one in both simulated and
real-world environments. In addition, we compare the two
methods in terms of the computation complexity evaluated
using the approximate number of FLOPs per packet. As it
is described in Sec. III-D, for the CFO estimation training
is again done offline, so complexity analysis for DL-based
algorithms is conducted only for the inference phase.

1) CFO ESTIMATION PERFORMANCE IN SIMULATED
ENVIRONMENT
MAE of CFO estimation as a function of channel SNR is
presented in Figs. 14 and 15 for both simulated channel
models (see Sec. III-C), respectively.

DNN-based methods use only STF samples as an input,
while conventional methods use both STF+LTF samples
through two-step coarse and fine CFO. We note that certain
DNN approaches are more robust to varying SNR values than
the conventional algorithm, which however outperforms all
DNN architectures at the higher SNRs (above 8 dB). We also
note that the more challenging indoor fading channel (model
B) increases theMAEof all methods by approximately 15Hz.
As for the packet detection task, we observe that, for the
SNR value of 10 dB, the conventional algorithm slightly
outperforms the RNN-basedmethod for both channelmodels.

We identify the existence of outliers as the main reason
why RNN is not able to follow the MAE performance of the
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FIGURE 15. MAE performance of different CFO algorithms for different
received SNRs under indoor channel model.

conventional method at high SNRs. Indeed, taking a closer
look at Fig. 16, the majority of test samples are predicted
with high accuracy, except a few that deviate and strongly
affect MAE. In order to solve this problem, two different
approaches are pursued: i) we extend the data set with addi-
tional 20000 samples, ii) we increase the RNN architecture
complexity (using a single GRU layer with 50 units followed
by a two ReLU FC layer with 30 and 20 neurons, respec-
tively, and an output single-neuron layer). Our preliminary
results demonstrate slight improvement only in the second
approach, however, at high complexity costs (complexity will
be discussed in Sec. IV-D3).

The problem of outliers can be addressed by designing
additional outlier detection methods. For example, one can
include unsupervised methods such as deep autoencoders for
outlier detection [38]. We are currently investigating such
methods, however, we note they will additionally contribute
to the complexity of the proposed RNN-based method.

2) CFO ESTIMATION PERFORMANCE IN THE REAL WORLD
ENVIRONMENT
We explore the ability of the proposed algorithm to replicate
the results obtained using the conventional algorithm. Based
on the MAE obtained in a simulated environment, we use
RNNs with LSTM as a DNN-based method. Fig. 17 shows
that, except for a few outliers, the proposed RNN-based
estimator is able to replicate the performance achievable with
the conventional one.

3) COMPUTATIONAL COMPLEXITY ANALYSIS
For the proposed RNN-based algorithm, an approximate
number of FLOPs for processing a single packet is presented
and compared with the complexity of the conventional algo-
rithm in Table 6. The reason why we calculate the number of

FIGURE 16. True CFO values (x axis) vs. CFO values predicted by RNN (y
axis).

FIGURE 17. CFO predicted by RNN vs. estimated by conventional
algorithm.

TABLE 5. RNN approximate layer complexity.

FLOPs per packet is due to the fact that the CFO estimation
occurs only upon the packet detection event.

In order to calculate the number of FLOPs for the con-
ventional algorithm, we take into account the number of
multiplications and additions per packet for both coarse and
fine CFO estimation. This number is favourable as, given the
STF and LTF fields, the only task is to calculate the phase
of the complex correlation as described in Sec. IV-A. On the
other hand, the number of FLOPs for DNN-based algorithms
is calculated as the number of multiplications and additions
within each network layer. Since ReLU DNN comprises only
a FC layers, mathematical expressions for calculating the
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TABLE 6. Approximate number of FLOPs for CFO estimation.

approximate number of FLOPs are described in Table 2.
In Table 5 [39] we note that the number of multiplications
and additions in one recurrent cell depends on the number of
recurrent units in a layer (U ) and on the number of features
in one time stamp (NF , in our case we have 10 time stamps,
each with 16 features). Except a recurrent layer, the proposed
RNN also has a single FC layer whose complexity needs to
be taken into account (Table 2) in order to obtain the total
number of FLOPs.

In Table 5 we provide the expressions used to evaluate the
computational complexity of a simple recurrent cell. In addi-
tion, LSTM or GRU units introduce additional memory cells
and gates, having higher complexity than a simple recurrent
cell. For example, the total number of FLOPs for a single
LSTM cell is approximately 4 times higher than for a simple
recurrent cell, while for a GRU cell, it is approximately
3 times higher than for a simple RNN cell. Finally, Table 6
shows that, despite their excellent accuracy in terms of MAE,
DNN-based methods suffer from high complexity in terms of
the number of FLOPs per packet.

The complexity of the RNN architecture is the main rea-
son why, instead of a single architecture, we used different
neural network architectures for packet detection and CFO
estimation tasks. As our preliminary results show, when RNN
is applied for packet detection task in the real-world environ-
ment (using the same parameters described in Table 4), MAE
performances are slightly increased compared to 1D-CNN,
i.e., they are comparable to the conventional algorithm, how-
ever, for the price of significant increase in the computation
complexity.

V. CONCLUSION
We performed an in-depth performance and complexity study
of the DL-based packet detection and CFO estimation in
preamble-based IEEE 802.11 systems. For both packet detec-
tion and CFO estimation, the conditions under which the
performance of the DL-based methods approach or even sur-
pass the conventional methods, but also, the conditions under
which their performance is inferior, are clearly presented.

For the case of packet detection, 1D-CNNs are identified
as the best-performing architecture able to achieve excellent
accuracy that matches or even surpasses the conventional
method (at low-to-medium SNRs), under favourable com-
putation complexity. In contrast, the conventional method
is always superior in terms of the false alarm and miss
detection rate. For the case of CFO estimation, RNNs are
identified as the best-performing architecture that are able
to match the accuracy of the conventional method (at low-
to-medium SNRs), however, their complexity is always infe-
rior to conventional methods. Our findings are supported

by numerical simulation results, and the real-world testbed
using SDRs. According to our preliminary results for both
packet detection and CFO estimation tasks, the proposed
methods could be extended to other preamble-based IEEE
802.11 standards operating in 2.4/5 GHz bands.

Finally, for our future work, we plan to extend our inves-
tigation to multiple-input multiple-output (MIMO) modes of
operation of IEEE 802.11ah standard, investigate effects of
imperfect DL-based packet detection and CFO estimation on
the DL-based channel estimation, and real-world implemen-
tation of the proposed methods in field-programmable gate
array (FPGA) hardware in order to estimate realistic latency
and resource requirements.
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