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ABSTRACT Power system operators evaluate the frequency security of the system by predicting the
frequency nadir, which is assumed to indicate the impact of a sudden loss of a generating resource.
Recently, frequency nadir prediction has become more challenging because renewables have penetrated
and significantly changed the generation portfolio within the system. Conventionally, the frequency nadir
is determined using a frequency response model where the features—load damping, system inertia, and
effective governor response—are assumed to be known. However, these key features are not easily obtained
in a power system that continuously changes during daily operation. This study proposes a supervised
learning scheme that traces these key features. It also proposes a new feature—the power gap rate—
that better reflects the influence of the load on the system frequency than that of the load damping.
Feature importance recognition and the construction of a frequency nadir model (FNM) are realized using
the proposed supervised learning scheme. The proposed FNM achieved 54% higher accuracy than the
conventional method. Finally, the FNM is implemented in a planning process that quantifies the capacity
of the fast responsive reserve (FRR). In two renewable penetration cases, the proposed FRR procurement
successfully secured the frequency nadir above the security criterion.

INDEX TERMS Frequency nadir, fast responsive reserve, primary frequency response, supervised learning.

I. INTRODUCTION
Operating reserves (ORs) are deployed during a frequency
disturbance in a power system. Balancing authorities (BAs)
usually acquire the OR from ancillary service markets for
different demands and applications [1]. Depending on the
need for frequency support, an OR can be event-driven or
non-event driven. The non-event driven OR maintains fre-
quency stability in cases of continuous load variations or inac-
curate day-ahead load forecasts [2], whereas event-driven OR
intercepts and restores the falling runaway frequency during a
contingent event [3]. Unless the frequency decline is success-
fully intercepted and restored above the specified threshold,
unexpected load shedding could be triggered. Inertia-driven
conventional units are now increasingly being replaced by
noninertia-driven renewables, thereby increasing the risk of
frequency fall. In this situation, a fast response reserve (FRR)
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that responds within one second is urgently needed [4]. Sev-
eral BAs, such as the Electric Reliability Council of Texas,
the Australian Energy Market Operator, and the Taiwan
Power Company (TPC), are developing FRR commodities
in the ancillary service market [5]–[7]. The rising demand
for FRRs has also increased interest in FRR-related prob-
lems [8]–[11]. Conventionally, FRRs are evaluated using
frequency nadir prediction in frequency response models
(FRMs) [12]–[14]. However, the load damping of a FRM
changes with load conditions in a power system [15]–[17].
Moreover, the time-varying response of the speed droop gov-
ernor in a generator unit strongly affects the unit’s ability to
support a frequency disturbance event. These features con-
siderably affect the efficacy of frequency nadir prediction.
Most commonly, a FRM is improved via statistical analysis
under different operating conditions. Wu and Chen evaluated
the recovery reserve using the frequency nadir after dividing
the load–frequency sensitivity feature (load damping) into
different categories [18]. Chang et al. proposed the ratio of
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generation deficiency to frequency decline and then predicted
the post-incident frequency nadir using a decision tree [19].
Wu et al. constructed an FRM by performing multiple linear
regression analysis on the historical records collected using a
phasormeasurement unit [20].Moreover, frequency nadir can
be predicted using nondeterministic models. Zografos et al.
predicted the frequency nadir using a neural network (NN) by
providing the frequency, inertia constant, initial disturbance,
and voltage dynamics as inputs [21]. Although statistical
analyses and NNmodels can predict the frequency fall during
a disturbance, they require amassed historical data, which are
occasionally insufficient for model construction. To obtain
a sufficient database, the collected data must be traced over
numerous previous years, which may lead to the loss of cur-
rent change trends such as increasing renewable penetration.

Frequency nadir prediction faces one of two main chal-
lenges: either the model features are difficult to obtain in the
dynamic system state or the model features exert different
influences on the actual system. To solve the aforementioned
problems, we should understand the importance of the fea-
tures relating the frequency nadir. When input with the most
influential features, the model will better reflect the actual
response under different operating conditions. Recently, sev-
eral machine learning algorithms have delivered satisfac-
tory performance in power system applications [22]–[25].
In the present research, a supervised learning algorithm is
embedded in a FRM for frequency nadir prediction during
contingent events. Models built using supervised learning can
be continuously revised and effectively fitted with labeled
contingent event data (label: frequency nadir) to evaluate the
model performance and ensure its accuracy. The proposed
supervised learning-based method can better estimate the
frequency disturbance trend; thus, the predicted frequency
nadir will be more accurate than the traditional method. The
main contributions of this research are summarized below.

(1) A new system feature of the FRM, called the power gap
rate (PGR), is proposed using supervised learning. The PGR
reflects load damping and system inertia, which helps predict
the frequency nadir after a system disturbance.

(2) The primary frequency responses (PFR) of various
fuel-type units are assessed using a linear regression method.
The PFR is useful for evaluating the frequency nadir during
frequency disturbance events.

(3) The supervised learning procedure for the model con-
struction, including feature selection, feature modeling, and
model validation, is demonstrated.

(4) The proposed FRM can portray different operating
cases such as different renewable penetrations into the power
system. The proposed model forecasts the likely challenges
faced by system operators.

The remainder of this paper is organized as follows.
Section II describes the planning and estimation process of
the FRR capacity. Section III introduces the conventional
methods to assess the primary frequency response and load
damping and discusses their limitations to the frequency nadir
prediction. Section IV presents a key feature (PGR) obtained

by analyzing the actual contingency events. Section V con-
structs the FNM using the supervised learning algorithm and
compares the results of the proposed and the other methods.
Section VI demonstrates the findings of the proposed FRM
in two case studies. Section VII presents concluding remarks
and suggests avenues for future research.

II. PLANNING FOR FRR CAPACITY
Estimating the frequency nadir after a unit trip is essential
in power systems. If the frequency nadir is excessively low,
the systemwill trigger underfrequency load shedding (UFLS)
to quickly restore the power balance [26]. The most effec-
tive approach for preventing a UFLS trigger is reducing the
power gap during the arresting period. This can be achieved
using the frequency response reserve such as a battery energy
storage system (BESS) or demand response (DR) that can
be procured from the ancillary service market [27], [28].
However, FRR procurement is challenged by the different
responses and time delays of various generating resources.
Understanding the system operation at the planning stage
would improve the preparation of FRR. Fig. 1 shows the
day-ahead FRR capacity planning process including timeline.
The timeline depends on the electricity market in Taiwan.
Based on the day-ahead hourly information (after 16:00),
i.e., load forecasts, renewable energy forecasts, and unit
scheduling results, we can evaluate the degree of frequency
fall during a unit trip and the amount of additional FRR
that will arrest further frequency fall. The detailed procedure
for calculating the additional FRR capacity is described in
Section V. D. The evaluation and adjustment of the additional
FRR can be iterated until the frequency nadir is recovered
above the criterion.

FIGURE 1. Flowchart of FRR capacity planning.

III. ASSESSMENT OF THE PFR AND D VALUE
A. PRIMARY FREQUENCY RESPONSE (PFR)
Most conventional generating units in power systems are
equipped with the PFR function (also known as the governor
response). The PFR provides a fast power-output adjustment
to the frequency variation. The droop setting of the PFR is
formulated using (1):

Droop =
1f
1P
=

f − f0
P− P0

. (1)
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FIGURE 2. Primary frequency response to the system frequency.

The maximum droop value (%) differs among unit types.
For example, the droop is 4%, 5%, 4.5%, and 3% in
gas-fired combined cycle units, coal-fired steam turbines, oil-
fired/gas-fired steam turbines, and hydro units, respectively.
We additionally found that the PFR does not fully react at
the time point of the frequency nadir. Fig. 2 shows the time
delay (td) between the system incident point (point A) and
PFR activation (solid black line). The full PFR response was
reached not at point C (the frequency nadir) but at a later point
B. If the PFR of the online unit is directly calculated using the
nominal values, the result is overestimated and the predicted
frequency dip is smaller than the actual dip. Therefore, the
effective PFR must be evaluated in real cases.

We analyzed the PFR responses of online units using
82 contingency events of the TPC system collected during the
past seven years (2013–2019). The effective PFR is calculated
using (2) for different fuel-type units (Fig. 3):

PFR(pu) =

(
PC-point − PA-point

)
Pmax

. (2)

FIGURE 3. Effective PFRs as a function of the system frequency deviation.

The frequency fall-off curve was initially steep, and the
decline in frequency was linearly related to the unit response.
Thus, the PFR was described using a simple linear equation
(3) and the closeness of the data trend to the linear equation
was evaluated by employing the R2 measure [29] calculated
using (4)–(6), where PFRi(pu) is the actual PFR of the ith unit
in p.u., PFR∗i(pu) is the predicted PFR of the ith unit in p.u, and

PFR(pu) is the mean value of all PFRs in p.u. for the same fuel
type. In (3), the constant a represents the droop slope and the
constant b represents a dead-band for activating the response.
Finally, the available PFR response is calculated using the
unit megawatt rating and (3), which is shown in (7).

PFR(pu) = a1f + b, (3)

SSE =
∑n

i=1

(
PFRi(pu) − PFR∗i(pu)

)2
, (4)

SST =
∑n

i=1

(
PFRi(pu) − PFR(pu)

)2
, (5)

R2 = 1−
SSE
SST

, (6)

PFR = Pmax ∗ PFR(pu) = Pmax ∗ (a1f + b) . (7)

The PFR models and R2 fittings for each fuel-type unit
are presented shown in Table 1. All R2 values exceeded
0.7, implying that the post-incident frequency change 1f is
highly correlatedwith the PFR response. The speed droop set-
tings significantly differed from the nominal values, possibly
because the actual system exhibits an inherent time delay and
incomplete governor response.

TABLE 1. Linear regression model of PFR for all types of units.

B. CONVENTIONAL ASSESSMENT OF THE LOAD
DAMPING (D VALUE) USING THE SWING EQUATION
To procure a sufficient FRR for frequency security, we must
first evaluate the frequency nadir assuming that the sys-
tem suddenly loses its largest generation unit. Conventional
FRMs are based on the following swing equation [12]–[14]:

2H
f
df
dt
=
Poutage
Sbase

−
PFR
Sbase

− D
1f
f
, (8)

where Poutage is the generation loss, PFR is the PFR support
from online units, and D is the load damping.

After a unit trip, the system frequency will rapidly decline
to the nadir point. Evidently, the frequency change (i.e.,
the first derivative of f ) is zero at the nadir point. Equation (8)
can then be rewritten as

0 =
Poutage
Sbase

−
PFR
Sbase

− D
1f
f
. (9)

The information regarding PFR, 1f , Poutage, and the
installed capacity of all online units (Sbase) in (9) can be
obtained using the contingency event of each unit. The
unknown load damping D can then be estimated as

D =
f
1f

(
Poutage
Sbase

−
PFR
Sbase

)
pu. (10)
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In power systems, D is quite complicated because
it depends on the load type and time characteris-
tics [13], [15]–[17]. In this study, the D value was esti-
mated from 82 contingency events and separated into three
operation-shift intervals (first shift: 00:00–09:00, second
shift: 09:00–17:00, and third shift: 17:00–24:00). As shown
in the box plot (Fig. 4), the D values were scattered during
the first shift period and concentrated during the third shift
period. The average D values in the first, second, and third
shifts were 1.46, 1.27, and 1.41, respectively.

FIGURE 4. D values and ranges during three operation shifts.

After calculating the D value in each shift interval,1f can
be calculated using (9). The frequency nadir is then obtained
as

fnadir = f0 −1f . (11)

The predicted fnadir was compared with the actual fnadir
in the 82 contingency events. The root mean square
errors (RMSEs) in the first, second, and third shift periods
were 0.15, 0.12, and 0.11 Hz, respectively. The poorer result
in the first shift period compared with the other periods can
be attributed to the scatteredD values in that period, as shown
in Fig. 4. This result implies a limit on the statistical D value.
If the FRR is provided using DR and BESS, we can calcu-

late the BESS term FRRDR+BESS using (12), which assumes
that 1f is the maximum allowable frequency deviation:

FRRDR+BESS = Poutage − PFR− D
1f
f
Sbase. (12)

IV. NEW FINDINGS FOR ASSESSING
FREQUENCY DEVIATIONS
As shown in Fig. 4, theD value varies with the load composi-
tion and time and an accurate estimation is difficult. Accord-
ing to the swing equation, as shown in (8), the frequency
nadir can be evaluated by predicting 1f . To predict 1f ,
we must know the values of Poutage, PFR, D (load damping),
H (inertia constant), and df/dt (so called ROCOF). Predicting
the exact future value of ROCOF is challenging. To overcome
this obstacle, this study identifies the importance of each
feature in supervised learning (see next section). Moreover,
we proposed the PGR defined as the difference between the
generation loss (unit trip) minus the contribution of the PFR.
The PGR represents the composite term of load damping and
inertial effect in the swing equation, which more accurately
traces the frequency nadir than the D value.

An actual contingency event is shown in Fig. 5. The dashed
black line represents the system frequency, the solid blue

FIGURE 5. Demonstration of the power gap in a real system.

line represents the tripped unit capacity, and the solid red
line represents the power gap (1P). In this actual event,
980 MW of the unit tripped at point A. Within 12 s during
the frequency decline from A to C, the system frequency
was first affected by the system inertia and load damping
and affected by the partial PFR. However, the power gap at
point C was still 560 MW because the PFR at point C was
only 420 MW. To account for the effect of load damping
and system inertia on the frequency nadir, the PGR was
calculated as the percentage of the power gap to the total net
load before the event, as shown in (14). In the TPC system,
the industrial load accounts for 60%–70% of the total system
load. The industrial load involves many rotary motors. There-
fore, the larger (smaller) the total net load before the event,
the larger (smaller) the system inertia and load damping. The
PFR continued to increase until the online generating units
fully delivered the PFR. The frequency eventually settled at
point B.

PowerGap = Poutage − PFR, (13)

PGR =
PowerGap
NetLoad

. (14)

Figs. 6 and 7 plot the frequency deviation 1f ver-
sus D∗

(
1f
/
f
)
and PGR, respectively. The R2 values in

Figs. 6 and 7 were 0.56 and 0.76, respectively, confirming
that PGR is more strongly related to 1f than the load damp-
ing in the swing equation.

FIGURE 6. Relationship between D∗(1f/f) and frequency deviation (1f ).

The PGR was found to be the most effective approach
for evaluating the synthetic effect of load damping and iner-
tial responses on the frequency nadir. In the past, the load
damping and system inertia could not be fully grasped at the
time of prediction because these values continued to vary.
The conventional technique for predicting the frequency nadir
is the use of the statistical values of the load damping and
system inertia. This approach could result in a large predic-
tion error if the load damping and system inertia values were
not estimated well. The PGR helps the supervised learning
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FIGURE 7. Relationship between power gap rate (PGR) and frequency
deviation (1f ).

algorithm trace the system behavior trend, achieving a better
estimation of the frequency nadir prediction than the conven-
tional technique.

V. SUPERVISED LEARNING FOR FEATURE ANALYSIS
Generally, the load-side frequency response is a complicated
part of the power system described using a multivariate
and time-dependent function that cannot be easily grasped
using the conventional linear system approach. Herein,
we attempted to analyze the importance of frequency nadir
features and to construct a FNMusing the supervised learning
algorithm. The procedure of the modeling process is shown
in Fig. 8.

FIGURE 8. Construction process of the FNM based on supervised learning.

A. FEATURE DEFINITION
After a comprehensive discussion with the system operators,
we identified several influencing features from the load side
that may impact the frequency response. The influential fea-
tures were divided into two major categories: one related to
the operating period and the other related to the physical
system.

The operating period-related features were season, work-
ing day/holiday, and the three shift intervals. Moreover, the
physical system-related features were load ramp status, net
load, lumped generator inertia (gen-inertia), PFR, and PGR.

To compare the influence of the features, these features
were grouped into three sets: Set A containing all time-related
and system-related features excluding gen-inertia, PFR and
PGR, Set B containing the same features as Set A as well as
the gen-inertia, and Set C containing all features including
PFR and PGR.

B. MODEL SELECTION
Many algorithms for machine learning techniques are devel-
oped in scikit-learn on the Python platform [30]. Traditional
machine learning methodologies include linear regression,
Bayesian ridge, support vector regression, and decision trees.
The newly developed tree-based ensemble learning methods
are random forest, gradient boosting decision tree (GBDT),
and Xgboost. Long short-term memory (LSTM) is a repre-
sentative NN deep learning framework [31]–[34]. Generally,

NN-based algorithms perform better with a large amount
of training data. Even though a deep learning NN shows
the optimal internal tuning capability for model hyperpa-
rameters, data independency is still instrumental in model
tuning. Our tests show that data adequacy is crucial for the
NN-based model accuracy. The relevant results are provided
in Section V. D. Therefore, we selected tree-based supervised
learning rather than deep learning NN algorithms. Tree-based
ensemble learning combines multiple weak classifiers (i.e.,
regression tree) into one strong classifier, which can be
bagged for parallel generation and boosted for sequential gen-
eration [35]. Experience has shown that boostingmodels such
as GBDT (2001) and Xgboost (2017) are superior to bagging
models such as the random forest (1997) [35]. In the boosting
method, the weak classifier reduces the residual error along
the gradient direction; in other words, a weak classifier with
a smaller error is weighted more heavily than one with a
larger error until the last model is obtained. Xgboost avoids
model overfitting and accelerates the convergence speed of
the model fitting [33]. Xgboost also shows promising per-
formance in Kaggle machine learning competitions, which
honor the best machine learning algorithms [36]. Hence,
we employed Xgboost as the feature importance analyzer for
our FNM, which we refer to as FNMXGB. The algorithm
proceeds as follows.

The objective function of Xgboost adds regularization to
the loss function as

L̂(t) ∼=
∑n

i=1
l
(
yi, ŷi

)
+

∑t

k=1
�(fk), (15)

where l
(
yi, ŷi

)
is the loss function and �(fk) is the regular-

ization that penalizes the complexity of each regression tree.
The regularization depends on the number of leaf nodes of

tree T and the sum of squares of the L2 modes of the output
scores on each leaf node ω:

�(fk) = γT +
1
2
λ ‖ω‖2 . (16)

After the t-th iteration, the prediction of the model equals
the prediction of the previous model and the prediction of the
tth tree, as shown in (17):

ŷi = ŷ(t−1)i + ft (xi) . (17)

Therefore, the objective function (15) can be written as
(18). Equation (19) is obtained as the second-order Taylor’s
expansion of (18) at ŷ(t−1)i with the constant term removed.

L̂(t) =
∑n

i=1
l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+

∑t

k=1
�(fk), (18)

L̂(t) ∼=
∑n

i=1

[
gift (xi)+

1
2
hi (ft (xi))2

]
+

∑t

k=1
�(fk), (19)

where gi = ∂ŷ(t−1)i
l
(
yi, ŷ

(t−1)
i

)
and hi = ∂2

ŷ(t−1)i

l
(
yi, ŷ

(t−1)
i

)
.

Expressing the target function in terms of the leaf node ωj,
we obtain

L̂(t) =
∑T

j=1

[
Gjωj +

1
2
(Hi + λ)ω2

j

]
+ γT . (20)
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Finally, the minimum loss (21) is obtained by substituting
the optimal prediction score ω∗j = −

Gj
Hj+λ

of each leaf node
in (20).

L̂∗ = −
1
2

∑T

j=1

(
G2
j

Hj + λ

)
+ γT . (21)

In our case, the feature sets presented in Table 2 are the
input x ′s of (17), where y′s are the output representing the fre-
quency deviation 1f . Finally, the predicted frequency nadir
can be obtained using (11).

TABLE 2. Features affecting the frequency nadir.

C. FEATURE IMPORTANCE
This subsection determines the importance of the frequency
nadir features contained in the three sets presented in Table 2.
The 82 contingency events were divided into training (70%)
and testing (30%) sets. The model was trained using the
five-fold cross-validation technique of the frequency nadir
features. In this process, the training set was divided into five
folds, and the training set was executed five times. During
each execution, the accuracy of the model was evaluated on
one fold (20%) of the training set to avoid model overfitting.
The optimal hyperparameters were tuned with a range using
a grid search method [30]. The hyperparameters used to
construct the three FNMXGB models are listed in Table 3.
The RMSEs of the frequency nadir prediction are also shown
in Table 3.

TABLE 3. Hyperparameter settings and RMSEs of Xgboost in each model.

In the three datasets, the frequency nadir accuracy
depended on the feature sets. The RMSEs of Sets A, B, and
C were 0.072, 0.068, and 0.051 Hz, respectively. In Sets A
and B, gen-inertia was an unimportant influence of frequency

nadir, consistent with (9) (the system inertia was ignored in
the conventional approach). The frequency nadir was more
accurately determined in Set C than in Set A and B and was
far superior to the frequency nadir derived using the swing
equation (Section III).

The importance of each feature with respect to the fre-
quency nadir was determined by counting the nodes of each
tree in the tree-based trainingmodel. Formore details, readers
can refer to a study by Chen et al. [33]. Fig. 9 ranks the fea-
tures based on their importance. The PGR contributed close
to 50% of the results, distantly followed by Net Load, PFR,
and gen-inertia. The ranking validates the influential effect
of the PGR on the frequency nadir prediction. Additionally,
this ranking is consistent with the load structure of the TPC
system. In the TPC system, the industrial load accounts for
60%–70% of the total system load. Among the industrial
load, the industrial motors account for a high percentage. This
is the reason the ranking of the net load is higher than that of
PFR and gen-inertia in the feature importance analysis. In the
UFLS calculation, only the initial rate of frequency decline is
unaffected by the load damping. When the frequency decline
is more evident, the influence of the load damping should not
be ignored [27].

FIGURE 9. Importance ranking of frequency decline features.

As expected, the effects of the time-related features were
less significant. Because the top four features collectively
accounted for 90% of the result, they were selected as the key
features for the FNM prediction. When the FNMXGB-type
FNM selected the four key features, the RMSE of the
frequency nadir only marginally increased (from 0.051 to
0.054 Hz). Maintaining the important features can reduce the
data collection process and data-processing efforts without
increasing the error beyond the allowable range.

D. SUPERVISED LEARNING MODEL AND COMPARISON
WITH OTHER MODELS
To gauge the performances of different model frameworks,
we constructed the frequency nadir models using the tradi-
tional swing equation (FNMSE), NN-based LSTM (FNML-
STM), and tree-based Xgboost (FNMXGB). All models were
required to evaluate the frequency deviation from the largest
unit trip. Their prediction flowcharts were similar but not
identical. Note that the models differed mainly by their
utilized key features and model cores. FNMSE predicted
1f using the installed capacity of the online units (Sbase)
and statistical load damping. Alternatively, FNMLSTM and
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FIGURE 10. Frequency deviations among 24 testing cases using the three
FNM models.

TABLE 4. RMSEs of 24 testing cases using the three FNM models.

FNMXGB predicted 1f using the PFR, PGR, total net load,
and gen-inertia. For a fair comparison among different super-
vised learning algorithms, our test adopted the same five-
fold cross-validation technique using the same datasets, i.e.,
the same training and testing samples.

Overall, 24 cases were randomly selected from the
82 events for model validation. The prediction results of
the three models are depicted in Fig. 10. In this figure,
the actual frequency deviations (black squares) and the pre-
dicted results of FNMSE (blue crosses; see Section IV),
FNMLSTM (green triangles), and FNMXGB (red circles;
see Section V) are shown. The frequency deviations among
the 24 cases ranged from −0.2 to −0.58 Hz. The training
data cover most of the possible cases. The RMSEs of the
three models and their relative improvements are presented
in Table 4. FNMXGB clearly outperformed the other models.
FNMSE performed poorly, probably because the D values
were less accurately estimated than in the other models.
The PGR best reflected the net load with the load damping,
which effectively improved the accuracy of FNM. Although
FNMLSTM adopted a deep learning approach to tune the
model features, it could not compete with FNMXGB.

Once the frequency nadir was predicted, the day-ahead
FRR requirements in each operating hour were calculated
following the flowchart in Fig. 1. Based on the day-ahead unit
commitment results, the setpoint of each unit was determined
and the total PFR capacities of the scheduled units were
calculated using the PFR models listed in Table 1, derived
from (7). A low PFR can induce a large PGR, thereby reduc-
ing the frequency nadir to below the preset level. Therefore,
additional DR and BESS (FRRDR+BESS ) must be procured.
The additional FRRDR+BESS is procured to ensure that the
frequency nadir is above 59.5 Hz. As shown in Fig. 11,
the additional FRRDR+BESS value is calculated iteratively
within the loop containing the FNM. Note that the itera-
tion process is necessary because different quantities of the
injected FRR affect the frequency deviation and the frequency

FIGURE 11. FNM flowchart to predict 1f and FRRDR+BESS .

deviation subsequently affects the PFR and PGR responses.
The different PFR and PGR responses will then affect the
frequency deviation again. Our test shows that the accuracy
of the frequency nadir prediction is considerably better than
that of the definite method (FNMSE).

Fig. 12 shows an actual contingency event and the
simulated result from Power System Simulator for Engi-
neeringPSS/E. The solid black line represents the historical
frequency curve after a 980-MW unit tripped. The frequency
nadir was at 59.42 Hz owing to insufficient PFR during the
midnight operation (the first shift). The dashed blue line
represents the simulated frequency curve after the injection
of the FRRDR+BESS . When the frequency passed the 59.8-Hz
threshold, the 220-MW FRRDR+BESS was injected into the
system, stopping the frequency fall at 59.51 Hz. The trace
of the frequency curve validates the effectiveness of the pro-
posed method.

FIGURE 12. Frequency curve comparison with and without FRR injection.

E. DATA CHARACTERISTICS AND TRAINING ADEQUACY
In this test, 82 contingency data over the past seven years were
collected for FNM modeling and analysis. FNM was trained
using the five-fold cross-validation technique. Within the
training data, the frequency deviations ranged from −0.2 to
−0.58 Hz, which covers most of the possible cases. The
RMSE of the test data was 0.05 Hz, indicating the sufficiency
of the training data.

To closely trace the frequency behavior, the FNM needs
the following data: the information of the entire system (date,
time, system frequency, system load, and net load); tripped
unit information (trip time, trip unit, and trip capacity),
the megawatt output information of the online unit during the
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frequency disturbance event; and characteristic information
of the online units (fuel type, unit capacity, maximum output,
minimum output, unit inertia, and the configuration of the
combined cycle unit). The system data were obtained using
the energy management system of TPC, which shows the
sampling rate of 2 s.

According to TPC’s contingency events, the frequency
decline required 8 to 12 s from the initial fall to the nadir
point. To improve the evaluation accuracy, we found that
frequency measurement with less than 60 ms/sample could
serve our need. Therefore, we adopted the frequency data
retrieved from the TPC’s phasor measurement unit with a
sampling rate of 10 ms/sample.

VI. CASE STUDY
In 2019, the total installed capacity of TPC’s system was
56 GW and the generation mix consisted of approximately
75% fossil fuels, 8% nuclear, 5% pumped storage hydro, 4%
cascading hydro, 7% photovoltaic (PV) generation, and 1%
other renewable resources [25]. By 2025, the TPC system
will reach 14 GW of PV penetration in the system during the
peak sunshine hours (peak load is approximately 40 GW).
Therefore, the renewable energy source (RES) penetration
can reach 35%, a level not reached in TPC history. Therefore,
the TPC system operators could receive information whether
the frequency nadir can be secured during the daily operating
periods.

Two case studies are investigated in this study. Case I
is a real operation case with a low penetration of RESs,
and Case II shows a high penetration of RES, account-
ing for 35% of the total installed capacity. The frequency
nadir prediction and FRR procurement were performed as
shown in Fig. 11. The largest unit trip in both cases was
980 MW. The frequency nadir was estimated using the pro-
posed FNM (FNMXGB) and used for calculating the addi-
tionalFRRDR+BESS to be purchased from the ancillary service
market.

A. LOW RES PENETRATION CASE
The day-ahead scheduling results per hour are shown
in Fig. 13. From these scheduling results, the setpoint of each
generating unit is clearly known. The corresponding PFR can
be estimated using the models presented in Table 1. In the

FIGURE 13. Day-ahead scheduling results with low RES penetration.

FIGURE 14. Loads, PFRs, PGRs, gen-inertias, and nadir frequencies in
each hour estimated using the proposed FNM.

FIGURE 15. FRR capacities at the safe frequency nadir.

TPC system, pumped storage hydro units with a 2602-MW
capacity are available for peak load shifting. Fig. 13 shows
two load lines representing the net loads with and without
peak load shifting.

Fig. 14 presents the day-ahead scheduling results of the
net load, PumpLoad (pumping load), Gen-inertia, PFR, PGR,
and frequency nadir estimated using the proposed FNMXGB.
When the system inertia was excessively low during the off-
peak hours, the UC scheduled the pumping load to suffi-
ciently supply the FRR and the frequency nadir remained
above the requisite 59.5 Hz during the 980-MW unit trip.
However, during the load ramping period (load rise or fall),
the PFR deficit increased the PGR value by more than 1.6%
and the frequency nadir fell below 59.5 Hz. This situation was
observed in nine periods.

Additional FRRDR+BESS was prepared to secure the nine
anomalous periods. The FRRDR+BESS quantities procured per
hour are shown in Fig. 15. The day-ahead UC results show
that most scheduled additional FRR purchases were required
during the semipeak periods. Overall, the FRR and PFR
range in each period was approximately 550–600 MW. The
additional FRRDR+BESS capacity to be purchased over 24 h
was 1220 MWh.
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FIGURE 16. Day-ahead scheduling results in a system with high PV
penetration.

B. HIGH PV PENETRATION CASE
Case II was investigated under a similar load as Case I but was
highly penetrated by PVs (installed capacity = 13 GW). The
UC scheduling result is shown in Fig. 16. The peak load in
Case II shifted from 15:00 to 20:00. Evidently, the high pen-
etration of the RES significantly changed the UC scheduling
results.

Fig. 17 plots the net load, PumpLoad (pumping load),
PFR estimated using (7), Gen-inertia, PGR, and frequency
nadir estimated using the proposed FNM in Case II. The
scheduling period of the pumping load shifted from midnight
to daytime because many PVs were connected to the power
system during the daytime. Because of this change, the total
PFR and pumping load was considerably lower than that in
the nighttime for Case I. Moreover, the frequency nadir could
easily fall below 59.5 Hz. We also found that PGRs exceeded
1.6% in all off-peak periods (1:00–8:00). Such a large PGR

FIGURE 17. Loads, PFRs, PGRs, gen-inertias, and nadir frequencies in
each hour estimated using the proposed FNM.

FIGURE 18. FRR capacities at the safe frequency nadir (high PV
penetration).

was predicted only using the FNMXGB which learned from
the cases with larger frequency deviations.

Fig. 18 summarizes the preparation of the PFR, PumpLoad
(pumping load), and FRRDR+BESS that maintains the fre-
quency nadir above 59.5 Hz. FRRDR+BESS must usually be
procured during the off-peak periods (first eight hours of the
day) because the pumping load has shifted to the daytime.
The total capacity of FRRDR+BESS that should be procured
over 24 h was 2694 MWh. Comparing the results with those
of Case I under the same load demands, Case II requires
additional FRRDR+BESS to ensure frequency security.

VII. CONCLUSION
An adequate FRR can avoid UFLS triggering by the fre-
quency below 59.5 Hz after the largest unit trip. The super-
vised learning algorithm identifies the important key features
for constructing the FNM and evaluating the frequency nadir.
In the frequency nadir predictions, the FNMXGB developed
using the supervised learning technique outperformed the
FNMs derived using the conventional swing equation and
NN framework. As the frequency nadir can be calculated
with a high confidence, additional FRR procurement can be
effectively evaluated based on day-ahead unit commitment
scheduling. The approach is evaluated in two case studies:
one with low RES penetration and the other with high RES
penetration. In the first case, the FNMmodel predicts that the
additional FRR capacity must be prepared during the daytime
and load-falling period. In the second case, the FNM model
predicts that the additional FRR should be prepared during
the off-peak hours (from midnight to late morning).

The proposed FNM is still being tested and more infor-
mation is being gathered. Iterative testing can improve the
model’s ability to capture the true frequency response of the
TPC system, as its generation is transforming into a higher
renewable portfolio in the future.
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