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ABSTRACT In this paper, artificial neural network (ANN) based Levenberg-Marquardt (LM), Bayesian
Regularization (BR) and Scaled Conjugate Gradient (SCG) algorithms are deployed in maximum power
point tracking (MPPT) energy harvesting in solar photovoltaic (PV) system to forge a comparative perfor-
mance analysis of the three different algorithms. A comparative analysis among the algorithms in terms of
the performance of handling the trained dataset is presented. The MATLAB/Simulink environment is used
to design the maximum power point tracking energy harvesting system and the artificial neural network
toolbox is utilized to analyze the developed model. The proposed model is trained with 1000 dataset of solar
irradiance, temperature, and voltages. Seventy percent data is used for training, while 15% data is employed
for validation, and 15% data is utilized for testing. The trained datasets error histogram represents zero error
in the training, validation, and test phase of data matching. The best validation performance is attained at
1000 epochs with nearly zero mean squared error where the trained data set is converged to the best training
results. According to the results, the regression and gradient are 1, 1, 0.99 and 0.000078, 0.0000015739 and
0.26139 for Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient algorithms,
respectively. The momentum parameters are 0.0000001 and 50000 for Levenberg-Marquardt and Bayesian
Regularization algorithms, respectively, while the Scaled Conjugate Gradient algorithm does not have any
momentum parameter. The Scaled Conjugate Gradient algorithm exhibit better performance compared to
Levenberg-Marquardt and Bayesian Regularization algorithms. However, considering the dataset training,
the correlation between input-output and error, the Levenberg-Marquardt algorithm performs better.

INDEX TERMS Solar photovoltaic (PV), energy harvesting (EH), maximum power point tracking (MPPT),
artificial neural network (ANN), Levenberg-Marquardt (LM), Bayesian regularization (BR), scaled conju-
gate gradient (SCG).

I. INTRODUCTION
Solar PV energy is an integral part of our energy use and
a vital component of renewable energy networks. With the
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rapid advancement of technology, PV module prices are
declining and PV panels become more efficient. National
economies are making ambitious investments in off-grid
PV systems and grid-connected PV networks [1], [2].
PV electricity is volatile, relies on solar irradiation and other
meteorological influences, such as temperature, humidity,
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precipitation, wind direction, and cloud coverage, unlike con-
ventional energy production systems [3]. The introduction
of large-scale grid-connected solar PV plants has posed sig-
nificant problems for power grids, such as lack of device
flexibility, efficiency, and energy balance [4]. It is crucial to
forecast solar energy production to ensure a reliable energy
supply across PV grids.

Accurate predictivemodels minimize the influence of solar
PV performance, increase the reliability of the devices, and
reduce the expense of additional equipment maintenance [5].
A PV modules I-V characteristics are a feature of irradia-
tion and temperature. MPPT controllers for maximum usage
performance follow solar cell arrays. Karami et al. com-
piled a detailed list of 40 distinct MPPT techniques and
their classification [6]. Several works are available in the
literature detailing different MPPT algorithms and designs to
boost PV device performance [7]. The Perturb and Observe
(P&O) [8], Incremental conductance (INC) [9], Fuzzy Logic
Controller (FLC) [10], P&O approach based on Particle
Swarm Optimization (PSO) [11], and ANN [12] are most
effective and standard algorithms. These strategies differ in
oscillation across the absolute maximum power point (MPP),
convergence speed, difficulty, stability, cost, and electronic
equipment requirements [13].

During a rapid irradiance shift contributing to a distortion
of the PV systems operational parameters, the P&O algorithm
utilizing the controller temporarily struggles to exceed the
MPP [14]. Still, the controller decreases the algorithm’s
error, which tracks the MPP again with some time delay. Fur-
thermore, terminal voltage oscillates across the MPP, result-
ing in power loss. The minimal disruption phase size can be
used for compensating these oscillations. Again, the minor
phase speeds down the algorithms beginning transient and
adjusts the systems weather responsiveness. The INC Algo-
rithm using the Proportional Integral (PI) controller fits well
in the abrupt modifications in irradiance and decreases the
rip oscillation across the MPP. Therefore, the reaction and
swing pacewould still be balanced because the INC algorithm
often separates itself from the MPP during abrupt irradiance
shifts. According to Esram and Chapman [15], these algo-
rithms cannot track the full power rapidly and reliably due to
oscillations at the highest point.

The biological neural networks seen in human brains
inspire the ANN system. It is used to train and evaluate
the I-V and P-V nonlinearity relationship of a PV system.
ANN retrieves inputs such as input current, input voltage,
irradiance, temperature, and metrological data and constantly
learns to adapt the behaviour of the solar power system
for maximum power [16]. FLC design may be modelled
using ANN for more accuracy and more straightforward con-
verter implementation [17]. The dataset is obtained from the
simulation or hardware setup by entering solar irradiances,
temperatures, solar power system voltage or current to ANN
to discover the relevant maximum power (Pmax) or maxi-
mum voltage (Vmax) output. These data are transformed into
training data and fed into the intended ANN to train it how

to function. Following training, test datasets are utilized to
assess the performance of the constructed ANN, and mis-
takes are sent back to the ANN for further correction [18].
It may help to anticipate MPP with state estimation using
Sequential Monte Carlo (SMC) filtering. A state-space model
for sequential maximum power point (MPP) estimate may fit
alongside the incremental conductance (IC) MPPT method-
ology framework. The ANN model monitors voltage and
current or irradiance data in forecasting global MPP (GMPP)
to improve SMC estimate [19]. The benefits of ANN include
extraordinary accuracy in modelling nonlinearity and solv-
ing problems without previous information or models [20].
ANNmay be used to increase tracking speed and accuracy by
modelling and forecasting a solar power system [21]. It has
been shown to have a faster reaction time and reduced oscil-
lation around MPP [22]. Under real-world operating con-
ditions, ANN-based MPPT can monitor MPP with minimal
transient time and low ripple [23]. The square error approach
is used as the feedback correction for the error computa-
tion [24]. An accurate, standardized, and appropriate training
set of data, on the other hand, is a significant restriction
for the ANN to work effectively without significant training
error [25]. However, the differences in training and oper-
ating settings of a solar system, developing an ANN model
training approach is difficult. Thus, the authors in [26] pro-
posed a MATLAB/Simulink model of Particle Swarm Opti-
misation (PSO) technique to determine the optimal topology
and compute the ANN models optimal starting weights to
increase the ANN model accuracy. As a result, the conflict
between processing time and the best-fitting regression of
the ANN model is resolved, and the mean squared error is
minimized. The findings demonstrate that utilizing actual
data, the optimized feedforward ANN methodology based
on the PSO algorithm effectively forecasts the highest power
point, with hourly average efficiencies of more than 99.67%
and 99.30% on sunny and cloudy days, respectively. In com-
parison to perturb & observe (P&O) and incremental conduc-
tance (IC), an ANN-based MPPT controller exhibits lower
steady-state error and a faster reaction to rapid changes in
solar temperature and irradiance [27].

On the other hand, an enhanced P&O algorithm with
variable step size is intended to decrease steady-state fluctu-
ation or oscillation and increase tracking speed during abrupt
irradiance changes or partial shading condition (PSC). ANN
and FLC are well-suited for integration with more traditional
MPPT techniques such as P&O and IC. The ANN technique
calculates the MPP in the absence of shade or panel temper-
ature, but the hill-climbing (HC) technique further enhances
the outcome. Other hybrid MPPTs include P&O-ANN and
IC-ANN, which are connected with the stacked autoencoder
(SAE) controller using deep learning (DL) training and build-
ing blocks. It is trained using a greedy layer-wise pattern
to obtain the highest energy possible from the solar energy
system. Following that, it employs backpropagation and
supervised learning to fine-tune the deep neural net-
work using traditional MPPT-IC and P&O to get the
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maximum power [28]. Another hybrid MPPT is the adaptive
neuro-fuzzy inference system (ANFIS), which combines
ANN and FLC. ANFIS and fuzzy logic are optimum, ver-
satile, and adaptive to any new configuration for smart power
management and solar power systems [29]. Neuro-adaptive
learning is used to simulate the fuzzy approach needed
to learn all the information about a dataset. ANFIS cre-
ates a fuzzy inference system (FIS) employing input-output
datasets. The model calculates the membership function
parameters that provide the greatest fit for tracking the
input-output data [30]. The parameters of the fuzzy mem-
bership function are changed using a hybrid learning tech-
nique that incorporates backpropagation and least squares
algorithms [31]. MPPT based on ANFIS has been shown
to increase the conversion efficiency of solar energy sys-
tems [32].

Additionally, the fuzzy neural network can correct bit
errors when predicting and forecasting meteorological data
for solar energy systems [33]. ANN may be deployed
using a combination of PSO and Gravitational Search Algo-
rithm (GSA) and FLC. PSO-GSA, for example, produces a
random starting population first and then sends it to an ANN
for data training [34]. Another hybrid MPPT technology
is a more sophisticated open-circuit voltage model and a
smart power scanning mechanism. Smart power scanning
monitors voltage to determine a partial shading condition
(PSC) [35]. Apart from ANN, FLC is adaptable enough to
be used with P&O algorithms which combines the benefits
of both techniques [36]. The FLC-based P&O employs a
variable step size to assure low oscillation and rapid reaction;
a large step size provides a quick response but results in
excessive fluctuation. A small step size results in a sluggish
response but less oscillation [37]. The IC approach may also
be used with the PSO algorithm to overcome the incapacity of
traditional MPPT to track GMPP under PSC conditions while
increasing convergence speed and tracking accuracy [38].

Literature review shows different Artificial Intelligence
(AI)-based algorithms for energy harvesting with the
PV system; therefore, very few works have been done with
LM, BR and SCG algorithms [39]. The AI algorithms show
a sustainable track to foresee optimum power with mini-
mal error in different atmospheric conditions. The neural
network usage makes the processing of high quantities of
data insignificant, quick and fast [40]. According to the
literature and published work, a few research works is found
on comparative analysis of different MPPT topologies for
the solar PV system. However, a significant research gap
is observed in comparative performance analysis of various
ANN algorithms based MPPT for solar energy harvesting.
In recent ANN-based MPPT research, the authors have only
designed and analyzed the system using a single algorithm.
Therefore, in this paper, a comparative performance analysis
of three ANN-based algorithms namely LM, BR, and SCG,
is proposed for MPPT solar energy harvesting. The devel-
oped model depicts a clear representation of the applicabil-
ity and feasibility of those algorithms. Three performance

parameters like regression, gradient and momentum param-
eter are analyzed for relative comparison for identifying
the best performing algorithm among the three algorithms.
A holistic approach is used for analyzing the performance
parameters of threeANNalgorithmswith training, validation,
and testing of the real dataset of solar irradiance, temperature,
and generated voltage. A simulated model is deployed using
MATLAB/Simulink for comparative performance analysis,
which gives a clear scenario on the implementation of ANN
algorithms for MPPT in solar PV system. The ANN-based
MPPT algorithm is trained with real field data, which jus-
tifies the applicability of this technology in practical appli-
cation. The remainder of the article is structured as follows.
Section II presents the state of the art of ANN. Section III
describes the proposed model of the ANN-based MPPT
energy harvesting in Solar PV system with three distinct
algorithms in (A) LM, (B) BR and (C) SCG, followed by
Section IV results and discussions. The paper concludes
in Section V.

II. STATE OF THE ART OF ANN AND MPPT
ANN reflects the replication of the biological neural net-
work that essentially connects multiple parameters to specific
data points. ANN models do not need any mathematical
equation or complex mathematical basis to combine various
parameters [41]. Thus, ANN needs less theoretical work
than traditional approaches to relate many parameters with
vast quantities of unknown data points [42]. ANN is trained
with imported data called supervised learning or training.
ANN consists of a variety of neurons, like in the human
brain [43]. These neurons are connected by a fractional
number called weight [44]. The consequences are changed
during the training phase to predict the exact outcomes and
weight amounts become constant until the error exceeds the
permissible value [45]. The basic form of the two-layer ANN
model is shown in Fig. 1. According to the neural network’s
right side, the inputs could be integrated into the network at
different time points. Entire input-output parameter data sets
are split into two classes, one group with a higher percentage
of data points named the training data set through which the
neural network is equipped. In contrast, the second group
with the remaining data points is used to verify the trained
neural network, called the validation data set [46]. Input-
output parameters in the neural network with their training
data points are imported. This network is conditioned until it
receives a permissible mistake. Once a proper error has been
obtained, the qualified network is validated by importing
the validation data set input parameters and predicting the
corresponding output parameter values.

These projected values of the validation data set output
parameter are correlated with the corresponding actual val-
ues of the validation data set output parameter. If the error
between the real and predicted results is below the allow-
able maximum, the qualified neural network may be rec-
ommended as the optimal prediction neural network. The
neural network forecasts the corresponding input values
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FIGURE 1. The basic structure of two-layer ANN.

output parameters for the required training algorithm and
training times. If the error magnitude is less than the accept-
able value, the qualified neural network with the training
algorithm combination will be chosen as the optimized neu-
ral network with the optimal training algorithm. The neural
network is equipped with the same training algorithm for
greater error value but with different epochs or different train-
ing algorithms before an allowable error is obtained [47].
Findings projected using validation data points from the
optimal neural network validate trained neural network
generalization [48].

Another study examined different MPPT algorithms for
PV systems [49]. The methods were categorized depending
on the number of control variables, forms of control tac-
tics, etc. In the sense of PV voltage ripple dynamic reac-
tion utilizing MATLAB/Simulink and dSPACE Frameworks,
the authors provided hands-up assessments for most used
MPPT algorithms [50]. The preliminary findings for tradi-
tional MPPT algorithms have been introduced and enhanced
with a PI controller. The authors in [50] have mentioned
the benefits and demerits of P&O and INC algorithms in
simulation results in MATLAB by modifying environmental
conditions such as fluctuating irradiance and rising temper-
atures. The authors propose a new solution to strengthen-
ing P&O algorithms limitations in the face of unexpected
irradiance changes [51]. The suggested scheme has two
algorithms. The original disturbance algorithm allows the
panel to work in the MPP. The adaptive control algorithm
may define the current operating point in abrupt shifts. Then
experimental findings contrasted the proposed algorithmwith
the traditional algorithm. The authors in [52] also suggested
an updated P&O algorithm with a thorough description of the
drift phenomenon’s root. They changed the algorithm using
adaptive measures and contrasted the effects of studies and
simulations with standard P&O algorithms.

The INC MPPT algorithm was tested in [52]. The
authors provided an experimental assessment of the INC
algorithm utilizing an isolated PV pumping method, which
perturbed reference voltage and disrupted service speeds.

Here, the impact on disturbance size and phase size for previ-
ous disturbance has been clarified, Which often indicates the
uncertainty of the algorithm due to abrupt shifts in irradiance.
Finally, the achievement is related to the suggested algorithm.
For the P&O algorithm and the INC algorithm, a comparative
analysis is conducted to track the PV features of MPP.

In comparison, INC has a quicker transient solution with
reference voltage disturbance and job ratio disturbance. It has
shown that the INCMPPT strategy is less confusedwith noise
and device dynamics. This phenomenon has demonstrated
greater stability at quickly changing irradiance in the device
proposed. In [26], the authors have published experimental
experiments at elevated INC algorithm perturbation rates.
It is noticed that INC provides faster transitional response at
higher disruption speeds. The algorithm is disturbed due to
noise or radiance shifts, and it also provides a quicker recov-
ery of the MPP. Many MPPT algorithms with PI controller
have been used to date.

However, ANN as the MPPT controllers was the most
unsettling and unique concept for PV system implementa-
tion. Elobaid et al. described the ANN MPPT with sev-
eral off-line preparation features, nonlinear mapping, higher
speed answer, and lower calculation effort [53]. The authors
in [30] suggested a new neural network (NN) MPPT
controller for PV systems. Data were collected from the
P&O system using MATLAB/Simulink to train and test the
NNmodel. The simulation findings indicated improved mon-
itoring precision, reaction time, and overflow with the pro-
posed NN controllers quickly shifting insulation. The study
is interesting by integrating configuration parameters with
reliability measures to achieve the electronic power grids
optimum design with Artificial Intelligence [54]. This arti-
cle details the essential determination of device stability,
efficiency, and expense by swapping frequency and volt-
age series. It also offers an in-depth analysis of artificial
neural network data extraction and training. Another ANN
MPPT [55] shows better results than the climbing algo-
rithms. The authors have developed a feedback network
with a backpropagation algorithm of Levenberg-Marquardt to
map the world peak by MATLAB NN-Tool. The simulation
findings have revealed that the suggested model performs
well with better root mean square error than the climb-
ing algorithm. Using the changed techniques, the essence
and function of various MPPTs are realized. It is suggested
that a methodology should use traditional MPPT algorithms
using a NN controller rather than a PI controller. Thus, the
PI dependent algorithms can offer better dynamic, stable
status with sudden environmental changes.

III. MODELLING OF ANN-BASED MPPT FOR SOLAR PV
SYSTEM
A. SOLAR PV CELL
Solar PV cells are semiconductor device that turns sunlight
into electrical energy. The efficiency of a solar cell depends
on the strength of the sunlight, the temperature, and the cell
materials basic properties. It must then be an actual load to
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be transformed into an equivalent circuit to approximate the
measurement.

The equivalent electrical circuit of a PV cell is shown
in Fig. 2. Therefore, it needs to build a PV cell simulation
model to permit the solar panels maximum power point to
perform their photoelectric conversion efficiency by influ-
encing the solar panels production capacity by their light
intensity and the outside temperature. It can better consider
the effect on its production capacity of the external climate.

FIGURE 2. The equivalent electrical circuit model of a solar cell [14].

Fig. 3a displays the current-voltage (I-V) characteristics
at different irradiance of 200 W/m2, 400 W/m2, 600 W/m2,
800 W/m2, and 1000 W/m2 in 25 ◦C. The fluctuations of
solar irradiance cause changes in solar voltage and current.
Fig. 3b shows that the light strength determines the solar cells
production capacity. Although keeping the same solar cell
temperature, the only optimum energy point is the same light
intensity.

Let, Isc is the short circuit current, Io is the satura-
tion current, a is the diode ideality constant, Ns is the
series-connected cell, T is the temperature of the cell, K =
1.38×10−23J/K is the Boltzman constant, q = 1.6×10−19C
is the charge of an electron, and RS , and Rsh are the series and
shunt resistance of the array, respectively. Then the solar cell
current can be expressed in (1) and (2).

I = Isc − Io

[
exp

(
V + RS I
NsKT
q a

)
− 1

]
−

(
V + RS I
Rsh

)
(1)

I = Isc − Io

[
exp

(
V + RS I
Vta

)
− 1

]
−

(
V + RS I
Rsh

)
(2)

Equation (1) can be rewritten by (2) if the thermal voltage
of the array can be replaced as, Vt =

NsKT
q .

B. ANN-BASED MPPT FOR SOLAR PV SYSTEM
The proposed simulated model of the ANN-based solar
PV system is designed by MATLAB/Simulink as shown
in Fig. 4. In this model, 1Soltech ISTH-215-P solar panel
is used. Table 1 presents the electrical specification of the
solar PV panel. The simulated model comprises two main
subsystemswhich areANN_MPPT and Switching block. The
ANN_MPPT subsystem has a comparator that compares
the output voltage, V1 of ANN, with the PV array voltage.
The generated voltage of the PV array acts as the reference

FIGURE 3. Solar PV module 1Soltech ISTH-215-P characteristic curve
a. I-V curve, and b. P-V curve.

FIGURE 4. Proposed ANN-based MPPT energy harvesting model with
1Soltech ISTH-215-P solar PV panel.

voltage for the comparator. The Proportional Integral Deriva-
tive (PID) controller generates a duty cycle signal according
to the difference between V and V1. The switching block
contains a boost converter where the insulated-gate bipolar
transistor (IGBT) is activated by the gate signal generated by
the pulse width modulated (PWM) generator. The respective
voltage difference of the comparator controls the duty cycle
of PWM.

The ideal correlation between the target and trained value
of ANN algorithm ensures a constant duty cycle for PWM
which smoothens the switching operation of IGBT. The solar
data subsystem delivers input data (irradiance and array tem-
perature) to the PV array sequentially; thus, the simulation
time matches with the input data transfer time.
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TABLE 1. Specification of 1Soltech ISTH-215-P module.

Electricity generation from solar panels depends on solar
irradiance and solar panel temperature; therefore, the input
data set of irradiance and temperature for ANN are calculated
by (3) and (4), respectively.

Irradiance, G (W/m2):

G = [(Gmax − Gmin)× rand]+ Gmin (3)

Temperature, T (◦C):

T = [(Tmax − Tmin)× rand]+ Tmin (4)

Maximum Voltage, VMP(V):

T = [(Tmax − Tmin)× rand]+ Tmin (5)

Maximum Current, IMP (A):

T = [(Tmax − Tmin)× rand]+ Tmin (6)

Maximum Power, PMP(W):

PMP = VMP × IMP (7)

The MPPT technology for ANN is created using cor-
responding solar irradiance, temperature, and maximum
generated voltage as shown in Table 2 (appendix). The
solar data subsystem sends selected data of solar irradiance
and temperature to the solar PV array. Equations (5)-(7)
are used for calculating maximum generated voltage
(VMP), maximum current (IMP), and maximum generated
power (PMP), respectively of the solar panel for various
irradiance and temperature. The generated voltage of the
solar panel is considered as output data for the neural net-
work. The input and output dataset used for designing the
MPPT technology is based on the rated voltage, rated cur-
rent, and temperature coefficient of the 1Soltech ISTH-215-P
solar panel. The standard irradiance, Gs, and standard
temperature, Ts, are considered 1000 W/m2 and 250 ◦C,
respectively. The maximum irradiance, GMAX, and mini-
mum irradiance, GMIN are taken 1000 W/m2 and 0 W/m2

,

respectively. Similarly, themaximum temperature, TMAX , and
minimum temperature, TMIN is considered 35 ◦C and 15 ◦C,
respectively.

Algorithm 1 : Proposed ANN Algorithm
//Neural Network Constants//
Define: Ts=Timestep, X=Input over Ts, Y=Output over
Ts, Q=Sample/series
1. Star
2. Input: X [Xoffset, Gain, Ymin]
3. Hidden Layer

Layer 1: b1, W1; Layer 2: b2, W
4. Output: Y [Ymin, Gain, Xoffset]
//Simulation//
5. Input Argument

if X={X}
end

6. Dimensions: TS= size (X,2)
if Q=size (X{1}, 1)

else Q=0
end

7. Allocate Outputs: Y= cell (1, TS)
8. Time Loop: For ts=1:Ts

Input 1; Layer 1; Layer 2; Output
end

9. Final Delay States:
Xf=cell (1,0), Af=cell (2,0)

10. Format Output Agreements: if Y=cell2mat (Y)
end

//Module Functions//
11. Min. and Max. Input Processing Function (PF)
12. Sigmoid Symmetric Transfer Function:

function a=tansig_apply (n,~)
a=2. / (1 + exp(−2*n)) −1

end
13. Min. & Max. Output Reverse PF
14. Stop

Fig. 5 shows the ANN algorithm masked with an ANN
block for the proposed system. The proposed ANN algo-
rithm is generated by the neural network toolbox function
‘genFunction’. Here, the fitting application of the ANN tool-
box of MATLAB/Simulink is used to select data, create and
train a network to evaluate its performance.

According to consistent data, a two-layer feedforward net-
work with sigmoid hidden neurons and linear output neurons
can fit multi-dimensional mapping problems. For creating the
neural network, 1000 datasets are used for irradiance, temper-
ature, and generated voltage of the selected solar panel. The
data are randomly divided into 70% data for training, 15%
data for validation and 15% data for testing. The number of
neurons for the hidden layer is considered 10 for designing
the feedforward network. Several algorithms [56], [57], such
as LM, BR, SCG, etc., are used to train ANN datasets [58].
The LM algorithm is also known as the damped least-squares
method where the mean squared error (MSE) is the average
squared difference between outputs and targets. The stan-
dard LM approach benefits from operating two approaches
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FIGURE 5. The developed block of ANN algorithm.

focused on opposite gradient orders: ‘‘steepest descent’’ and
‘‘Gauss-Newton’’ with complementary characteristics. Effec-
tively, the LM approach starts with the steepest decline to
take advantage of its low sensitivity to the initial values.
Gauss-Newton takes over if the measured values are like
the final solution, allowing for a rapid convergence rate.
Automatic switching of the steepest descent toGauss-Newton
using the LM approach is guaranteed by the control
parameter λ called ‘‘damping factor.’’ The parameters θ to
be defined are then modified for each iteration according to
the following expression [59]:

θk+1 = θk −

[
J ′ε

J ′J + λk I

]
θ=θk

(8)

where,
J = Jacobian Matrix; I = Identity matrix; λ = Damping
factor; ε = error between the desired and measured per-
formance of the network; k = No. of iteration; J ′J + λk
I = Hessian Matrix.
Due to the algorithm’s convergence, the damping

factor λ> 0must be calculated in any LM isolation.When the
LM is at the steepest descent point, the factor λ takes essential
values andmakes the Hessian matrix powerful in the diagonal
in Equation 8. However, when LM is in Gauss-Newton
point, λ switches immediately and takes minimal values. This
implies that the Hessian J ′J exceeds the λk I matrix. This
algorithm generally works with the loss functions, which
take a sum of squared errors. This algorithm works with the
gradient vector and the Jacobian matrix rather than with the
Hessian matrix. The LM algorithm appears to be the fastest
method for training moderate-sized feedforward neural net-
works. It also has an efficient implementation in MATLAB
software because the matrix equation’s solution is a built-in
function. Hence, its attributes become even more pronounced
in a MATLAB environment. Generally, the lower values of
mean squared error are better, with zero means no error.
The regression R measures the correlation between outputs
and targets, with value 1 (one) represents perfect correlation,
and 0 (zero) represents random correlation.

Bayesian regularized artificial neural networks (BRANNs)
are more stable than traditional backpropagation nets.
BRANNs may minimize or remove the need for exten-
sive cross-validation [60]. BR is a mathematical method
that transforms a nonlinear regression into a statistical
problem that is ‘‘well-posed,’’ similar to ridge regression.

Since a validation set is not required, the iterative procedure
to self-consistency only needs to be run once to produce the
‘‘most generalizable’’ model. However, since the technique
employs a conjugate gradient descent or equivalent mini-
mizer, it is necessary to arrive at a local minimum rather than a
global minimum. Experiments have shown that repeating the
same process five times is adequate to prevent any abnormal
behaviour. This is compared to the hundreds or thousands of
repeat measurements that may be performed for unregular-
ized ANNs. Authors are described the mathematical model
and every aspect of BRANN in [36], [37] elaborately.

It is well established that the scaled conjugate gradi-
ent (SCG) training approach is successful for broad problems.
It employs second-order knowledge without employing the
line-search technique. Thus, the volume of memory used can
be decreased by growing the amount of gradient knowledge
computed. The final SCG algorithm is described in depth
in [61], [62].

IV. RESULTS AND DISCUSSIONS
The proposed model for solar energy harvesting is simulated
for 1000 second to correlate sequential transfer of 1000 input
data of PV array with the simulation time. The discrete simu-
lation is used instead of continuous simulation for optimal
analysis. The perfect prediction of ANN depends on the
volume of the trained dataset and the training algorithm.
Generally, the ANN predicts negligible error for the large
volume of the trained dataset. The input data (solar irradiance
and array temperature) are fed to the solar panel from the
lookup table, synchronized by a clock.

In this paper, a relative comparison of three algorithms is
discussed to represent the applicability for solar energy har-
vesting. The parameters like regression, mean square error,
gradient, momentum parameter (Mu) and validation check
are commonly used for identifying the performance and accu-
racy of any algorithm for the trained dataset. The regression
represents the predictive quality where output is a function
of inputs, whereas error is calculated by subtracting output
from the target. Three types of samples are used for the neural
network: training, validation, and testing. The training is used
for train the dataset, and the network is adjusted according to
its error. The validation is used for the generalization of the
network, which halts training during error handling. In con-
trast, testing provides an independent measure of network
performance during and after training which causes no effect
on the training of the dataset.

An epoch refers to one cycle for the training dataset. The
training process of a neural network takes more than a few
epochs. The epoch is related to the iteration, which is the
number of batches or steps for partitioned packets of the
training data needed to complete one epoch. Heuristically,
it gives the network a chance to see the previous data to
readjust the model parameters. The model is not biased
towards the last few data points during training. The gradient
is a numeric calculation for adjusting the parameters of the
ANN in such a way that its output deviation is minimized.
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It is amultivariable derivative of the loss functionwith respect
to all the network parameters arranged in the matrix or vector
form. The Mu is included in the weight update expression
to avoid the local minimum problem because sometimes the
ANN may get stuck to the local minimum, and convergence
does not occur. Therefore, its value directly affects the con-
vergence error during training of the dataset, and its value lies
between 0 and 1. The validation check is the representation
of error minimization of trained data.

The evaluation and validation of an ANN prediction model
are based on one or more selected error metrics. The ANN
algorithm performs a function approximation task using a
continuous error matrix such as mean absolute error (MAE),
mean square error (MSE), or root mean square error (RMSE).
The errors are summed up over the validation set of inputs -
outputs and normalized according to the validation set size.
The mean square error measures the average error which is
the average squared difference between the estimated value
and actual value. It is a loss function squared and averaged
over the whole dataset at every data instance to optimize the
overall process of the predictive model. The ANN adjusts
its predicted output with respect to its actual output by error
minimization, also known as backpropagation.

A. LEVENBERG MARQUARDT (LM)
The regression plot for the ANN of Fig. 6, regression,
R = 1, represents the perfect prediction of output according
to input and correlation between output generated voltage and
target generated voltage of the selected solar panel. Gener-
ally, an error is calculated by subtracting output from the
target. The regression plot of Fig. 6 shows that the data is
perfectly trained using the Levenberg-Marquardt algorithm
with negligible error where the output follows the target
value.

Fig. 7 also validates this algorithm for ANN, representing
zero error in training, validation, and test phase of data match-
ing. The bins represent the number of vertical bars in the
error histogram of Fig. 7, where the total error of ANN ranges
from −0.00015 (leftmost bin) to 0.000164 (rightmost bin).
The error range is divided into 20 smaller bins with a bin

width of 0.0000157. Each vertical bar represents the number
of samples from the selected dataset which lies in a particular
bin. In the middle of the error histogram, the bin has an error
of−0.0000027 for 150 samples of the validation dataset. The
error histogram converges at 20 bins with zero error which
represents the applicability of ANN for MPPT.

Fig. 8 and Fig. 9 show the training state and performance
phase of ANN for handling the selected dataset. In Fig. 8, gra-
dient, momentum parameter (Mu) and validation check of the
trained dataset are represented at 1000 epochs. According to
the simulation, the gradient is 0.000078 at 1000 epoch, repre-
senting the negligible deviation of trained data with aminimal
loss function. According to the simulation result, the summed
error is the mean per input vector and a zero-output decision.
The very small value near zero of Mu, gradient and validation

FIGURE 6. Regression plot of the proposed ANN model.

FIGURE 7. Error histogram plot of the proposed ANN energy harvesting
model.

checks of the trained dataset justifies the applicability of the
Levenberg Marquardt algorithm for MPPT.

In Fig. 9, the mean squared error is represented for dif-
ferent epochs where the samples of the trained data set are
converged with the best training result at 1000 epochs. There-
fore, the best validation performance of the trained dataset is
attained at 1000 epochs. According to the simulation result,
the best validation performance is 0.0000000027133, which
is attained at 1000 epoch. The near to zero validation perfor-
mance represents negligible error for MPPT prediction by the
Levenberg Marquardt algorithm.
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FIGURE 8. Training state plot of the proposed ANN MPPT.

FIGURE 9. Performance test of the proposed ANN algorithm.

B. BAYESIAN REGULARIZATION (BR)
The BR algorithm for the neural network is based on prob-
abilistic interpretations of network parameters. Therefore,
the validation phase of the trained dataset is not required as
shown in the regression plot of Fig. 10. R = 1 represents the
ideal correlation between output and target generated voltage
with properly trained data for the solar PV system in the
regression plot.

Fig. 11 presents zero error in the training and test phase
of the trained dataset with total error ranges from −0.00102
(leftmost bin) to 0.001125 (rightmost bin). The error range is
divided into 20 smaller bins with a bin width of 0.00010725.
According to the error histogram, the middle bin has a near
zero error of −0.0000056 for 150 samples, greater in value
than that of the LM algorithm. In the training state phase of
Fig. 12, the gradient and Mu are 0.0000015739 and 50000
respectively at 1000 epoch.

The effective number of parameters and the sum squared
parameters are 9.6438 and 44.349, respectively, at 1000
epoch. The large value of Mu and an effective number
of parameters with zero validation checks represent the
slower backpropagation capability of the trained dataset

FIGURE 10. Regression plot of the BR algorithm.

FIGURE 11. Error histogram of BR algorithm.

concerning the LM algorithm. The LM algorithm provides
faster convergence in predicting trained data with near-zero
error, whereas the BR algorithm initiates an objective func-
tion for the prediction that includes the residual sum of
squares and the sum of squared weights for minimizing
prediction error. Therefore, the BR algorithm takes more
time in the overall processing of trained datasets than the
LM algorithm. The mean squared error at different epoch
is represented in Fig. 13, which depicts the convergence of
trained data with the best training result at 1000 epochs. The
best training performance is 0.0000001709 at 1000 epoch
without any validation phase, representing the BR algorithm’s
robustness.
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FIGURE 12. Training performance of the BR algorithm.

FIGURE 13. Validation performance of the BR algorithm.

C. SCALED CONJUGATE GRADIENT (SCG)
The SCG algorithm is based on conjugate directions, unlike
other conjugate algorithms which require line search at each
iteration of the data training process. Generally, the step size
is a function of quadratic approximation of the error function,
making the SCG algorithm more robust and independent of
user parameters. According to the regression plot of Fig. 14,
the R is slightly less than 1 compared to that of LM and BR
algorithms.

Fig. 15 shows that the total error ranges from −0.8062
(leftmost bin) to 0.6491 (rightmost bin) with zero error
in the training, validation, and test phase of the trained
dataset. In the error histogram, the middle bin has an error
of 0.001985 for 150 samples greater in value than LM
and BR algorithms. The gradient and validation checks are
0.26139 and 6, respectively, at 30 epochs in Fig. 16. Data
training is stopped at 30 epochs which minimizes the SCG’s
performance for attaining the desired goal.

FIGURE 14. Regression plot of the SCG algorithm.

FIGURE 15. Error histogram of the SCG algorithm.

The performance gradient falls below the minimum gra-
dient, and the validation performance is increased more
than the max-fail time. The mean squared error at dif-
ferent epoch is represented in Fig. 17, which depicts the
convergence of trained data with the best validation per-
formance is 0.065951 at 24 epochs. Though the higher
validation performance is attained compared to those of
LM and BR algorithms, overall training performance is
lower than those of the other two algorithms, making the
SCG algorithm inappropriate for the trained data set of the
solar PV system.

A relative comparison of three algorithms in terms of
performance parameters obtained in this study is men-
tioned in Table 3. According to the simulation result, the
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FIGURE 16. Training performance of SCG algorithm.

FIGURE 17. Validation performance of SCG algorithm.

LevenbergMarquardt algorithm performs better in the proper
dataset training and perfect correlation between input and
output with negligible error than those of Bayesian Regu-
larization and Scaled Conjugate Gradient algorithms for this
research. Though the SCG takes less time for the overall
processing of data within 24 epochs, the high value of gra-
dient and error makes this algorithm inappropriate for this
research. Similarly, the high momentum parameter and high
processing time for prediction make the BR less appropriate
than the LM algorithm.

Fig. 18a-d depict the PV array’s generated power and load
power according to the solar irradiance and solar PV array
temperature. Both powers follow the solar irradiance and PV
array temperate according to the MPPT topology of ANN.
The generated power of PV array, load power, irradiance and
temperature are shown based on the simulation time. The
maximum power (400 W) is attained at maximum solar irra-
diance (1000 W/m2) and array temperature (35 ◦C), whereas

FIGURE 18. (a) Power versus time generated from the PV array, (b) Power
versus time from the load, (c) Irradiance versus time of the solar panel,
(d) Temperature versus time of the solar panel.

the minimum power (100 W) is attained at minimum solar
irradiance (200 W/m2) and array temperature (15 ◦C) which
fulfils the requirement of MPPT. In this model, no filter
section is used for the elimination of ripples in output power.
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TABLE 2. ANN datasets of corresponding solar irradiance, G (W/m2),
temperature, T (◦C), maximum voltage, VMAX (V).

TABLE 2. (Continued.) ANN datasets of corresponding solar irradiance,
G (W/m2), temperature, T (◦C), maximum voltage, VMAX (V).

TABLE 3. Comparative performance analysis of the ANN algorithms.

Therefore, the waveshapes of generated and load powers have
significant ripples.

V. CONCLUSION
This paper proposes a novel approach for a comparative
performance analysis of three ANN algorithms namely
Levenberg-Marquardt, Bayesian Regularization and Scaled
Conjugate Gradient algorithms for MPPT energy harvest-
ing in a solar PV system. Two-layer feedforward neural
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network in the ANN toolbox is trained with real-time input
datasets of solar irradiance, panel temperature and output
dataset of generated voltage. The ANN algorithms are trained
with 1000 datasets to identify the appropriate algorithm. The
Levenberg-Marquardt algorithm shows better performance
in overall data processing with near-zero error at the mid-
dle epoch. The near to zero value of momentum parameter,
gradient and validation checks at 1000 epochs justify the
improved performance of the Levenberg-Marquardt algo-
rithm for the proposed MPPT energy harvesting. The highest
validation efficiency is achieved at 1000 epochs. The gener-
ated power and load power follow the MPPT, which justifies
the perfect correlation between input and output data. The
proposed MPPT can be applied for a large dataset with a
multilayer neural network that may enhance its applicability
for large-scale applications. The proposedANN-basedMPPT
energy harvesting model can be utilized in a standalone
and grid-interactive solar PV system. The proposed system
may also be implemented for various solar PV systems and
high-end technological applications such as space satellites,
telecommunications, and military equipment. Furthermore,
the model can be integrated to solar radiation and temperature
forecasting, energy consumption prediction, energy manage-
ment system, smart home, and smart cities.

APPENDIX
See Table 2.
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