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ABSTRACT Gradient descent is the workhorse of deep neural networks. Gradient descent has the dis-
advantage of slow convergence. The famous way to overcome slow convergence is to use momentum.
Momentum effectively increases the learning factor of gradient descent. Recently, many approaches have
been proposed to control the momentum for better optimization towards global minima, such as Adam,
diffGrad, and AdaBelief. Adam decreases the momentum by dividing it with square root of moving averages
of squared past gradients or second moment. The sudden decrease in the second moment often results in the
overshoot of the gradient from the minima and then settle at the closest minima. DiffGrad decreases this
problem by using a friction constant based on the difference of current gradient and immediate past gradient
in Adam. The friction constant further decreases the momentum and results in slow convergence. AdaBelief
adapts the step size according to the belief in the current gradient direction. Another famous way of fast
convergence is to increase the batch size adaptively. This paper proposes a new optimization technique named
adaptive diff-batch or adadb that removes the problem of overshooting gradient in Adam, slow convergence
in diffGrad, and combines the methods with adaptive batch size for further increase in convergence rate.
The proposed technique uses the friction constant based on the past three differences of gradients rather
than one as in diffGrad and a condition to decide the use of friction constant. The proposed technique has
outperformed the Adam, diffGrad, and AdaBelief optimizers on synthetic complex non-convex functions
and real-world datasets.

INDEX TERMS Machine learning, gradient descent, optimization, image classification.

I. INTRODUCTION
In recent times, neural network-based algorithms are gaining
popularity due to the availability of big data and large com-
puting power in the form of GPUs. With the help of these
two factors, neural networks have achieved high accuracy in
solving problems in various fields, such as computer vision,
signal processing, human activity recognition, and natural
language processing.

Despite recent popularity and achievements, the neural net-
works still dependent on a gradient descent algorithm that was
developed in 1847 [1]. All the variants of gradient descent
(Batch, mini-batch, and stochastic) inherit the disadvantage
of slow convergence towards global minima. Recently, many
attempts have been made to optimize the convergence of
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gradient descent to get the true benefits of big data and large
computing power with neural networks.

The most famous way of increasing the convergence rate
of gradient descent is the use of momentum. It is reported
that momentum effectively increases the convergence rate by
a factor of 2 [2]. However, fast convergence often forces the
gradient descent to settle at the local minima instead of the
global minima.

There are two renowned methods of controlling the con-
vergence rate: reduce the momentum and increase the batch
size. Adam [3], diffGrad [4], and AdaBelief [5] optimiza-
tion techniques reduce the momentum whereas adabatch
technique [6] increases the batch size for better and fast opti-
mization towards the global minima. Adam and AdaBelief
optimizer techniques often overshoot the global minima
whereas diffGrad suffers from the slow convergence of
the solution. Similarly, adabatch is dependent on the use
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of convergence technique used with the adabatch. In this
paper, we use both methods, control of convergence rate and
increase in batch size. We remove the problem of slow con-
vergence in diffGrad by replacing the friction constant with
a sum of past three gradient differences rather than one and
combines the approach with adaptive batch size increment.
Combining adaptive batch size with convergence technique
is based on our previous work that has shown success in
improving the convergence rate [7]. The list of contributions
of this paper is as follows:

• Amodified compact friction constant is defined that pre-
vents the solution from overshooting the global minima

• A conditional constraint is defined to select an appro-
priate friction constant that can increase or decrease the
momentum rather than only decreasing

• Abatch-size increment technique is proposed to increase
the convergence of the optimizer

The rest of the paper is organized as follows: Section 2
describes the basics of the gradient descent. Related work is
presented in Section 3. The proposed technique is explained
in Section 4 and its convergence analysis is covered in
Section 6. Section 6 covers the empirical analysis and experi-
mental setup is explained in Section 7. Results and discussion
is covered in Section 8. The paper is concluded in Section 9.

II. BASICS OF GRADIENT DESCENT
The gradient descent presents the most basic approach for
optimizing parameters in a neural network. Initially, random
values are used for parameters that are used with input data
to calculate the predicted values. A loss function defined for
a specific problem is used to calculate the difference between
predicted output values and original ones. Later, the gradient
against each parameter is computed and helps in updating
the respective parameter. The updated parameters are used
to calculate new predicted values. The procedure is repeated
until the convergence or for a certain number of epochs.
The stochastic gradient descent uses the above procedure
against each data sample. The direction of gradient in each
iterative step oscillate and therefore, slows the convergence.
The batch gradient descent uses the average of all the data
samples at once and performs only one parameter update in
each epoch. The batch process helps in reducing the oscil-
latory behavior but requires a large number of epochs for
optimization. In practice, mini-batch descent algorithm is
used that helps in reducing the path oscillation and creates
less overhead as compared to the batch algorithm. However,
the mini-batch gradient descent still inherits the problem of
slow convergence due to different behavior among a large
number of parameters used in the neural networks.

In gradient descent, all parameters of themodel are updated
on a same learning rate αi in the ith iteration, such as:

8i+1,j = 8i,j − αi × gi,j, (1)

where 8i+1,j and 8i,j are the updated and previous values of
the jth parameter with j = 1, 2, 3, . . . . . . J . Here, J represents

a total number of parameters. The gi,j is the gradient of
the loss function L with respect to the parameter 8ij. The
mathematical representation of the gradient gi,j is

gi,j =
∂(Li,8)
∂(8i,j)

. (2)

In Eqn 2, theLi,8 is the loss function of the parameter8 in
the ith iteration. For image processing applications, this loss
function is the cross-entropy loss that is defined as:

Li,8 =
1
KB

KB∑
K

Li,8,K + σRi,8, (3)

where KB is the number of images in the Batch B, the
Li,8,K is the cross entropy data loss for the kth training image
in the ith iteration, Ri,8 is the regularization loss for the
ith iteration, and hyper-parameter of the regularization loss
is denoted by σ . The Li,8,K for the K th training sample is
computed as:

Li,8,K = −Log(
eSoK∑Nc
n=1 e

Sn
). (4)

In Eqn 4, the number of classes in the dataset is denoted
by Nc, the oK is the ground truth class for the K th training
image, and nth class score computed for K th training image
is denoted by Sn. Moreover, the regularization loss function
Ri,8 is computed as:

Ri,8 =
J∑
j=1

(8i,j)2. (5)

III. RELATED WORKS
The SGD with momentum is the advancement in the gradi-
ent descent algorithms [8]. The concept of gradient is each
dimension (parameter) is included in the stochastic gradient
descent to enhance the momentum of the parameters having
the consistent gradient. The moment gradient is computed as:

mi,j = γmi−1,j + gi,j, (6)

where mi,j is the gained moment at the ith iteration for the
jth parameter 8i,j with mi,j = 0 for i = 0, and moment
is controlled by the hyper-parameter γ . Therefore, Eqn 1 is
modified as:

8i+1,j = 8i,j − αi × mi,j. (7)

In another technique AdaGrad [9], the learning rate for the
gradient descent is normalized as:

8i+1,j = 8i,j −
αi × gi,j√
Gi,j + ε

. (8)

In Eqn 8, the ε is a very small value close to zero (mostly
selected as 1e−8) added to avoid division by zero and Gi,j
is the sum of squares of the gradients of t steps for the jth
parameter computed as:

Gi,j =
i∑

i=1

(gi,j)2, (9)
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where gi,j is computed as Eqn 2. However, the issue with
the denominator of Eqn 8 is the sum of squares of the
gradients may become very large over the t steps due to
the positive accumulation of the squares of the gradients.
The AdaDelta [10] and RMSProp [11] address this issue by
reducing the impact of accumulating squares of gradients by
using a decay rate parameter β. In RMSProp, the Eqn 9 is
modified as:

Gi,j = βGi−1,j + (1− β)(gi,j)2. (10)

The value of Gi,j = 0 for i = 1. The most renowned
gradient descent optimizing technique is Adam [3]. In Adam,
at each step, the learning rate is computed by using 1st and
2nd order moments also known as mean and variance, respec-
tively. Both moments are defined recursively using gradient
and squares of gradient, respectively, such as:

mi,j = β1mi−1,j + (1− β1)gi,j (11)

vi,j = β2vi−1,j + (1− β2)(gi,j)2 (12)

where β1 and β2 are the decay rates of mean and variance,
respectively. The mi−1,j and vi−1,j are the mean and variance
of the previous steps, respectively that are initialized with
0 for 1st iteration. The observation noted here is that initially
the 1st moment is small and 2nd moment is very small that
leads to a very large step size. This issue is resolved by
introducing a bias correction in both moments, such as:

m̂i,j =
mi,j

(1− β i1)
and ˆvi,j =

vi,j
(1− β i2)

(13)

In Eqn. 13, the β i1 is the β1 with power i, β i2 is the β2
with power i, andmi,j and vi,j are the bias-corrected mean and
variance, respectively. The good starting choice for the values
of the β1 and β2 are selected as 0.9 and 0.999, respectively.
The learning rate α is selected in the range α ∈ [10−2, 10−4].
Themodified parameter’s update Equation (Eqn. 1) for Adam
is defined as:

8i+1,j = 8i,j −
αi × m̂i,j√
v̂i,j + ε

. (14)

However, the problem that arises in Adam is due to
the variance as it decreases fast. Therefore, the friction in the
optimization landscape decreases with the small value of the
2nd moment that can lead to a point where the updating
process can overshoot the optimized solution because of
the very high learning rate and the solution will diverge.
AMSGrad [12] tried to solve the problem. The AMSGrad
picks the largest value of the 2nd moment from current and
previous iterations. Basically, the AMSGrad normalizes the
learning rate ai with the maximum value v̂maxi,j among all

previous and current variance instead of v̂i,j. The AMSGrad
stores the previous maximum value of the 2nd moment and
give priority to the maximum value of the 2nd moment. The
v̂maxi,j is computed as:

v̂maxi,j = max(v̂maxi,j , v̂i,j). (15)

where v̂maxi,j = 0 for i = 1. The modified parameter’s update
Equation (Eqn. 14) for AMSGRad is defined as:

8i+1,j = 8i,j −
αi × m̂i,j√
v̂maxi,j + ε

. (16)

Both Adam and AMSGrad face the problem of auto adjust-
ment of the learning rate. The actual issue is to control the
friction of the 1st moment to avoid slipping on the optimum
solution. AdaBelief [5] algorithm addresses the issue by tak-
ing the difference of gradient and 1st order moments instead
of a gradient in Eqn. 12. The ratio 1√

v̂i,j
serves as a belief in

the system ((Eqn. 14)) with a newly added difference. The
step size increases with high belief if the gradient is closer
to moments otherwise step size decreases. Alternatively, Dif-
fGrad [4] algorithm addresses the issue of controlling the
1st moment present in Adam by adding friction constant. The
diffGrad is built on modification in short-term gradients to
regulate the learning rate dynamically. The base concept of
diffGrad is that update in the parameter must be smaller in
the region of low gradient change must be large in the region
of high gradient change. The diffGrad computed the 1st and
2nd moments as computed in Adam (Eqn. 13). However,
a new diffGrad Friction Coefficient (DFC) is added in the
enumerator of Eqn. 16 to control the learning rate based on
short-term gradient behavior. The DFC is denoted by ξ and
defined as:

ξi,j = AbsSig(4gi,j) (17)

where AbsSig is the absolute value for the non-linear sigmoid
function (Sig) that will squash every value between 0.5 and 1.
The mathematical expression is written as:

AbsSig(y) =
1

1+ e−|y|
(18)

The4gi,j is the change is the gradient between current and
previous iteration, such as:

4gi,j = gi−1,j − gi,j (19)

where gi,j is computed using Eqn. 2. The diffGrad reported
that DFC provides more friction when gradient changes
slowly and vise-versa. The modified diffGrad parameter’s
update Equation (Eqn. 14) for jth parameter in the ith iteration
is defined as:

8i+1,j = 8i,j −
αi × ξi,j × m̂i,j√

v̂i,j + ε
. (20)

In diffGrad, the DFC is used to control the gradient oscil-
lation/ frequency of fluctuation near the optimum. The differ-
ence of gradient taken in Eqn. 19 reduces the learning rate by
controlling the moving average near the optimal point. The
diffGrad algorithm claims that Adam has ignored the impact
of 1st moment to control the learning rate over the entire
optimization landscape and the inclusion of DFC provides
high learning rate in large gradient change area and reduce
the learning rate for low gradient change area.
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IV. PROPOSED METHODOLOGY
The diffGrad only takes advantage of the gradient difference
between the current and the previous iteration. We observe
that the inclusion of the sum of the last three gradient differ-
ences with a decaying factor provides an extra zip of friction
to control the learning rate faster. Therefore, the change is the
gradient 4gi,j as written in Eqn. 19 is modified as:

4gi,j = β3(gi−1,j − gi,j)

+β23 (gi−2,j − gi−1,j)

+β33 (gi−3,j − gi−2,j) (21)

where β3 = 0.999 as a decaying factor. Moreover, for a faster
updating process for parameter optimization in both the large
gradient change area and low gradient change, a condition is
introduced to decide the DFC factor. The signum function is
introduced to observe the sign change in the gradient, such
as:

Sgn(x) =


−1 if x < 0
0 if x = 0
+1 if x > 0

(22)

The condition is defined as:
1) If the sign of gradient value in the two consecutive

iterations is changing, then the DFC (ξi,j) of Eqn. 17
will be computed using Eqn. (21), such as:

if (sgn(gi,j) 6= sgn(gi−1,j)) then

ξi,j = AbsSig(4gi,j) (23)

2) If the sign of gradient value in the two consecutive
iterations remains same positive or negative, then the
new DFC is computed as:

ξi,j = 1+ ri × AbsSig(4gi,j) (24)

where ri = 0.1 as the percentage gradient differ-
ence and the 4gi,j is the same as computed using
Eqn. 21. The Eqn. 24 makes the parameter updat-
ing process faster in the large gradient change area
as the DFC will slightly increase the learning rate
rather than always decreasing the learning rate. There-
fore, the problem of slow convergence in diffGrad
is resolved by the appropriate selection of the DFC.
Furthermore, the researchers often ignore the choice
of batch size for the optimization training process and
select static batch for every iteration in the training
process. The small batch size is required to produce
convergence in fewer epochs. Conversely, large batch
sizes often produce data-parallelism that can improve
computational time and scalability. In diffGrad and
Adam, the batch size is considered static during the
training process. Therefore, to further improve the con-
vergence time and accuracy, we introduce the trade-off
between small batch size and large batch size by peri-
odically update the batch size in the training process.
The training is started with a small batch size to rapid

the convergence in early epochs and then periodically
increase the batch size to reduce convergence time.

V. CONVERGENCE ANALYSIS
The convergence analysis Adam and diffGrad is com-
puted using an online learning framework proposed in [13].
We work on a similar footstep to observe the convergence
of the proposed AdaDB. Let f1(8), f2(8), . . . , fN (8) be
the unfamiliar sequence of convex cost functions. The tar-
get is to predict the optimal value of the parameter 8i in
ith iteration to compute the function fi(8). In such a case,
where the nature of sequence is unknown, the regret bound
method is used to evaluate the optimization algorithm. The
regret bound is defined as the sum of the difference between
the past unknown guesses fi(8i) and the best fix point
parameter fi(8∗) in the practicable set of all prior iterations.
The regret bound is defined as [13]:

R(N ) =
N∑
i=1

[fi(8i)− fi(8∗)] (25)

where 8∗ = argmin8∈X
∑N

i=1 fi(8).
It is observed that Adadb has O

√
N regret bound. The

proof of the convergence is computed similarly as computed
in diffGrad and comparable to known convex online learning
methods. The definitions are defined as: gi,j represents the
gradient of the jth parameter in the ith iteration, g1:i,j =
[g1,j, g2,j, . . . , gi,j] ∈ <i represents the gradient vector in the

jth dimensions over all iterations till i and γ ,
β21
β2
.

Theorem: Let the function fi has bounded gradients i.e.
||gi,8||2 ≤ G and ||gi,8||∞ ≤ G∞ for all 8 ∈ <J . It is
also assumed that Adadb will generate a bounded distance
between any 8i, such as ||8n − 8m||2 ≤ D and ||8n −

8m||∞ ≤ D∞ for any arbitrary n and m ∈ {1,. . . .,M}.

Consider γ ,
β21
β2
, where β1 and β2 ∈ [0, 1) and satisfy

β21
β2
< 1, αi = α

√
i
and β1,i = β1 × λi−1, λ ∈ (0, 1); however,

λ is normally close to 1 and here we selected it as 1 − ε,
where ε = 1e−8. Using Lemma 10.2 and 10.4 of Adam and
Theorem 2 from Eqn 27 to Eqn 35 of diffGrad, we obtained
similar regret bound as:

R(N ) ≤
D2

2α(1− β1)

J∑
j=1

√
Nv̂N ,j
ξ1,j

+
α(1+ β1)G∞

(1− β1)
√
(1− β2)(1− γ )2

J∑
j=1

||g1:N ,j||2

+

J∑
j=1

D2
∞G∞

√
(1− β2)

2α(1− β1(1− γ )2)
(26)

For the first condition:

if (sgn(gi,j) 6= sgn(gi−1,j)) then

ξ1,j =
1

1+ e−1|β3(g1,j−g0,j)+β
2
3 (g2,j−g1,j)+β

3
3 (g3,j−g2,j)

(27)
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as go,j = g1,j = g2,j = 0. Therefore, N ≥ 1, the proposed
adadb shows the following guarantee:

R(N ) ≤
D2

2α(1− β1)

J∑
j=1

√
Nv̂N ,j(1+ e−|β3(g1,j)|)

+
α(1+ β1)G∞

(1− β1)
√
(1− β2)(1− γ )2

J∑
j=1

||g1:N ,j||2

+

J∑
j=1

D2
∞G∞

√
(1− β2)

2α(1− β1(1− γ )2)
(28)

For the second condition:

ξ1,j = 1+ r1

×
1

1+ e−1|β3(g1,j−g0,j)+β
2
3 (g2,j−g1,j)+β

3
3 (g3,j−g2,j)

(29)

Therefore, for all N ≥ 1, the proposed adadb optimizer
shows the following guarantee:

R(N ) ≤
D2

2α(1− β1)

J∑
j=1

√
Nv̂N ,j(

1+ e−|β3(g1,j)|

r1
)

+
α(1+ β1)G∞

(1− β1)
√
(1− β2)(1− γ )2

J∑
j=1

||g1:N ,j||2

+

J∑
j=1

D2
∞G∞

√
(1− β2)

2α(1− β1(1− γ )2)
(30)

It is observable that the sum of terms over the dimen-
sion J can be very small compared to its upper bound,
i.e.

∑J
j=1 ||g1:N ,J ||2 � dG∞

√
N and

∑J
j=1

√
N ˆvN ,j(1 +

e−|β3(g1,j)|) � d(1 + E∞)G∞
√
N , where E∞ is the

upper bound over the exponential function and E∞ �∑J
j=1 e

−|g1,j|. Therefore, considering these bounds and the
bounded gradients i.e., ||gi,8||2 ≤ G and ||gi,8||∞ ≤ G∞ for
all 8 ∈ <J .It is assumed that adadb will generate a bounded
distance between any 8i, such as ||8n − 8m||2 ≤ ||8n −

8m||∞ ≤ D∞ for any arbitrary n and m ∈ {1, 2, . . . .N }.The
proposed adadb optimization algorithm follow the following:

R(N )
N
= O(

1
√
N
), (31)

where limN→∞
R(N )
N = 0.

VI. EMPIRICAL ANALYSIS
Weperform the empirical analysis to justify the importance of
a proposed methodology. We compare the proposed method-
ologywithAdam, diffGrad, andAdaBelief optimization tech-
niques over the following three different complex non-convex
functions previously used in [4].

F1(x) =

{
(x + 0.3)2 for x ≤ 0
(x − 0.2)2 + 0.05 for x > 0

(32)

F2(x) =

{
(−40x − 35.15) for x ≤ −0.9
(x3 + xsin(8x)+ 0.85 for x > −0.9

(33)

F3(x) =



x2 for x ≤ −0.5
0.75+ x for − 0.5 < x ≤ −0.4
−7x/8 for − 0.4 < x ≤ 0
7x/8 for 0 < x ≤ 0.4
0.75−x for 0.4 < x ≤ 0.5
x2 for 0.5 < x

(34)

In the above-mentioned equations, F1, F2, and F3 are the
non-convex functions and x presents the input to the functions
with −∞ < x < +∞. The function F1 has one global
and one local minima (Figure 1) whereas other two functions
F2 and F3 have two global minima and one global maxima
(Figure 2 and Figure 3). Following hyper-parameters are used
in the experiments for adadb, diffGrad, AdaBelief, andAdam:
decay rate for 1st moment β1 is 0.95, decay rate for second
moment β2 is 0.999, and learning rate α is 0.5. The decay
rate β3 of adadb is set at 0.999. The parameter 8 or x in
these equations is initialized with −1 to demonstrate the
effectiveness of adadb optimizing technique over the Adam,
AdaBelief, and diffGrad. In the experiments, we have not
used the batch size increment during the operation of the
adadb technique. The results of the empirical analysis are
presented in Figure 4, Figure 5, and Figure 6.

Figure 4 demonstrates the problem in slow momentum of
the diffGrad as compared to Adam, AdaBelief, and adadb.
Adadb, AdaBelief, and Adam have faster momentum than
the diffGrad and therefore, managed to move out of the
local minima present at value 0.2 after touching it. Adadb
converges to a global minimum earlier than both Adam and
AdaBelief. The same scenario is presented in Figure 5 where
diffGrad is stuck at local minima value 0.0. At the slow
learning rates, diffGrad stuck at the nearest minima whereas
Adam and adadb can leave the nearest minima but didn’t get
the time to come back if the next minimum is not the global
minima as demonstrated by authors in [4]. However, there is
no guarantee in the practical scenarios that the nearest one
will always be the global minima. AdaBelief fluctuates twice
over the different minima before behaving like Adam and
adadb.

The problem in fast convergence of Adam and AdaBelief
is presented in Figure 6. After visiting all the minima, Adam
quickly settles at one minimum point (local in this case
instead of global) and AdaBelief settles between global and
local minimum values. Alternatively, adadb and diffGrad kept
fluctuating between global and local minima. After around
230 epochs, adadb settles near the global minima.

The empirical analysis has demonstrated that adadb per-
forms better than the slow diffGrad, and manages to find
global minima better than the fast Adam and intermediate
AdaBelief. In order to make the adadb faster than the Adam,
we increases the batch size in different epochs, discussed in
the next section.

VII. EXPERIMENTAL SETUP
For image categorization experiments, we uses the
CIFAR10 and CIFAR100 datasets. The CIFAR10 dataset
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FIGURE 1. Graph for F1 equation.

FIGURE 2. Graph for F2 equation.

FIGURE 3. Graph for F3 equation.

consists of 50K images for training and 10K images for
testing. CIFAR100 dataset is similar to the CIFAR10 dataset.
Howeover, it has 100 classes containing 600 images
each. There are 500 training images and 100 testing images

FIGURE 4. Empirical results over F1 equation.

FIGURE 5. Empirical results over F2 equation.

FIGURE 6. Empirical results over F3 equation.

per class. We use the optimization techniques (adadb,
Adam, and diffGrad) in the PyTorch implementation of
ResNet18 architecture. The experiments were performed on
Google Colab. Following hyper-parameters are used in the
experiments for adadb, diffGrad, andAdam: decay rate for 1st
moment β1 is 0.9, decay rate for second moment β2 is 0.999,
and learning rate α is 0.001. The decay rate β3 of adadb is
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set at 0.999. The number of maximum epochs is set to 100.
The target is to find the technique with the highest accuracy
in the first 100 epochs. The batch size is kept at 128 for
all the techniques. Two different strategies are used for the
comparison of techniques. In Strategy 1, the learning rate
is kept constant throughout the 100 epochs. Strategy 2 is
first search and then optimize strategy In Strategy 2, first
80 epochs are executed at a learning rate 0.001 (search) and
the last 20 epochs are executed at 0.0001 (optimize). Each
experiment was conducted 5 times and results are presented
as best of 5 trials.

VIII. RESULTS AND DISCUSSION
The results of the experiments are presented in Table 1 and
Table 2. In these experiments, adadb is also used without
batch size increase and represented as adadb/wo.

The results have shown that all the optimization techniques
improve the results with the Strategy 2. However, Adadb
remains the fastest technique among the three techniques and
provides the highest accuracy.

To make the optimization faster in the proposed tech-
nique, we incremented the batch size five percent after every
5 epochs. Adam and diffGrad are static techniques, therefore,
this procedure is not repeated against these two methods.
Table 3 and Table 4 present the results with different starting
batch sizes.

Adadb is an upgrade of the previous technique adad-
iffgrad [7] that behaves exactly like diffgrad in the first
100 epochs and improves from diffgrad and Adam after
around 250 epochs. Adadiffgrad is a combination of dif-
fgrad with batch size adaption. Adadiffgrad doubles the
batch size and decreases the step size at the same time
after the first 100 epochs and repeats the step after every
50 epochs. However, if the methodology is applied earlier,
the methodology tries to settle at the nearest available minima
too quickly. For example, if the methodology is applied on
the CIFAR10 dataset after every 25 epochs with starting
batch size 32, the highest accuracy achieved in 100 epochs
is 85.39. Alternatively, if the methodology is applied at every
50 epochs, the highest accuracy achieved in 100 epochs
is 86.88. Therefore, adadiffgrad is not useful if we want
high accuracy in the first 100 epochs. The proposed adadb
uses batch size increment along with an improved friction
constant that improves the algorithm in faster convergence
than adadiffgrad.

One important observation has been made in this experi-
ment that with a larger starting batch size, the testing accuracy
does not improve considerably. However, with the small start-
ing batch size, the testing accuracy increases. Using staring
batch size equals 32, adadb gets better accuracy than the accu-
racy achieved by Adam, AdaBelief, and diffgrad method-
ologies. The reason for high accuracy with low batch size
start is due to the high oscillation in the earlier epochs. This
high oscillation helps the optimizing technique in searching
a large number of minima and later with the increase in the
size of the batch, the oscillation decreases and the technique

TABLE 1. Highest accuracies of three optimizers with Strategy 1 and
Strategy 2 with CIFAR10 dataset.

TABLE 2. Highest accuracies of three optimizers with Strategy 1 and
Strategy 2 with CIFAR100 dataset.

TABLE 3. Highest accuracies of adadb with different starting batch sizes
for CIFAR10.

TABLE 4. Highest accuracies of adadb with different starting batch sizes
for CIFAR100.

FIGURE 7. Training loss using the different optimizer techniques.

settles at the best available minima. Figure 7 and Figure 8
presents this phenomenon. Figure 7 shows the training loss
per epoch whereas Figure 8 shows the testing accuracy per
epoch against all the techniques on CIFAR10 dataset. The
adadb shows the highest oscillation in training loss between
epoch 1 and epoch 20, however, this oscillation gradually
decreases as the number of epochs increases. The high oscil-
lation helps in finding the best minima quickly and adadb
shows the best performance in testing accuracy results.
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FIGURE 8. Testing accuracy using the different optimizer techniques.

IX. CONCLUSION
This paper presents a new optimization technique named
as adaptive diff-batch or adadb for optimizing the gradi-
ent descent algorithm. The proposed technique removes the
problem of slow convergence in the diffGrad algorithm by
replacing the friction constant with three past differences of
gradients rather than a single one. Moreover, the proposed
technique presents a condition to decide when to use the
friction constant. The technique performs faster than the
diffGrad and finds a better solution than the Adam, and
AdaBelief optimization techniques. The proposed technique
is combined with the adaptive batch size to further increase
the convergence rate. The proposed technique has outper-
formed both the Adam, AdaBelief, and diffGrad optimizers
on synthetic complex non-convex functions and CIFAR10 &
CIFAR100 datasets.
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