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ABSTRACT Optimal placement of sensors in protected cultivation systems to maximize monitoring and
control capabilities can guide effective decision-making toward achieving the highest levels of productivity
and other desirable outcomes. Reinforcement learning, unlike conventional machine learning methods
such as supervised learning does not require large, labeled datasets thereby providing opportunities for
more efficient and unbiased design optimization. With the objective of determining the optimal locations
of sensors in a greenhouse, a multi-arm bandit problem was formulated using the Beta distribution and
solved by the Thompson sampling algorithm. A total of 56 two-in-one sensors designed to measure both
internal air temperature and relative humidity were installed at a vertical distance of 1 m and a horizontal
distance of 3m apart in a greenhouse used to cultivate strawberries. Data was collected over a period of
seven months covering four major seasons, February (winter), March, April, and May (spring), June and
July (summer), and October (autumn) and analyzed separately. Results showed unique patterns for sensor
selection for temperature and relative humidity during the different months. Furthermore, temperature and
relative humidity each had different optimal location selections suggesting that two-in-one sensors might not
be ideal in these cases. The use of reinforcement learning to design optimal sensor placement in this study
aided in identifying 10 optimal sensor locations for monitoring and controlling temperature and relative
humidity.

INDEX TERMS Data quality, environmental monitoring, greenhouse, reinforcement learning, smart agri-
culture, temperature & relative humidity.

I. INTRODUCTION
Agriculture is important for the sustenance of liveli-
hoods worldwide by providing nutrition, raw materials for
industries, draft power, and mobility, among others.

The associate editor coordinating the review of this manuscript and

approving it for publication was Dongxiao Yu .

Protected cultivation systems, including greenhouses, create
ease in controlling macro and micro-environments that allow
year-round crop cultivation and help provide favorable grow-
ing conditions during uncertainties such as extreme weather
and pests [1]–[3]. Financially, protected cultivation systems
usually have higher returns per unit area compared to open
field cultivation [4].
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The adoption of these systems is rising, with an estimated
405,000 hectares [5] of greenhouses spread across all conti-
nents and fifty-five countries operating them on commercial
scales [5].

Unlike in open field cultivation, operations in pro-
tected systems tend to be more sophisticated and require
the adoption of several technologies [4], [6], [7]. These
technologies make protected cultivation systems capital
intensive. First-generation intelligent protected cultivation
systems focused primarily on adopting sensors for monitor-
ing indoor climate conditions and performing essential con-
trols of temperature, humidity, and irrigation. Formost plants,
an air temperature range of 10◦C to 24◦Cmust be maintained
for survival and optimum yield [8], [9]. Temperature control
is critical not just for plant performance but also for managing
the system’s energy consumption which invariably influences
production costs. In addition, maintaining the right range of
relative humidity is critical in controlling transpiration and
preventing fungal infection [10].

Autonomous condition observation is essential to health
monitoring in protected cultivation, especially for large sys-
tems. Drastic changes in atmospheric conditions are more
likely in protected cultivation systems than in open fields.
Monitoring and controlling these basic parameters in addi-
tion to others such as carbon dioxide and electrochemical
conductivity [11]–[15] are thereforemore critical in protected
systems. These have given rise to the development of sensors
for monitoring the micro and macro conditions of protected
cultivation systems. The development of mobile robotics to
automate processes and optimize production has also trans-
formed operations and increased the need for sensors.

Currently, most sensors are randomly installed in protected
cultivation systems depending on the grower’s resources,
available technical know-how, and the size of the protected
cultivation system [16]. Conventionally, as many sensors as
possible have been placed at random locations within enclo-
sures to monitor climatic conditions. The use of multiple
redundant sensors could result in big data and associated
problems with data management. The quality of information
obtained depends considerably on the number and location
of sensors. Optimizing sensor locations within a distributed
process reduces operating costs but is challenging since most
distributed processes are intrinsically nonlinear with infinite
dimensions. Early methods used were derived from approx-
imation models of the partial differential equation (PDE),
such as the finite difference method or the error covariances
matrix of Kalman filters [17]–[19]. These early methods had
been applied only to linear systems for a small number of
sensors without any general systematic approach. Therefore,
they were infeasible for complex nonlinear systems which
required higher dimension representations.

Reports [20]–[23] have also shown that sensor data vali-
dation could be very challenging in system monitoring due
to the stochastic nature of failure occurrence, poor quantity,
and incorrect location of sensors. This could cause an inabil-
ity to get sufficient information and lead to the incorrect

understanding and knowledge of the conditions of the sys-
tems. For example, in vegetable cultivation, many leaves and
fruits on plants can cause blind areas and low utilization of
directional sensors placed incorrectly [24].

Several techniques such as system reliability criterion und-
er epistemic uncertainty [25], genetic algorithms [26], [27],
Harris hawks optimization [28], exponential-time exact algo-
rithm [29], and Fisher informationmatrix [30] have been used
to design optimal sensor placement. Methods such as super-
vised and unsupervised learning have been less explored in
controlled environment cultivation compared to other appli-
cations to the best of our knowledge. In [31], the authors
reported two methods (equal sensor-spacing and trial-and-
error) to select numbers and locations of wireless sensor
nodes in an intelligent greenhouse. The study suggested that
increasing the number of sensors did not necessarily reduce
errors in measurement. Therefore, an optimal number and
placement of sensors needed to be determined through trial
and error.

The advancement of computer simulation of human think-
ing in machine learning techniques such as reinforcement
models provides robust ways to address sensor placement
problems that are high-dimensional, complex, and full of
uncertainties. In this study, a machine learning approach was
used to determine the optimum number and locations of
sensors for high-quality and representative data collection in
a greenhouse. The major steps involved, a) designing and
installing two-in-one temperature and relative humidity sen-
sors to takemeasurements and a network architecture to trans-
mit and store data remotely to a server and b) based on the
reinforcement learning method, tracking errors encountered
in each trial and programming an agent to interact with the
environment (the greenhouse) to reduce errors.

This paper is organized as follows: Section I introduces
the background of the study and related works. Section II
describes the method of data acquisition and the proper-
ties of the studied greenhouse. Sections III presents the
proposed framework categorized into problem formulation,
the Thompson sampling algorithm, and its implementation.
Finally, Section IV analyzes the environmental data, and
Section V presents our conclusions.

A. RELATED WORK
The optimal sensor placement problem has been explored
in various fields with different machine learning techniques.
In [32] for example, Gaussian processes were explored to
develop a learning scheme of greedy algorithms. Also, [33]
employed a random forests algorithm to select the most
important input variables as the optimal sensor locations.
In another study, [31] developed a scalable algorithm for
sensor placement under constraints of cost and complete cov-
erage using a non-deterministic polynomial-time-complete
(NP-complete) - class of computational problems for which
no efficient solution algorithm has been found - for arbitrary
sensor fields. Adopting a grid-based placement scenario,
the problem was formulated as a combinatorial optimization
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problem for minimizing the highest distance error in a sensor
field under the constraints. Also, [34] introduced a Bayesian
approach to optimal sensor placement for structural health
monitoring focusing on the example of active sensing using
guided ultrasonic waves by implementing an appropriate sta-
tistical model of the wave propagation and feature extraction
process. For structural health monitoring, [26] employed a
genetic algorithm technique which assigns a fitness value to
each candidate solution of the problem and applies the princi-
ple of survival of the fittest. The modal strain energy (MSE)
and the modal assurance criterion (MAC) were used as the
fitness functions. The limitation to this approach was the little
chance or probability of getting good results when the number
of iterations were high. For sensor placement to maximize the
efficiency of a fault detector, [35] proposed a neural network
method to locate and classify faults to determine an optimal
(or near-optimal) sensor distribution.

Some earlier work has also been reported for optimal sen-
sor placement in greenhouses. In [16], an error-based method
and entropy-based method to determine the optimal sensor
locations were explored. It was believed that in controlling
the internal environment of a greenhouse, sensors should
be installed at points that accurately represent the entire
environment and this inspired the error-based approach. This
approach first calculated the reference trend by averaging the
air temperature data measured by all the sensors followed
by a combination trend calculated by averaging the air tem-
perature data measured at the selected sensor locations for
all the combinations. The error trend of each combination
was calculated as the difference between the reference trend
and the combination trend. Finally, the combinations were
ranked according to statistical indices calculated using the
error trends (the average, standard deviation, outlier, and
z-index). The z-index, an index for evaluating how close
the distribution of error trends is to a Gaussian distri-
bution was used. The combinations were ranked accord-
ing to each statistical index and then scored accordingly.
Attempts to identify the optimal sensor location for detect-
ing areas with significant air temperature variations led
to the second entropy-based method. The approach here
was to minimize the amount of redundant information in
the measured data while maximizing the quality of infor-
mation obtained. In [24], a hierarchical cooperative parti-
cle swarm optimization algorithm was used for directional
sensor placement in a vegetable-cultivating greenhouse to
maximize target coverage without occlusion. Their exper-
imental results showed improved sensor utilization to a
certain degree. The particle swarm optimization algorithm
decomposed the global effective coverage problem into
the utilization optimization of each sensor and finally led
to the orientation angles proposed [24]. The experimental
results showed that the studied model and algorithm could
avoid occlusion between covered objects (as observed in the
arrangement of leaves on a tree) while improving sensor
utilization to a certain degree. Liu [36] proposed a solution
to optimal sensor placement in a solar greenhouse located

on a roof based on the analysis of the characteristics of
temperature in the internal environment and using computa-
tional fluid dynamics.

Most of the approaches mentioned above relied on
complex control assumptions and schemes, or an exhaus-
tive search over a large set of candidate placements that
were defined in advance. Therefore, they were infea-
sible for complex nonlinear systems which required a
high-dimensional representation. The Reinforcement Learn-
ing (RL) approach helps in addressing these challenges by
allowing an autonomous active agent to learn the optimal
policies while interacting with an initially unknown environ-
ment. The self-learning from unknown environments makes
RL a promising candidate for an optimal sensor placement
problem.

In [37], an RL-based method for optimal sensor
placement in the spatial domain for modeling distributed
parameter systems (DPSs) where the sensor placement con-
figuration is mathematically formulated as aMarkov decision
process (MDP) with specified elements was proposed. The
sensor locations were optimized through learning the opti-
mal policies of the MDP according to the spatial objective
function. Paris et al. [38] worked on the robust flow con-
trol and optimal sensor placement using deep reinforcement
learning. They focused on the efficiency and robustness
of the identified control strategy and introduced a novel
algorithm (S-PPO-CMA) to optimize the sensor layout.
An energy-efficient control strategy reducing drag by 18.4%
at Reynolds number 120 was obtained. This control policy
was shown to be robust both to the Reynolds number in
the range [100, 216] and to measurement noise, enduring
signal to noise ratios as low as 0.2 with negligible impact
on performance. Along with a systematic study of sensor
number and location, the proposed sparsity-seeking algo-
rithm successfully optimized a reduced 5-sensor layout while
keeping state-of-the-art performance [37]. In [39], the foot
plantar sensor placement by a deep reinforcement learning
algorithm without using any prior knowledge of the human
foot anatomical area was studied. To apply a RL algorithm,
the authors proposed a sensor placement environment and
reward system that aimed to optimize fitting the center of
pressure (COP) trajectory during the self-selected speed run-
ning task. In this environment, the agent considered placing
eight sensors within a 7 × 20 grid coordinate system, and
then the final pattern became the result of sensor placement.
The results showed that this method could generate a sensor
placement which had a low mean square error in fitting
ground truth COP trajectory, and robustly discovered the
optimal sensor placement in many combinations.

To the best of our knowledge, all the methods seen so far
for solving the sensor placement problem using RL selected
their actions based on the current averages of the rewards
received from those actions [37], [38]. However, the Thomp-
son Sampling [40], [41], sometimes known as the Bayesian
Bandits algorithm, takes a different approach. It extends this
current mean reward to build up a probability model from the
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obtained rewards and afterward samples from this to choose
an action. With this, we will not only have an increasingly
accurate estimate of the possible reward received, but the
model also provides a level of confidence in this reward,
and this confidence increases as more samples are collected.
This process is known as the Bayesian Inference [42], which
entails updating viewpoints as more evidence is available.

II. DATA ACQUISITION AND GREENHOUSE PROPERTIES
Figure 1 shows the aerial map of the research farm where
the experimental greenhouse (indicated with a letter (G))
is located. The greenhouse in which the experiments were
performed is used to grow strawberries (Figure 2A) in the
research farm of Kyungpook National University, Daegu,
Republic of Korea. It was Quonset-shaped with transparent
vinyl material for roof and walls and had a concrete floor.
The internal air temperature of the greenhouse was mea-
sured using 56 two-in-one temperature and humidity sen-
sors installed at distances of 1 m and 3m apart vertically
and horizontally, respectively. The sensors were installed
on 8 rows and 7 columns; this was done to achieve a uni-
form distribution. The cartesian coordinates of each sensor
was determined using the X, Y, Z three-dimensional coordi-
nate system. The sensors’ range for measuring temperature
was −20 to 80 ◦C with an error of ± 0.3 ◦C while that of
relative humidity was 0 to 100% ± 2%.

FIGURE 1. Location of the experimental greenhouse (G) at Kyungpook
National University used for data collection to develop reinforcement
learning method for the optimal placement of sensors.

In Figure 2B, the alphabets (A-H) indicate columns while
in Figure 2C, the numbers 1-7 represent the points on rows
the sensors were installed. As a precaution to minimize error
in the set-up for data collection, sensors were installed in
plastic protective cases to shield them from direct solar radi-
ation. Figure 3 illustrates the set up for collection which

FIGURE 2. Illustration of the experimental strawberry greenhouse used to
develop reinforcement learning method for the optimal placement of
sensors showing (A) internal picture; (B) front elevation; and (C) side
elevation.

FIGURE 3. Architecture used for data collection to develop a
reinforcement learning method for the optimal placement of sensors
showing; (a) sensor in protective case; (b) wireless sensor node;
(c) wireless network controller; (d) server; and (e) mobile display.

is described as follows; the sensors were connected using
cables to the sensor nodes and the sensor nodes transmitted
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the temperature and relative humidity data wirelessly to the
network controller through gateways. These data were sent to
the sever and then to a mobile display.

III. PROPOSED FRAMEWORK
A. PROBLEM FORMULATION
Given that there werem sensors out of n candidate placements
(m < n) with the task of finding the available m sampling
locations so that a predefined measure could be optimized,
the most informative m locations from the assumed n would
be chosen. This makes the complexity of the optimal sensor
placement problem NP-hard [43], [44].

Now, if m < n was to be chosen in such a way that a
lesser number of sensors was used while getting approxi-
mately the same measurements, then the sensor placement
problem could be seen as a multi-arm bandit problem. With
this approach, a fixed and limited set of resources (sensor
locations) must be allocated between competing (alterna-
tive) sensors in a way that maximizes their expected gain.
Each choice (sensors) properties are only partially known
at the time of allocation and may become better under-
stood with time or by allocating resources to the choice [45]
using the Thompson Sampling algorithm technique (1).
Then,

1
m

m∑
i=1

γTi ≈
1
m

m∑
i=1

Ti (1)

where γ is modeled as a Beta distribution.
The Beta distribution was used to model the simplest form

of the multi-armed bandit problem, the binary outcome or
reward. Instead of each location returning a varying number
of selections, each location was either selected or not. The
rewards had only two possible values: 1 when the chosen
location was selected and 0 if otherwise. When a random
variable had only two possible outcomes, its behavior could
be described by the Bernoulli distribution which validates
the solutions as reported in [46]–[48]. In this study, each
machine received a reward of 1 when the outcome was
successful (that is, if the average temperature or average
relative humidity measurement of a sensor was greater than
the mean measurement) and 0 if otherwise since our goal
was to identify the sensor with the highest probability of
success (Equation 2). Hence for each day of themonth, exper-
iments were run, and the number of successes, recorded. The
sensor locations with the highest number of successes were
selected.

if success:

α = α + 1

if failure:

β = β + 1 (2)

The value of Beta (α, β) is within the interval [0, 1]; α and
β correspond to the counts when we succeeded or failed to
get a reward, respectively.

The posterior probability is Beta (β) with updated param-
eters in Equation 2.

B. THOMPSON SAMPLING ALGORITHM AND ITS
IMPLEMENTATION
Thompson Sampling (sometimes referred to as Posterior
Sampling or Probability Matching), is an algorithm that fol-
lows exploration and exploitation tomaximize the cumulative
rewards obtained by performing an action. In this algorithm,
an action (exploration) is performed multiple times and based
on the results obtained from the actions, the algorithm either
rewards or penalizes. Further actions are performed with
the goal to maximize the reward (exploitation). In other
words, new choices are explored to maximize rewards while
exploiting the already explored choices. Since Thompson
Sampling makes use of Probability Distribution and Bayes
Rule to predict the success rates of each slot machine, it is
mathematically expressed in Equation 3 as,

P
(
θ

D

)
=
P
(D
θ

)
P(θ)

P(D)
(3)

whereD represents the data observed, P(θ /D) is our posterior,
P(D/θ) is the likelihood of observing the data given θ , and
P(θ ) is the prior belief on the distribution of θ .

To model the prior distribution of θ , the Beta distribution
was adopted as a parametric assumption. The Beta distribu-
tion is a function of a and b, which represent the counts of
successes and failures for a given θ (Equation 4), respectively.
In the context of a prior, it represents the pseudo counts
of successful and unsuccessful trials the sensor has, which
represents the initial perspective of the reward function of
the specific choice of sensor. In other words, each sensor
location is selected based on the Beta distribution of rewards
and penalties associated with each sensor.

P(θ ) =)
θa−1(1− θ )b−1

β(a.b)
(4)

where:

β(a, b) =
0(a)0(b)
0(a+ b)

In summary, for each row, that is, a new round n , one of the
56 sensor locations was selected to calculate the placement
rate (if a sensor is placed there or not). The goal was to
select the best location at each round, over many rounds. The
process in Thompson Sampling was given as,
For each n, repeat over 3,000 rounds, the following three

steps:
- For each location i, take a random draw from the follow-
ing distribution (Equation 5):

θi(n) ≈ β
(
N 1
i (n)+ 1,N 0

i (n)+ 1
)

(5)

where:
N 1
i (n) is the number of times the location i has received

a 1 reward up to round n.
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FIGURE 4. Graphical illustration of the Thompson Sampling Algorithm for the optimal sensors’ placement,
(A) sensors, (B) Beta distribution, and (C) selected sensors.

FIGURE 5. Scatter plot for temperature and relative humidity at sensor
location A3.

N 0
i (n) is the number of times the location i has received

a 0 reward up to round n.

Note that 1 is any temperature or humidity measurement
greater than the overall mean measurement.

- The strategy s(n) that has the highest θi (n) is
(Equation 6):

s(n) = argmax i∈{1,...9} (θi(n)) (6)

N 1
s(n)(n) and N

0
s(n)(n) is updated according to the following

conditions:
• if the location selected s(n) received a 1 reward

(Equation 7):

N 1
S(n)(n) := N 1

s(n)(n)+ 1 (7)

• If the location selected s(n) received a 0 reward
(Equation 8):

N 0
s(n)(n) := N 0

s(n)(n)+ 1 (8)

In Figure 4, sensor locations from 1 to 56 are given in
step A. Each location having its Beta distribution as seen in
step B. The possible sensor location available was denoted
with A, and an example matrix gotten from selecting a
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FIGURE 6. Trends in (a) temperature and (b) relative humidity in the greenhouse from randomly selected sensor
points.

particular sensor location (1) or not (0) for every number
of trials was represented with B. In this study, instead of
simulating the Beta distribution [49], the generated data set
was simulated to conform with the 1 and 0 Beta distribu-
tion and the mean was used as the threshold. Measurements
below the mean of the data was categorized as zero, or 1 if
otherwise. This is because it allows determination of the

overall trend of a data set, since there was no outlier in the
data.

As the number of trials of a sensor location increased,
the confidence in the estimatedmean also increased. This was
reflected in the probability distribution becoming narrower.
The sampled value was then drawn from a range closer to
the true mean (see the smallest yellow histogram in step C
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FIGURE 7. Histogram of sensors significantly occurring (selected) using (1) temperature data and (2) relative humidity for (a) February; (b) March;
(c) April; (d) May; (e) June; (f) July; and (g) October of sensor locations.
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FIGURE 7. (Continued.) Histogram of sensors significantly occurring (selected) using (1) temperature data and (2) relative humidity for (a) February;
(b) March; (c) April; (d) May; (e) June; (f) July; and (g) October of sensor locations.
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FIGURE 7. (Continued.) Histogram of sensors significantly occurring (selected) using (1) temperature data and (2) relative humidity for (a) February;
(b) March; (c) April; (d) May; (e) June; (f) July; and (g) October of sensor locations.
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FIGURE 7. (Continued.) Histogram of sensors significantly occurring (selected) using (1) temperature data and (2) relative humidity for (a) February;
(b) March; (c) April; (d) May; (e) June; (f) July; and (g) October of sensor locations.
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FIGURE 7. (Continued.) Histogram of sensors significantly occurring (selected) using (1) temperature data and (2) relative humidity for (a) February;
(b) March; (c) April; (d) May; (e) June; (f) July; and (g) October of sensor locations.

in Figure 4). This decreased exploration and increased
exploitation since the location with a higher probability of
returning a reward would be selected with increasing fre-
quency (seen in figures 7 a-g). On the other hand, locations
with a low estimated mean were chosen less frequently and
they dropped early from the selection process.

For each day of the month, the distribution of the sensor
location with the highest information measured was progres-
sively shifted to the right, while the location capturing lower
information was progressively shifted to the left. We took
the analysis a step further than the conventional greedy algo-
rithm [50] and immediate averages of the rewards received
from agents’ actions. The additional step involved the explo-
ration and exploitation approach and building a probability
model from the obtained rewards. Afterward, samples from
this were used to choose an action. With this approach,

we not only achieved an increasingly accurate estimate of the
possible rewards received but also a relatively higher level of
confidence in these rewards which increased as more samples
were collected. This process is known as Bayesian Inference,
and it entails updating viewpoints as more evidence becomes
available [42], [51].

IV. EXPLORATORY DATA ANALYSIS OF
ENVIRONMENTAL DATA
Generally, data was collected monthly, hence the preprocess-
ing was done separately. For each month, there were approx-
imately 5 to 6 percent of missing values. These missing rows
were deleted because missing values present in the dataset
could impact the performance of the model by creating a bias
in the dataset. The basic visualization for data collected in the
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FIGURE 8. Locations for sensors significantly occurring (represented with a red dot) in the greenhouse for (a) February temperature data;
(b) May temperature data; (c) February relative humidity data; and (d) June relative humidity data.

month of April are shown in Figures 5 for a sensor point in
the greenhouse.

The scatter plot of temperature and relative humidity
sensor measurements presented in Figures 5 show similar
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TABLE 1. Sensors’ rankings and percentages of occurrence using measured temperature dataset.
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TABLE 1. (Continued.) Sensors’ rankings and percentages of occurrence using measured temperature dataset.

patterns of negative correlation. The line charts
in Figure 6 show temperature and relative humidity
measurements from four randomly selected sensor points.
It was observed that for any randomly selected measurement
point, the trends were similar. Excluding rows with missing
data, 38,953 air temperature and relative humidity data points
were used for identifying the optimal sensor locations. From
the descriptive statistics carried out in April dataset, the mean
temperature was approximately 24◦C, with a standard devi-
ation of 7◦C. The minimum temperature was approximately
11◦C while the maximum was approximately 47◦C across
each temperature measure.

An exploratory data analyses demonstrated the prob-
lem of installing sensors in protected cultivation systems
(Table 1 and 2 in the Appendix). It shows the variation in the
location of the optimal sensors to measure the temperature
and relative humidity in the greenhouse every month. In the
current study, it was evident that two-in-one sensors were
not ideal for measuring temperature and relative humidity
simultaneously. The inverse relationship and the behavior of
moisture in the environment resulted in different patterns in
the variation of the optimal location for measuring the two
parameters. In all the studied months, no high-ranking sensor
locations were found to measure temperature and relative
humidity simultaneously using the reinforcement learning
approach. Furthermore, the optimal location to measure both
the temperature and relative humidity varied across the dif-
ferent months. This could be caused by external disturbance
factors [52] such as the movement of the sun, wind direction,
solar radiation, outdoor wind speed, temperature, or relative
humidity.

From the measured values, the fluctuation in the frequency
of occurrence occurred more with temperature compared to
relative humidity. In Figure 7a-1, about 20% of the temper-
ature sensors occurred (were selected) over 1000 times with
the sensor at location E3 occurring about 100%more than the
rest for the month of February (end of winter).

In a similar period, the selected number of sensors for
relative humidity (Figure 7a-2) had a similar percentage for
the number of sensors occurring over 1,000 times. Also, the
sensor at location B4 showed about a 220% more increase
in the number of times it occurred (selected) compared to the
rest. The selected sensor location for both the temperature and
relative humidity had a significant sensor that differed from
the others and possibly best explained the condition in the
protected cultivation system.

In March (beginning of spring; Figure 7b) the number of
sensors occurring (selected) more than 1,000 times slightly
increased to about 30% compared to the percentage of
sensors selected in February (Figure 7a). In this month,
five locations had a closer relationship in how much they
explained the condition of the greenhouse. They occurred
with a difference of about 25% compared to the previous
month that had 100% difference in occurrence for temper-
ature (Figure 7b1). However, a different trend was seen for
relative humidity (Figure 7b-2) where the sensor at location
D6 occurred (was selected) 70% more times than the rest
of the sensors. Sensor at locations D6 and G6 occurred
(were selected) 100% of the time compared to the rest of the
sensors.

Towards the end of spring (May), the number of tem-
perature and relative humidity sensors occurring (selected)
more than 1,000 times reduced to 20%. This was close to
observations in February (Figure 7a). However, the sensors
occurring (selected) over 1,000 times were different from
those in February (Figure 7a). The exception was for tem-
perature sensor (location 23) which occurred 100% more
than the rest similar to February (Figure 7d-1). For the rel-
ative humidity (Figure 7d-2), three sensors (location 3, 9,
and 40) occurred about 100% more than the remaining sen-
sors with locationsA3 andB2 occurring about 50%more than
location F6.

In the summer month of July (Figure 7f), an entirely differ-
ent trend was recorded. Only about 15% of the sensors were
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TABLE 2. Sensors’ rankings and percentages of occurrence using measured relative humidity dataset.
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TABLE 2. (Continued.) Sensors’ rankings and percentages of occurrence using measured relative humidity dataset.

selected (occurred) more frequently compared to the others
for temperature (Figure 7f-1). Here, it was observed that the
other sensors were occurring (selected) less compared to the
other months in winter and spring. This lesser occurrence
of most of the sensors was also observed with the rela-
tive humidity data (Figure 7f-2). As in the temperature data
(Figure 7f-1), only about 15% of the sensors occurred
(selected) over 1,000 times. Out of these, three sensors
(B6, C3, and D3) occurred 125% more than the rest
with sensors B6 and D3 occurring about 50% more than
sensor C3.

In autumn (October), over twenty sensors occurred over
1,000 times and had close relationships in frequencies
(Figure 7g) for temperature reading. In this, a maximum dif-
ference of occurrence of about 250% was observed between
three sensors and the rest for temperature data (Figure 7g-1).
However, the remaining sensors occurring over 1,000 times
had a similar occurrence in frequency. About 40% of the
temperature sensors occurred over 1,000 times and could
feasibly explain the condition of the protected cultivation
system (Figure 7g-1). For relative humidity (Figure 7g-2), a
different trend was seen in the number of sensors occurring
over 1,000 times. Just like in February (Figure 7a), only 20%
of the sensors occurred over 1,000 times with one sensor
occurring about 100% more than the rest. Also, two sensors
(D2 and E4) occurred about 100% more than the rest of the
sensors making them the most important sensors for relative
humidity in October.

As mentioned earlier, growers and sensor companies tend
to install sensors in the middle of protected cultivation sys-
tems and usually spread them across the center when they
have more resources [16], [53]. In this study, our method
showed that the sensors that occurred more frequently for
temperature were not the center sensors across the different
months and seasons. In the investigated months, the center

sensors did not show prominence in February, March, April,
May, July, and October (Figure 8). In these months, their
percentages of frequency of occurrence were 4.94%, 5.61%,
5.53%, 3.42%, 27.40%, and 5.53% compared to side sensors
that occurred at 29.68%, 13.99%, 10.97%, 20.86%, 37.84%
and 10.97%, respectively (Table 1 in the Appendix). In addi-
tion, over 70% of the sensors occurred less than a percent,
showing redundancy.

Similar trends were seen in the relative humidity data set.
The highest occurrences for the sensors at the center of the
greenhouse were at percentages of 4.79%, 23.21%, 15.18%,
31.16% and 15.18% for February, March, April, July, and
October, respectively (Table 2 in the Appendix). None of the
center sensors were found among the ten sensors with the
highest occurrences in May and June (Figure 8). However,
the center sensors were the top frequently occurring sensors
inMarch and Julywith a 42.9% and 20.3% difference, respec-
tively from the next highly occurring side sensors. As in the
temperature dataset, over 70% of the sensors here were also
redundant.

As stated previously, the differences in the occurrences of
these sensors in every simulated month could be attributed to
the rapid and wide changes in external disturbances. Despite
recording monthly changes in the frequency of occurrence
(selection criteria) of these sensors, changes in the patterns
with the seasons were observed likely due to the wide dis-
parities in the amount of sunlight, temperature, and amounts
of water in the external environment (relative humidity), as
well as the times of the rising and setting of the sun in these
seasons.

V. CONCLUSION
A reinforcement learning approach was adopted and pro-
grammed to solve the optimal sensor placement problem in
a greenhouse, a type of protected cultivation system. Data

VOLUME 9, 2021 100797



D. D. Uyeh et al.: RL Approach for Optimal Placement of Sensors

was collected over 7 months across the four seasons, that is
February (winter), March, April, and May (spring), June and
July (summer), and October (autumn) and analyzed sepa-
rately. The problem was formulated as a multi-arm Ban-
dit Problem, using the Beta distribution and the Thompson
Sampling algorithm techniques. Two possible outcomes were
programmed for a sensor selection; 1 when the chosen sensor
location is selected and 0 if otherwise. The distribution of the
sensor location with the highest information measured was
progressively shifted to the right, while the location capturing
lower information was shifted gradually to the left using
the Thompson Sampling Algorithm. We used the exploration
and exploitation approach and built a probability model from
the obtained rewards and immediate averages of the rewards
received from agents’ actions. The 10 most optimal sensor
locations out of 56 for temperature and relative humidity
were identified. These made up about 63-95% and 70-91%
in frequency of occurrence from the total sensors for temper-
ature and relative humidity data, respectively. Results showed
that for each month, selected optimal sensor locations for
temperature were distinct from relative humidity suggesting
that the current practice of using two-in-one sensors was not
ideal in these use cases. This study proposes a system aimed at
finding optimal sensor location points in protected cultivation
systems. Modeling the prior distribution to explore more
functions aside from the Beta distribution could be explored
in future research.

APPENDIX
See Tables 1 and 2.
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