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ABSTRACT In recent years, there has been a growing concern for robust supervisory control policies that can
handle both deadlock and blockage propagation in automated manufacturing systems in the event of resource
failures. This work proposes a novel robust supervisory control policy for automated manufacturing systems
with multiple unreliable resources without using central buffers. The policy permits legal states as many as
possible and ensures that parts not requiring unreliable resources can be automatically processed without
human intervention if one or multiple unreliable resources fail. It is based on the modified neighborhood
policy, namely single route neighborhood, which handles the allocation of failure-prone resources in a
system. To guarantee deadlock-free operations in the remaining parts of the system, monitors are designed
for emptiable strictly minimal siphons. Through examples, the applicability of the proposed policy is
demonstrated.

INDEX TERMS Petri net, deadlock, automated manufacturing system, robust supervisory control.

I. INTRODUCTION
Automated manufacturing systems (AMSs) are resource
allocation systems whose components or parts interact with
one another while competing for limited reusable resources.
A resource allocation problem deals with allocating limited
resources available among a number of processes within a
system. Optimal distribution and sharing of these limited
resources are desired in an AMS. This optimality of
distributing resources could be stymied if there is no
effective and robust supervisory control in place to deal with
situations that may arise in the system such as deadlocks and
blockage [1], [2].

A plethora of studies in the literature deal with deadlock
problems, and substantial achievements have been made in
this regard. Thus far, a vast majority of them are based
on the premise that the resources are all reliable [3]–[25],
[52], [53], [57]–[59]. Contrary to this notion of absolute
resource reliability, in reality, resources do fail or break down
due to aging or wear and tear, faults in some resource’s
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components or due to failure of sensors [26]. Furthermore,
despite putting in place an effective policy to resolve deadlock
in a system, resource failures could still bring about deadlock
and blockage issues [27]. A circular wait can be created due
to the failure of a resource, which could stall the production
of other part types that do not require the services of the failed
resources.

Awakened by this reality, researchers have proposed a
number of ideas of robust supervisory control for AMSs. One
of the early and significant contribution is the work [2]. In [2],
a system has only one unreliable resource. By combining
a neighborhood policy and resource order policy, a robust
supervisory control is developed. The neighborhood policy
requires the use of inequality constraints, known as neighbor-
hood constraints (NHC). This idea is later extended in [26] to
handle failures in a systemwithmultiple unreliable resources.
Two supervisory control policies are formulated: one using
NHC and the banker’s algorithms and another using the
banker’s algorithm and single-step look ahead policy.

The study [28] proposes a policy that comprises the
concept of remaining resource capacity constraints and
a modified banker’s algorithm to deal with AMS type
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in [26]. The policy is more permissive than that in [26].
Wang et al. [29] use shared resource capacity and classify
resources into three regions: region of failure dependence,
that of continuous operation and that of distribution.
In each region, a set of inequality constraints is computed.
Two policies for robust supervisory control are developed.
Chew et al. [30] present two robust supervisory control
policies for AMSs with multiple unreliable resources and
parts having more than one unreliable resources in their
processing routes. The first policy is composed of NHC in
conjunction with the banker’s algorithm, while the second
one comprises NHC and single-step look ahead. Either
of them partitions parts processing routes into subroutes,
and utilizes central buffers to store parts temporarily if an
unreliable resource fails. Despite being more permissive than
the policies in [26], the requirement for cental buffers, which
means additional hardware, has made the policies expensive
to implement.

An idea of employing the banker’s algorithm together with
available resource constraints is presented in [31] to design
a robust AMS controller. The available resource capacity
constraints require that at least one buffer space between
a pair of failure-dependent resources should remain for the
execution of the banker’s algorithm. Informally, a resource
is said to be failure-dependent on an unreliable resource
if every part that enters its buffer space requires future
processing on that unreliable resource. An unreliable resource
is failure-dependent on itself.

The work [32] incorporates NHC with a resource order
to build a supervisory control policy in order to tackle
simultaneous failures of multiple unreliable resources in
AMSs. Yue et al. [33] present a new policy of deadlock
avoidance by using shared buffers and first and second
order banker’s algorithms. Unlike the absorbing type poli-
cies in [2], [26], [28], the policy in [29], [32], [33] is
distributed. The classifications of robust supervisory control
policies into absorbing and distributive types are proposed
in [34]. If an unreliable resource fails, with the first type
policies, all parts that require the failed resource in their
remaining routes are absorbed into the buffer spaces of
failure-dependent resources. With the second type policies,
all parts that require the failed resource in their remaining
routes are distributed among the buffer spaces of shared
resources.

In [35]–[37], Hsieh proposes a number of methods to
check the possibility of continuing production with a set of
resource failures. The resource failures are modelled by using
token extractions from a Petri net. His studies lay down fault
tolerant conditions and propose a structural decomposition
technique to check the feasibility of a production line.
However, they are not intuitive to Petri net models [27].
Liu et al. [27] come up with the idea of adding recovery
subnets and control places to a Petri net model of a system
with unreliable resources. It is a robust control strategy
that makes the controlled net live and prevents deadlock
when some of the resources of the system fail. Other robust

deadlock control policies proposed by Liu et al. can be found
in [38]–[41].

In [42], Petri nets are used to model and develop a robust
controller for deadlock prevention in AMSs. A Petri net
model is divided into two subnets according to whether
parts require unreliable resource to be processed or not. The
subnet of parts that require unreliable resources is called a
blocked net, while the other in which parts do not require
unreliable resource is called a free subnet. A robust controller
in [42] is composed of three layers. The first layer ensures
the liveness of the system in the presence or absence of
failures. The second one guarantees the processing of parts
not requiring failed resources if there is a failure of an
unreliable resource. The so-called second-level deadlocks
caused by the application of the controllers are prevented by
the third layer controller. Yue et al. [43] utilize both automata
and Petri nets to model, analyze and design a supervisory
control policy for deadlock/blockage avoidance. However,
Petri nets are only used in modeling buffer net constraints.

Another robust supervisory control for AMSs that utilizes
both Petri net and automaton to develop an AMS model
is [44]. They propose a modified banker’s algorithm which
can be integrated with a deadlock avoidance policy for a
system of simple sequential process with resources (S3PR).
For more details about the studies found in this area of
robust supervisory control of AMSs, the reader can refer
to [45]–[50] and a recent survey [51].

Owing to their superior structural characteristics, more
compacted structure and more powerful capability to model
and analyze complex systems, Petri nets are more effective
in modeling, detecting and solving deadlocks. For instance,
Petri nets can model systems with more sophisticated
behaviors such as flexible routines, assembly and deassembly
operations and multi-type as well as multi-quantity of
resources and their combinations. Automata aremore suitable
for modeling simple systems such as single-unit resource
allocation systems. Thus, automata are limited in their
capability for modeling, simulation and supervisory control
of AMSs [49].

NHC proposed in [2] has been used in a number of
studies in conjunction with other policies to design robust
supervisory control policies using automata. The idea has
come across as quite intuitive to Petri net models. It can
thus be implemented in Petri net models. However, it is
too restrictive, and may prevent markings that cause neither
deadlock nor blockage propagation in Petri net models from
being reached if an unreliable resource fails. By taking
advantage of Petri nets’ superior structural characteristics,
this work attempts not only to use NHC in a Petri net
model, but also to propose new concepts that can help
improve it in terms of behavioral permissiveness and
structural complexity while achieving robust control. The
study involves distributions of part type stages in order to
avoid deadlocks and blockage when unreliable resources
fail. As mentioned in [51], almost all the robust supervisory
prevention strategies synthesized by adding control places

VOLUME 9, 2021 100265



U. S. Abubakar et al.: Petri Net-Based Robust Supervisory Control of AMSs

FIGURE 1. AMS with unreliable resources.

are based on the system in which each resource is modelled
as several machines and robots, such as AMSs in [27], not
as a workstation with some buffer spaces. Therefore, it is
necessary to do more research to develop robust supervisory
controllers for the type of AMS modelled as workstations
with buffer spaces, which are implemented by adding control
places to the Petri net model of the AMS. This work aims to
make the following contributions:

1) Proposing a robust supervisory control policy based
on NHC to prevent both deadlocks and blockages in
AMSs using Petri nets, which is more permissive than
NHC, and can permit as many makings as possible and
prevents those that could cause deadlocks or blockages
when unreliable resources fail;

2) Developing a policy that can handle systems with
multiple unreliable resources in which part type
stages require multiple unreliable resources in their
processing routes without using a central buffer, which
NHC alone cannot handle; and

3) Introducing inseparable constraints and neighborhood
cluster concepts in order to improve the permissiveness
of NHC and to reduce the structural complexity of
the controlled Petri net model. The proposed policy
consists of two strategies: single route neighborhood
constraints (SNCs) and siphon-based deadlock control
policy.

The rest of this paper is arranged as follows. Section II
delineates AMSs with unreliable resources and their charac-
teristics. Section III gives the motivations of this study. The
new design of robust supervisory controllers is presented in
Section IV. Section V gives the discussions and comparison
between this work and previous work and Section VI
concludes this study.

II. AMS WITH UNRELIABLE RESOURCES
We use the same AMS as that in [26] and maintain the same
properties of the AMS as an example to present our ideas.
Fig. 1 shows an AMS as a single unit resource allocation
system with nine resources, where r2 and r9 are unreliable
resources. The capacity of the buffer of each resource,

the stages and routes of every part-type are indicated. The
Petri net model of the AMS is an S3PR subclass of Petri
nets. The basics of Petri nets and some definitions, properties
of S3PRs, and basics of elementary siphons can be found in
Section I of a supplementary file of this paper.

Petri nets are used to model AMS in such a way that
only part movements among buffer spaces are controllable.
As a result, only buffer spaces and the movements among
them are modelled in the Petri net model. Therefore, all
resources or workstations are buffer spaces and the Petri net
is called a buffer net [48]. In this case, resource allocation
and deallocation mean allocation and deallocation of buffer
spaces. Fig. 2 depicts the S3PR of the AMS. The system is a
marked buffer net. The initial markings of the idle places are
also indicated. The idle places are implicit places [19] such
that the initial number of tokens in each idle place is equal to
the total capacity of the resources used by the process. The
initial marking of a resource represents its buffer capacity.

Let (Nu,Mu0) = (PA∪P0∪PR,T ,F,Mu0) be the buffer net
of the unreliable AMS with a set of resources PR = PrR ∪ P

u
R

with PrR ∩ P
u
R = ∅, where P

r
R is the set of reliable resources,

PuR is the set of unreliable resources, and PA is the set of
activity or operation places. Let B = {Bi : i = 1, 2, . . . , |PR|}
be the set of buffers associated with every resource type of
the system ri ∈ PR. We assume that each resource of the
system has buffer capacity Bi to accommodate any part type
stage, both its finished units and unfinished units that need
to be processed in the workstation. Let P0 be the set of part
types processed by the system, also known as the set of idle
places in the Petri net model. Each part type pj ∈ P0 has
an n-ordered set of processing stages Pj = {pj1, pj2, . . . , pjn},
where n = |Pj|. Each part type stage, also called part instance,
is represented in the Petri net model as an operation place or
activity place, pjk , representing the k-th processing stage of
part type instance of pj and its set is PA. Let j represent the
whole process of processing a part type pj in the production
route 0j and let the loading/unloading of buffers be Ij/Oj.
Therefore, the route of pj is 0j = 〈R(pj1),R(pj2), . . . ,
R(pj|Pj|)〉. Let R : pjk → ri such that R(pjk ) = ri is
the case where pjk requires an instance of resource ri and
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FIGURE 2. Petri net model of the AMS.

R(pjk ) returns resource required by pjk . Let H (ri) = {pjk ∈
PA|R(pjk ) = ri} be the set of operation places supported by
ri and each pjk ∈ H (ri) is supported by an instance of ri to
execute its operation.

We assume that each resource type is a workstation
composed of buffer spaces that accommodate and hold parts
to be processed, and a server or processor that processes
parts occupying the buffer spaces. A resource failure means
the failure of a processor or any piece of equipment in
the workstation that makes processing of parts impossible.
We assume that the failure of a workstation does not affect its
buffer space. As a result, we can continue to allot its buffer
space provided that it is not full. However, the waiting parts
in the buffer space cannot be processed until the fault in the
workstation or server is fixed. Furthermore, the finished parts
in the workstation can move away and continue along their
respective routes to their next workstation or move out of the
system if they are in their last processing stage. Aworkstation
failure does not damage the part type stage that it is currently
processing when a failure occurs, and a failure occurs only
when its server is operating on parts [26].

III. MOTIVATION
The system in Fig. 1, without a robust controller, is in
deadlock. Moreover, if we design a deadlock control policy
without taking into account the unreliable nature of some
resources in the system, in the event that one of the unreliable
resources fails, the blocking effect as a result of the failure
could propagate throughout the system and could result in a
complete system failure. For instance, to observe such effect,

consider the Petri net model of the AMS in Fig. 2. Firing the
sequence of transitions σ = t21t22t23t24t25t31t26t11t32t27 from
the initial markingM0 leads to the markingM = 3p1+6p2+
6p3 + 3p4 + p11 + p27 + p32 + r1 + r3 + 2r4 + r5 + r8 + r9.
Apparently this is a safe state. However, if r2 fails at M ,
the jobs 1 and 2 that require r2, cannot be completed, and 3
could be blocked from accessing r6 by 1 since 1 is holding
r6 at p11. If t12 fires atM after the failure of r2 and 1 moves
from p11 to p12 after being processed by r6, a new marking
M ′ = 3p1+ 6p2+ 6p3+ 3p4+ p12+ p27+ p32+ r1+ 2r4+
r5 + r6 + r8 + r9 is generated. At M ′, 3 can be completed
since r6 is marked. However, the system enters a deadlock
state when r2 is repaired since 2 is currently holding r2 at
p27 and 1 is holding r3 at p12. When r2 is recovered and
finishes processing 2 at p27, a situation is created in which 2
is requesting r3,R(p28) = r3 which is now being held by 1
and 1 is requesting r2,R(p13) = r2 which is now occupied
by 2. This creates a deadlock state.
As another example, consider a reachable marking M ′′ =

4p1+3p2+4p3+2p4+p22+p25+p26+p27+p31+p34+
p35+p41+r3+r4+r7. The job 3 halts completely, and both
3 and 4 are completely blocked if r2 fails atM ′′. The failure
of r9 brings the job 3 to a standstill, and 1 and 2 will be
blocked. We therefore need a robust supervisor to deal with
such undesired situations. The following are the properties
that such a supervisor should satisfy [26]:

1) A supervisor guarantees continued production of part
types that do not require failed resources, given the
absence of additional resource failures/repairs in the
system.

VOLUME 9, 2021 100267



U. S. Abubakar et al.: Petri Net-Based Robust Supervisory Control of AMSs

2) A supervisor ensures continued production of all part
types that do not require failed resource if an additional
resource failure occurs.

3) A supervisor ensures continued production of all part
types that do not require failed resource if a failed
resource is repaired and put back to operation.

IV. ROBUST LIVENESS-ENFORCING SUPERVISOR
In this section, we present a supervisory control policy that
satisfies the properties stated in Section III. The control
policy is a combination of part types flow constraints
within failure dependent resources (SNC) and siphon-based
deadlock control method. SNC imposes restrictions on the
distribution of part types that require unreliable resources
within their respective failure-dependent resources, while
the siphon-based method is achieved by designing monitors
for unmarked minimal siphons found using a mixed integer
programming (MIP) method to prevent deadlock in the
remaining parts of the system that do not require unreliable
resources. A set of inequality constraints are derived based
on SNC and added to the unreliable Petri net model in the
form of control places. The Petri net model obtained as a
result of adding the constraints to the original Petri net model
of the AMS is called a constrained or reduced Petri net
model of the original one. Note that in this paper we use
the terms constrained Petri net model and reduced Petri net
model interchangeably. Though the policies of this paper do
not require the use of a reachability graph, however, some
concepts related to it are helpful to develop the techniques to
be used in the control policy. These concepts can be found in
Section II of the supplementary file of this paper.

Let the set of legal markings in a Petri net model (Nu,Mu0)
of a system with a set of unreliable resources PuR beML and
the set of deadlock markings be MB. Designing monitors
as control places to prevent deadlock markings in MB from
being reached and allow all markings in ML of (Nu,Mu0)
to be reached cannot guarantee a robust supervisory control.
This is because there may exist markings inML that can lead
to deadlock or blockage, if an unreliable resource fails. Let
the set of the markings that can lead to deadlock or blockage,
if an unreliable resource fails, be denoted byMF . For robust
control, since MF ⊆ ML and they can lead to deadlock or
blockage if unreliable resources in the system fail, the set of
legal markings ML should not contain such markings. Let
MLu = ML \MF be the set of robust legal markings of
the Petri net model of a system with unreliable resources
(Nu,Mu0), and MDu = MB ∪ MF be the set of illegal
markings of its Petri net model.

A. SINGLE-ROUTE NEIGHBORHOOD OF
FAILURE-DEPENDENT RESOURCES
For single-route neighborhood, we consider one route at a
time and construct the neighborhood sets associated with
every unreliable resource along that route.We repeat the same
procedure for all the routes that contain unreliable resources.
After generating single-route neighborhood for every route

with unreliable resources, we then construct SNC in the form
of inequalities to impose restrictions on the parts flow along
these routes. We first compute SNC for every single route.
After that we consider routes that overlap, i.e., routes that
have shared failure-dependent resources (the definition of a
failure-dependent resource is given later in this section) and
construct constraints to resolve conflicts between the routes.
Since resource failure is a stochastic event, our objective
is to derive constraints to control the flows of parts that
require unreliable resources without suppressing too many
legal markings that does not lead to deadlock or blockage in
a system if a random failure of an unreliable resource occurs.
Definition 1: Let (Nu,Mu0) = (PA ∪ P0 ∪ PR,T ,F)

be a marked buffer net model of an AMS with a set of
unreliable resources PuR. Let ri ∈ PuR. rd ∈ PR is said to
be failure-dependent on ri if every part that enters the buffer
space of rd requires future processing on ri. For ri ∈ PuR,
let Rf (ri) be the set of resource failure-dependent on ri. Then
Rf (ri) = {rd |rd ∈ PR,∀pjk ∈ H (rd ), ∃pj(k+c) ∈ H (ri), c ≥
0} is the set of failure-dependent resources on ri. ri ∈ PuR
is apparently failure-dependent on itself, ri ∈ Rf (ri). For
rv, rw ∈ PuR and rv 6= rw,Rf (rv) ∩ Rf (rw) = ∅. We denote by
Rf = ∪ri∈PuRRf (ri) the set of failure-dependent resources and
by R̃f = PR \ Rf the set of non-failure-dependent resources.

The AMS in Fig. 1 has two unreliable resources, PuR =
{r2, r9}. Whenever r1 appears in a route, r2 appears later.
This means that any part type processed by r1 will require
future processing on r2. This makes r1 a failure-dependent
resource on r2. Therefore, Rf (r2) = {r1, r2} since r2 is
failure-dependent on itself. Likewise any part type processed
by r7 and r8 will require future service of r9. Accordingly,
Rf (r9) = {r7, r8, r9}. Thus, we have Rf = {r1, r2, r7, r8, r9}.
For the system of Fig. 1, we have R̃f = {r3, r4, r5, r6} with
Rf ∩ R̃f = ∅.
Definition 2: The single-route neighborhood of a failure-

dependent resource rd ∈ Rf (ri) in a given route 0j is the set
of part type stages denoted by N d

j that require the service
of rd at some point in their processing stages without any
intermediate failure-dependent resource of Rf (ri)

Recall that in the Petri net model of Fig. 2, the part type
stages are represented by the operation places. In other words,
for a given route0j,N d

j is the set of operation places currently
holding rd , Hj(rd ) and those holding non-failure dependent
resources that precede rd in the route without any intervening
failure-dependent resource. Therefore, N d

j = Hj(rd ) ∪
{pjk |∃c > 0 with pj(k+c) ∈ Hj(rd ) ∧ ∀b ∈ [0, c),R(pj(k+b)) /∈
Rf (rd )}. For rv, rw ∈ Rf and rv 6= rw,N v

j ∩ Nw
j = ∅. Let

Nj = {N d
j |rd ∈ Rf } be the set of single-route neighborhoods

of failure-dependent resources in the route 0j and N =

{Nj|rd ∈ Rf } be the set of all single-route neighborhoods
of failure-dependent resources of the Petri net model of an
unreliable AMS.

In the case of the Petri net model of Fig. 2, there are
three routes whose operation places require failure-dependent
resources. They are 01, 02 and 03. N associated with
the failure-dependent resources in these routes are:
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01 : N1 = {N 1
1 ,N

2
1 }; 02 : N2 = {N 1

2 ,N
2
2 }, and

03 : N3 = {N 7
3 ,N

8
3 ,N

9
3 }. Their respective single-route

neighborhoods are: N 1
1 = {p14}, N

2
1 = {p11, p12, p13, p15},

N 1
2 = {p22, p23, p24, p25, p26}, N

2
2 = {p21, p27} N

7
3 =

{p32}, N 8
3 = {p31}, N

9
3 = {p33, p34, p35}, with N 1

1 ∩ N 2
1 ∩

N 1
2 ∩N

2
2 ∩N

7
3 ∩N

8
3 ∩N

9
3 = ∅.

Note that our definition of a failure-dependent resource
is the same as that of [26]. However, the formula-
tion of single-route neighborhood N is different from
the neighborhood in [26]. We split the neighborhoods
according to the parts processing routes that give rise to
N . The advantage of breaking up the neighborhoods of
failure-dependent resources into their respective routes is
to allow constraints formulation based on production lines.
This can help us ensure that no markings which do not
cause deadlock/blockage, with or without failure events, are
prevented from being reached.

We now place restrictions on the number of part type stages
that are processed and represented by the operation places,
and also resolve conflicts between routes whose operation
places share failure-dependent resources. This is necessary
if we want to avoid blockage of processing parts that do not
require the unreliable resources in the event of unreliable
resources failure. Limiting the number of part instances can
give a system enough space to move part instances into the
buffer spaces of their associated failure-dependent resources
until the failed resource is recovered. To do this, we introduce
SNC denoted by Ñ d

j . We construct the constraints in the form
of inequality Ñ d

j = M (N d
j ) ≤ Bd , where M (N d

j ) is the
marking of N d

j that denotes the amount of part instances
(both finished and unfinished instances) in 0j allowed in the
neighborhood of the failure-dependent resource rd , and Bd is
the buffer capacity of rd .

B. SNCs
To derive SNCs our approach is first pathwise. We take one
route at time and generate the constraints. However, this will
lead to constructing a large number of constraints and some of
them may end up being redundant. To account for this issue,
we need to reduce the number of constraints by dropping
redundant constraints.
Definition 3: Let N ,N ′ ⊆ PA. Let Ñ = N ≤ b and

Ñ ′ = N ′ ≤ b, with b ∈ N+. Constraint Ñ is said to be
redundant if Ñ ⊆ Ñ ′.
Also, an SNC Ñ constructed from a singleton (1-tuple) set

of neighborhood N , i.e., |N | = 1 in a processing route will
be considered to be redundant.
Definition 4: Let P,P ′,P ′′ ⊆ PA. Constraints

M (P) < b, M (P ′) ≤ b, and M (P ′′) < b are said
to be inseparably implemented in the Petri net model if
P ′ ∪ P ′′ = P .
Theorem 1: Inseparable constraints can be implemented in

an S3PR class of Petri net model with one control place.
The proof of Theorem 1 is included in Section III of the

supplementary file.

Definition 5: Given a series of failure-dependent resources
positioned next to one another rd1, rd2, . . . , rd(n−1), rdn, in a
route 0j, such that rd1, rd2, . . . , rd(n−1) ∈ Rf ∩ PrR and
rdn ∈ Rf ∩ (PrR or PuR), where n ≥ 2. Let their respective
neighborhoods be N d1

j ,N d2
j . . . ,N d(n−1)

j , N dn
j such that

pjk ∈ N d1
j : R(pjk ) = rd1, pj(k+1) ∈ N d2

j : R(pj(k+1)) =

rd2,. . . , pj(k+n−2) ∈ N d(n−1)
j : R(pj(k+n−2)) = rd(n−1),

pj(k+n−1) ∈ N dn
j : R(pj(k+n−1)) = rdn. The set N c

j =

{N d1
j , N d2

j , . . . ,N d(n−1)
j ,N dn

j } is said to be the cluster set
of the sets of neighborhood of the series of failure-dependent
resources in the route 0j if |N d1

j | > 1. Sets of neighborhoods
in a set of neighborhoods clusterN c

j can be treated as one unit
and their buffer capacities can be combined. Let the combined
buffer capacities be Bc = Bd1 + Bd2 + . . .+ Bd(n−1) + Bdn.
The cluster N c

j ends with either ri ∈ Rf or N i
j belonging

to ri ∈ Rf ∩ PuR. If N
dn
j belongs to rdn ∈ Rf ∩ PuR, the cluster

N c
j is said to be ended byN i

j which belongs to an unreliable
resource ri ∈ PuR that is failure-dependent upon itself. On the
other hand, ifN dn

j belongs to rdn ∈ Rf ∩PrR, the clusterN
c
j is

said to be ended by a non-failure-dependent resource ri ∈ R̃f .
ri ∈ R̃f is also a reliable resource ri ∈ PrR.
For convenience, we shall call any constraint that makes

another constraint redundant its essential constraint. For the
sake of computational and structural simplicity, we shall
ignore any redundant constraint since its role in the system
can be covered by its essential constraint.

Failure-dependent resources contained in the same
resource circuits are also taken into account when deriving
the constraints. We compute the set of resource circuits in
Rf since we may have some element in Rf routes forming
resource circuits.
Definition 6: A directed graph G of an S3PR Petri net

that contains only resource places and transitions is called a
resource circuit.

Algorithm 1 in Section IV of the supplementary file
describes how to compute a directed graph (digraph) within
Rf in a route of an S3PR Petri net model.
Definition 7: Let rv, rw ∈ Rf , rv, rw are said to be

contained in the same resource circuit Cv,w of G in an S3PR if
there is a directed path from rv to rw and a directed path from
rw to rv
01 is the only route that has resource circuit

C1,21 = r1, t14, r2, t15, r1, and r1 and r2 are contained in C1,21 .
It is easy to verify that r2 is reachable from r1 through t14 and
r1 is reachable from r2 through t15. We have p14 ∈ H (r1)
with R(p15) = r2 and p13 ∈ H (r2) with R(p14) = r1.
Furthermore, {p13, p15} ⊆ N 2

1 and {p14} ⊆ N 1
1 . As a result,

any fair of failure-dependent resources that are contained
in the same resource circuit should not be capacitated at
the same time. For rv, rw ∈ Rf that are part of a resource
circuit Cv,wj in a route 0j, the following constraint must be
imposed.

Ñ v,w
j = M (N v

j )+M (Nw
j ) < Bw + Bw
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Computing resource circuits is like computing strongly
connected components in a digraph. There are several algo-
rithms for finding the strongly connected components that
require only one depth-first search (DFS) traversal in linear
time complexity [54], such as the Tarjan Algorithm [55].

1) SNCs IN 01
There are twoN s in this route,N 1

1 andN 2
1 ; therefore we have

the following SNCs:

Ñ 2
1 = M (N 2

1 ) ≤ B2
Ñ 1

1 = M (N 1
1 ) ≤ B1

We have Ñ 2
1 since r2 ∈ Rf , r2 ∈ PuR and the neighborhood

N 2
1 is due to r2 ∈ PuR. If r2 fails while Ñ

2
1 is over-capacitated,

there is no buffer space of any related failure-dependent
resource in the neighborhoodN 2

1 to keep the part type stage,
pjk ∈ N 2

1 , temporarily if M (N 2
1 ) > B2. This could cause

blockage and deadlock. Therefore, any N d
j that belongs to

ri ∈ PuR should not be over-capacitated.
We ignore Ñ 1

1 = M (N 1
1 ) ≤ B1 since N 1

1 is a singleton N
and therefore, it is a redundant constraint.

As a result of C1,21 in the route, there should be a constraint
for the pair of neighborhoods of the failure-dependent
resources r1 and r2 along 01 as follows:

Ñ 1,2
1 = M (N 1

1 )+M (N 2
1 ) < B1 + B2

Constraint Ñ 1,2
1 must hold to guarantee that at most one

neighborhood of N 1
1 and N 2

1 is capacitated at a time to
prevent deadlocks.

2) SNCs IN 02
This route hasN 1

2 andN 2
2 . We have r1 ∈ Rf (r2) but r1 ∈ PrR,

which makes r1 not subject to failure and N 1
2 and N 2

2 are
not contained in a resource-circuit. Furthermore, p26 ∈ N 1

2 is
due to r1 ∈ Rf ∩ PrR and p27 ∈ N 2

2 is due to r2 ∈ Rf ∩ PuR.
R(p26) = (r1) and the next part type stage p27 requires r2,
i.e., R(p27) = r2. Therefore, N 1

2 and N 2
2 are two adjacent

single-route neighborhoods that form a neighborhood cluster
N 1,2

2 . Allowing parts instances up to the capacity of B1 + B2
in theN 1

2 will not result into blockage or deadlock if r2 fails.
The part instances can all be absorbed by the buffer spaces B1
and B2 pending repair/recovery of r2. Consequently, we have:

Ñ 1
2 = M (N 1

2 )+M (N 2
2 ) ≤ B1 + B2

Ñ 2
2 = M (N 2

2 ) ≤ B2

SNC for the pair of the adjacent neighborhoods, N 1
2 and

N 2
2 , is as follows:

Ñ 1,2
2 = M (N 1

2 )+M (N 2
2 ) ≤ B1 + B2

Ñ 1,2
2 is an essential constraint of both Ñ 1

2 and Ñ 2
2 , hence

making Ñ 2
2 and Ñ 1

2 redundant. Consequently, the only SNC
in 02 that should be considered is Ñ 1,2

2 .

3) SNCs IN 03
For 03 the following constraints must hold to ensure that
no neighborhood of failure-dependent resource is over-
capacitated:

Ñ 7
3 = M (N 7

3 ) ≤ B7
Ñ 8

3 = M (N 8
3 ) ≤ B8

Ñ 9
3 = M (N 9

3 ) ≤ B9

However, Ñ 7
3 and Ñ 8

3 are both singletons, and thus
redundant when implementing the SNCs in the Petri net
model.

4) SNCs FOR ROUTES WITH SHARED FAILURE-DEPENDENT
RESOURCES
Definition 8: [56] A resource place ri ∈ PR is called a

shared resource place if |H (ri)| ≥ 2 and a non-shared one if
|H (ri)| = 1.
Let the set of failure-dependent resources shared by

multiple routes be Sf. We now consider SNCs due to shared
failure-dependent resources and resource circuits as a result
of multiple routes. There are only two routes in Fig. 1 whose
sets of SNCs share the same failure-dependent resources and
mutual flow exist between them. These routes are 01 and 02.
N 1

1 and N 1
2 are neighborhoods of r1 and N 2

1 and N 2
2 are

neighborhoods of r2. To find resource circuits, we construct a
digraph by considering only failure-dependent resources and
transitions as sets of vertices. To compute resource circuit for
multiple paths that have shared failure-dependent resources,
first let the union of N 1

1 and N 1
2 be denoted by N 1

1,2 and
that of N 2

1 and N 2
2 by N 2

1,2. Algorithm 2 in Section V of the
supplementary file describes how to compute a directed graph
within Rf in multiple routes of an S3PR Petri net model.

It can be verified that there is a path from r1 to r2
through t14 and a path from r2 to r1 through t27. Therefore,
the multi-path (01 and 02) resource circuit that contains r1
and r2 is C1,21,2 = r1, t14, r2, t27, r1. Since we have {p14, p26} ⊆
N 1

12 and {p13, p27} ⊆ N 2
1,2, we have the following constraint:

Ñ 1,2
1,2 = M (N 1

1 )+M (N 2
1 )+M (N 1

2 )+M (N 2
2 ) < B1 + B2

Given sets of single-route neighborhoods that belong to
failure-dependent resources contained in the same resource
circuits as a result of their overlapping routes, we must
generate a constraint to ensure that the neighborhoods are
never capacitated.

Also, N 2
1 and N 2

2 compete for r2 with r2 ∈ PuR. In order
to avoid over-capacitating the neighborhoods of r2 ∈ PuR,
the following constraint has to be enforced.

Ñ 2
1,2 = M (N 2

1 )+M (N 2
2 ) ≤ B1

For any sets of single-route neighborhoods that have a
shared failure-dependent resource because of their overlap-
ping routes, we must compute a constraint to guarantee that
the neighborhoods are never over-capacitated. In summary,
these are the constraints that must be imposed on the
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TABLE 1. Control places computed for the SNCs.

distribution of part types that require unreliable resource in
their production process.

Ñ 2
1 = M (N 2

1 ) ≤ B2
Ñ 1,2

1 = M (N 1
1 )+M (N 2

1 ) < B1 + B2

Ñ 1,2
2 = M (N 1

2 )+M (N 2
2 ) ≤ B1 + B2

Ñ 9
3 = M (N 9

3 ) ≤ B9
Ñ 2

1,2 = M (N 2
1 )+M (N 2

2 ) ≤ B2

Ñ 1,2
1,2 = M (N 1

1 )+M (N 2
1 )+M (N 1

2 )+M (N 2
2 ) < B1 + B2

We can still get rid of the remaining redundant constraints
from the results above. It is obvious that Ñ 2

1 is a redundant
constraint due to Ñ 2

1,2; likewise Ñ
1,2
1 is redundant as a result

of Ñ 1,2
1,2 being its essential constraint. Finally, we have the

following set of constraints to implement in the Petri net
model:

Ñ 1,2
2 = M (N 1

2 )+M (N 2
2 ) ≤ B1 + B2

Ñ 9
3 = M (N 9

3 ) ≤ B9
Ñ 2

1,2 = M (N 2
1 )+M (N 2

2 ) ≤ B2

Ñ 1,2
1,2 = M (N 1

1 )+M (N 2
1 )+M (N 1

2 )+M (N 2
2 ) < B1 + B2

By Definition 4, Ñ 1,2
2 , Ñ 1,2

1 and Ñ 1,2
1,2 are inseparable

constraints and, by Theorem 1, they can be implemented
in the Petri net model by using (11) in Section III of the
supplementary file.

If we let the inseparable constraints of Ñ 1,2
1 , Ñ 1,2

2 and
Ñ 1,2

1,2 be Ñ ?
1,2, then we have the following three constraints,

Ñ ?
1,2, Ñ 2

1,2 and Ñ 9
3 to be implemented using control

places. The summary of the constraints with their initial
markings, presets and postsets transitions is given in Table 1.
Algorithm 3 of Section VI of the supplementary file describes
the steps for computing the SNCs.
Lemma 1: Given a production route of an S3PR class of

Petri net model of a single-unit resource allocation system
with a set of unreliable resources PuR, SNCs can guarantee
that no marking in MLu is blocked and all markings in MF
are disallowed in the neighborhoods of ri ∈ Rf .

Proof: We use the buffer spaces of the failure-dependent
resources to keep part type temporarily before the failed
resources are repaired. For any 0j, we need to generate
maximum of three types of SNCs for the neighborhood of
failure-dependent resources: Ñ d

j , Ñ c
j and Ñ v,w

j . We can
construct, for any neighborhood, a constraint that allows it
to accommodate part instances not exceeding their combined
buffers capacities. For any lone and isolated neighborhood,
we can generate Ñ d

j ≤ Bd to allow part instances in the

neighborhood of N d
j , which is its maximum buffer capacity

that it can accommodate when there is a failure without
causing blockage. Likewise, for any neighborhood cluster
N c
j , we have Ñ

c
j ≤ Bc. Any additional part instance to their

neighborhood may result in blockage when the unreliable
resources with which the neighborhoods are associated fail.
Consider a case in which a part type stage pjk holds a non-

failure-dependent resource ra ∈ R̃f ∩PrR, i.e., R(pjk ) = ra and
pjk+1 requires an unreliable resource R(pjk+1) = rb ∈ Rf ∩
PuR. Suppose that rb is the only unreliable resource in the route
0j. This means that pjk , pjk+1 ∈ N b

j . Suppose that we allow
part type stages beyond the capacity of Bb, say Bb + 1. If rb
fails, the additional one part type stage will have no buffer
space to be kept in temporarily. We have to allow it to stay
in the buffer space of ra, Ba, even after ra finishes processing
it, pending the repair/recovery of rb. Thus, it could block any
part type stage that is not in 0j from accessing ra.
Ñ v,w
j is for neighborhoods that belong to a pair

failure-dependent resources contained in the same resource
circuit. The constraints must ensure that Cs are not
capacitated, since capacitated Cs create deadlock. Thus,
Ñ v,w
j < Bv + Bw.
Lemma 2: Given a number of production routes that have

shared rd ∈ Rf in an S3PR class of Petri net model of a
single-unit resource allocation system, SNCs can guarantee
that no marking M ∈ MLu is blocked and all markings in
MF are disallowed in the neighborhoods of ri ∈ Rf .

Proof: The same arguments as in Lemma 1 can be made
here. For routes that have shared rd ∈ Rf we need to generate
two SNCs: Ñ d

z and Ñ v,w
z . Ñ d

z is for rd ∈ Rf that is shared
by a number of routes. In order to avoid over-capacitating
it, we need Ñ d

z ≤ Bd . Ñ v,w
z is for rv, rw ∈ Rf that are

contained in the same resource circuit. The constraints must
ensure that Cs are not capacitated to avoid deadlocks. Hence,
Ñ v,w
z < Bv + Bw.
Theorem 2: SNCs are robust supervisory control to failure

of PuR of an S3PR class of Petri net model of a single-unit
resource allocation system.

Proof: To have a robust control for an S3PR of
a single-unit resource allocation system with PuR, all the
neighborhoods of failure-dependent resources must be free
of deadlock and blockage, whether there is a failure or not.
Additionally, there should be no deadlock or blockage when
an unreliable resource is recovered after breaking down.
According to Lemmas 1 and 2, for the set of unreliable
resources PuR, we need to construct at most five types of
SNCs to guarantee deadlock/blockage-free operation in the
neighborhoods of ri ∈ Rf . These SNCs are: Ñ d

j , Ñ
c
j and

Ñ v,w
j for a single route and Ñ d

z and Ñ v,w
z for routes with

shared resources. Since each of these constraints can ensure
that no deadlock or blockage occurs within the neighborhood
of failure-dependent resources whether there is a resource
failure or not and after a failed resource is recovered, we can
conclude that SNCs are robust supervisory control to failure
of PuR of an S3PR class of a single-unit resource allocation
system.
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FIGURE 3. Reduced PN model of Fig. 2.

Theorem 3: SNCs are robust supervisory control to failure
of PuR of an S3PR class of Petri net model of a single-unit
resource allocation system with part types requiring multiple
unreliable resources in their processing routes.

Proof: Let rv, rw ∈ PuR, v 6= w, such that a job type m
requires both rv and rw on its production route 0m. Suppose
that the job m requires rv first and then rw. We have R(pmb) =
rv and R(pm(b+c)) = rw, where pmb and pm(b+c) are part
type stages of m and b, c ≥ 1. Thanks to rv, rw ∈ PuR,
it holds rw, rv ∈ Rf . Thus, we have Ñ v

m = M (N v
m) ≤ Bv

and Ñw
m = M (Nw

m ) ≤ Bw as the SNCs for rw and rv
on 0m respectively. Therefore, we can use SNCs to handle
multiple unreliable resources in a route. Following the same
procedure, we can, if there is n unreliable resources in any
production route, construct n sets of neighborhoods with
their respective constraints to ensure deadlock/blockage-free
operations in the route whether there are failures of unreliable
resources or not. Thus, SNCs can be used to handle multiple
unreliable resources in a route.
Section VI of the supplementary file presents

Algorithm 3 that describes the steps for computing SNCs and
its related theorems and their proofs.

C. SNCs PETRI NET IMPLEMENTATION
Table 1 summarizes the constraints with their initial mark-
ings, presets and postsets transitions and Fig. 3 depicts the

constrained Petri net model. Let the reduced Petri net model
with SNCs be (NÑ ,MÑ 0). This reduced Petri net model is
not deadlock free since SNCs only control the distribution of
part instances within failure-dependent resource so that the
system is kept free of deadlock and blockage if unreliable
resources go down. Therefore, we need a second deadlock
control policy to ensure that the remaining parts of the system
that do not require the unreliable resources do not enter
deadlock states.

D. DESIGNING MONITORS FOR EMPTIABLE SIPHONS
The original buffer net of the plant model (Nu,Mu0)
in Fig. 1 has 48,108 states, 31,544 of which are in live-zone
(LZ) and 16,564 are in deadlock-zone (DZ). More detailed
explanations on LZ and DZ could be found in Section II of
the supplementary file. The reduced Petri net model of the
system (NÑ ,MÑ 0) has 5,108 states, 4,928 of which are live
states and 180 are deadlock states. Since we have established
the robustness of SNC in tackling deadlock/blockage within
Rf no matter whether an unreliable resource fails or not.
Thus, these 180 deadlock states are as result of lack of
supervisory control within R̃f . Therefore, we designmonitors
in the form of control places to prevent any minimal siphon
from being unmarked in the constraint Petri net model G =
(NÑ ,MÑ 0). Basic definitions of siphon and trap can be
found in Section I of the supplementary file. Information
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about strictly minimum, elementary and dependent siphons
can also be found in Section I of the supplementary
file.
Property 1 [60]: A Petri net is deadlock-free if for

each minimal siphon S, either it contains a marked trap or
F(S) > 0, where F(S) is a quantity denoted by F(S) =
min{M (S)|M = M0 + [N ]Y ,M ,Y ≥ 0}, where M and Y
are real numbers.
Property 2 [60]: F(S) > 0 for any siphon that is

invariant-controlled.
Theorem 4 [61]: S is controlled if M0(S) >∑n
i=1 aiM0(Si)−

∑n
i=1 ai, where ai ≥ 0.

We adopt the method proposed in [61]. We first apply the
MIP-based deadlock detection approach developed in [60] to
the constrained Petri net model to find a maximal unmarked
siphon S∗ that has deadlocks in it. We derive a minimal
unmarked siphon S1 from S∗. We check the dependency of S1
with respect to other siphons obtained, by either Theorem 4 or
F(S) > 0 (Property 1). If the controllability of S1 is
guaranteed, we do not add a monitor for it; otherwise we
add a monitor Vs1 according Proposition 1 in Section I of the
supplementary file, and we check for deadlocks again in the
plant. We find an unmarked maximal siphon S∗ and derive
a minimal unmarked siphon S2 and we repeat the procedure
again. Algorithm 4 in Section VII of the supplementary file
describes the siphon control method.

The MIP-based in [60] introduces indicators:
vp = 1{p /∈ S} and zt = 1{t /∈ S•}. Obviously, any p with
vp = 1 and any t with zt = 1 will be removed from the
siphons. Since S is a siphon, vp = 0 ⇒ zt = 0,∀t ∈ p• and
zt = 1⇒ vp = 1,∀p ∈• t , which lead to

zt ≥
∑
p∈•t

vp − |•t| + 1, ∀t ∈ T (1)

vp ≥ zt , ∀(t, p) ∈ F (2)

vp, zt ∈ {0, 1} (3)

For a structurally bounded net, we have

vp ≥ M (p)/SB(p), ∀p ∈ P (4)

where structurally bound (SB) is defined as SB(p) =
max{M (S)|M = M0 + [N ]Y ,M ,Y ≥ 0}. The following
MIP can be used to determine the maximal siphon unmarked
at a given marking M if there exist siphons unmarked if
GMIP(M ) < |P|:

GMIP = Minimize
∑
p∈P

vp

subject to constraints (1)–(4) and

M = M0 + [N ]Y , M ≥ 0, Y ≥ 0

If there is no emptiable siphons at M in a Petri net model
GMIP(M ) = |P| is true.
If we apply Algorithm 3 to the reduced Petri net model

G = (NÑ ,MÑ 0), we find the maximal unmarked siphon
S∗ = {p11, p25, p34, p42, r5, r6}. It can be verified that

S∗ is not a dependent siphon and it is a minimal siphon
S∗ = S1 = {p11, p25, p34, p42, r5, r6}. We have [S1] =
{p24, p33}, B1

1 = {p21, p22, p23} and B2
1 = {p31, p32}.

Therefore, B1 = B1
1 ∪ B2

1 = {p21, p22, p23, p31, p32}, and
Vs1 +p21+p22+p23+p24+p31+p32+p33 is a P-invariant
withM0(Vs1 ) = M0(S1)− 1 = 1. The set of input and output
transitions of Vs1 are •Vs1 = {t25, t34} and V

•
s1 = {t21, t31},

respectively.
If Vs1 is added to (NÑ ,MÑ 0), the resultant net system

denoted by G = (N ∗c ,M
∗
c ). We can easily see that GMIP =

36 = |P|. This implies that there is no emptiable siphon in
G. Thus, the net system is live. The addition of the monitor
according Proposition 1 in Section I of the supplementary
file. is based on the method proposed in [8]. The method
is conservative since it requires that all output arcs of
the monitors are added to the source transitions of the
original Petri net model (the reduced Petri net model in
this case). For example, the resultant net system (N ∗c ,M

∗
c )

has only 1,918 reachable markings if VS1 is added with
the output arcs connected to t21 and t31. To reduce such
restriction, we use an algorithm proposed in [61], which
can be found in Section VIII of the supplementary file
as Algorithm 5.

First, we remove VS1 including its related arcs, and
supposedly add VS1 in such a way that Vs1+p22+p23+p24+
p31+p32+p33 is a P-invariant. This implies that p21 is deleted
from B1, hence, BNEW

1 = {p22, p23, p31, p32}. The resultant
net system is denoted by G = (N ∗c1,M

∗

c1). We can easily
verify that GMIP = 36, implying that the system contains
no emptiable siphon. We repeat the same procedure for the
elements of BNEW

1 , and each element removed we find that
GMIP = 36 until BNEW

1 = ∅. This implies that the final
P-invariant obtained Vs1 + p24 + p33 can prevent S1 from
being emptied, since there is no more emptiable siphon in
the final net system denoted by G = (Nc,Mc). The set of
input and output transitions of Vs1 are •Vs1 = {t25, t34} and
V •s1 = {t24, t33}, respectively. The final controlled Petri net
model obtained (Nc,Mc) has 4,928 reachable live markings,
implying that all the live states in the constrained Petri net
model are reachable.

In one of our assumptions in Section 2, we state that an
unreliable ru resource can only fail while it is operating
on a part type stage pjk . If the failure of the unreliable
resource occurs before it finishes processing the part type
stage, the part type stage remains in the buffer space of
the unreliable resource until the resource is recovered. After
its recovery, the unreliable resource finishes processing the
part type stage before the part type stage moves to the next
resource or workstation, or moves out of the system if it
is at its last processing stage. In the Petri net model, this
situation can be modelled by disenabling the output transition
tj,k+1 of pjk . Since disenabling tj,k+1 prevents it from firing
and releasing tokens into pj,k+1 and ru. Hence, token(s) in
pj,k remain there until the tj,k+1 is enabled, which means
recovery of ru. This means that tj,k becomes a dead transition
when ru fails, which implies a deadlock in the system. Since
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FIGURE 4. Controlled Petri net model.

we have a robust supervisory controller in the system, this
deadlock condition does not affect the other parts of the
system that do not require ru. Any part type stage that
requires the failed unreliable resource ru later in its processing
stage will be stored in a buffer space of resources failure
dependent on ru to prevent blockage in the other parts of the
system.

Table 2 shows the behaviors of the Petri net of the system
in Fig. 1 under different unreliable resources conditions.
We carried out the simulation using integrated net analyzer
(INA), assuming that the set of transitions Tc = {t|t ∈
p•j,k , pj,k ∈ H (ru)} is a set of controllable transitions.
Therefore, any t ∈ Tc is a controllable transition and
Tu = T \ Tc is set of uncontrollable transitions.

Theorem 3 proves the robustness of SNC and its cor-
rectness. The correctness of the second method (let it
be 4sip) of designing controllers for siphons that can be
unmarked at a given marking M has been established in
the literature [15], [60], [61], [63], [64], some of which
can be found in Section II of the supplementary file
of this paper. This leads us to the correctness of our
proposed policy. Let the policy that combines SNC and
4sip be 9. Therefore, 9 = SNC ∧ 4sip can guarantee
deadlock/blockage-free operation in an S3PR Petri net model
of an AMSwith unreliable resources of the type considered in
this work.

TABLE 2. Number of markings reachable under different unreliable
resources conditions.

V. COMPARISON WITH PREVIOUS STUDIES
Note that the work in [26] is based on the automata and it
is a deadlock avoidance policy implemented online. Both
NHCs andBanker’s algorithm or SSL are implemented online
in [26]. In this work, we implement SNCs and control
for emptiable siphon offline in the Petri net model. Both
NHCs and SNCs are used for controlling flow of part types
that require the services of unreliable resources within their
respective failure-dependent resources. In light of these, our
bases for comparison between these two policies will be the
neighborhood policy and single-route neighborhood policy.
Since NHCs are also constraints used to restrict the flow of
part types within failure-dependent resources, they can also
be implemented in the Petri net framework and the resulting
Petri net model will be a unified one. Implementing NHCs in
the Petri net model off-line requires connecting control places
and their related arcs to the operation places that require
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TABLE 3. Control places computed for the NHCs.

failure-dependent resources according to the constraints. For
the purpose of comparison, Table 3 depicts how NHCs are
implemented offline in the Petri net model of Fig. 2.

We have verified that if NHCs are used in the system
and implemented in the Petri net model using control places,
the resulting number of reachable states will be 2,234. Among
them, 24 are deadlock states while 2,208 are live states.
Therefore, the maximum number of legal states is 2,208. This
shows that SNC policy with 5,108 states is more permissive
than NHC policy. SNC policy allows processing of only one
part type stage of 1 at a time, two part type stages of 2 at a
time, three part type stages of 3, and 1 and part type stages
of 2 cannot be processed concurrently. On the other hand,
NHC policy processes only a part type stage of either 1 or 2
at a time.

In terms of computational complexity, both NHC policy
and SNC policy are of polynomial time. However, with
large-scale systems the computational overhead of the
neighborhood constraints may increase significantly. This
may also increase the runtime cost, particularly if imple-
mented in online mode due to memory requirement. Offline
implementation might be a good idea to tackle possible
increase in the computational complexity, if the offline
computational cost is not a critical issue, the indicators to
evaluate the control strategy are the generality of considered
systems and the behavioral permissiveness of the resulting
controlled systems. On the other hand, if we consider
structural complexity, SNC policy requires less control places
than NHC one as it requires less constraints, especially
using Petri net models because of their superior structural
properties that allow us to drop redundant constraints
compared to an automaton. The concept of inseparable
constraints for SNC policy gives us another advantage to
derive less constraints. For example, consider the number
of control places required to add to the Petri net model
to implement SNCs. We need to add only three control
places to the Petri net model, while implementing NHC
policy requires four control places. Additionally, inseparable
constraints and clustering of neighborhoods allow us to
achieve more admissible number of states in neighborhoods
that have mutual flow. Table 4 summarizes the comparison
between SNC policy and NHC policy.

The fundamental difference between SNC policy in this
study and NHC policy [26] is the number of part types
allowed in neighborhoods that form strongly connected
components or failure-dependent resources that are contained
the same resource transition circuits. For instance, consider

TABLE 4. Comparison between NHC policy and SNC policy as
implemented in the Petri net model.

the AMS in Fig. 1. NHCs do not allowmarkings such asM =
4p1+5p2+7p3+4p4+p26+p27+r3+2r4+r5+2r6+r7+
r8 + r9, which is admissible and a legal marking under SNC
policy. In fact, NHC policy suppresses any marking that leads
to markings at which both p26 and p21 are marked or both
p26 and p27 are marked at the same time. As a result of this
suppression, a significant number ofmarkings are disallowed,
which do not result in any deadlock or create blocking effects
under failure conditions or lack thereof. Moreover, NHCs
alone, unlike SNCs, cannot be used for systems in which part
types require multiple unreliable resources in their processing
routes. Central buffers have to be used in [32] in order to apply
NHCs to handle multiple unreliable resources in a production
route of an AMS. However, SNCs can be used directly,
without using central buffers, to tackle multiple unreliable
resources failure in one route.

The study in [43] combines automata and Petri nets to
model, analyze and develop a robust supervisory control
for AMSs using a buffer net constraint and generalized
neighborhood constraints. The buffer net constraint is con-
structed using Petri net model. The generalized neighborhood
constraint policy is similar to NHC policy in [26] and
SNC policy. However, like NHC policy, the generalized
neighborhood constraint is established in the framework of
automata as an online deadlock avoidance policy.

The studies in [27], [38]–[42], [45], [46], [48]–[50] utilize
Petri nets formalism to develop robust supervisory control
policies for AMSs. The works in [48] and [49] use DES and
Petri net model to design robust control for AMSs deadlock
avoidance policies. The policy in [48] is based on a modified
banker’s algorithm and the method is more permissive than
the methods in [26] and [31]. However, the policy in [48] is
for a class of AMSs with a single unreliable resource. The
method in [49] requires additional buffers as special type of
resources to keep part type temporarily to avoid blockage
if an unreliable resource fails. This increases the structural
complexity of the supervisor.

The policies in [27], [38]–[42], [45], [50] are robust
deadlock prevention methods using Petri nets. These policies
require addition of recovery subnets to the Petri net models
of AMSs with unreliable resources to model resource failures
and recoveries. Robust supervisory control is achieved by
adding control places to the original Petri net models of
AMSs with unreliable resources. However, the works in [27],
[38]–[42], [45], [50] are fundamentally different from this
work. First, the types of AMSs considered in this work are
different from the ones considered in [27], [38]–[42], [45],
[50]. In [27], [38]–[42], [45], [46], [50] a resource type
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TABLE 5. Comparison of robust control policies based on PN.

consists of robots and machines without buffer spaces, while
in this work a resource type is a workstation composed of
buffer spaces that accommodate and hold part types, and
a server or processor that processes parts occupying the
buffer spaces. Second, a resource failure in this work means
the failure of a processor or any piece of equipment in
the workstation that makes processing of parts impossible.
However, the buffer space of the workstation can still be used
since the failure of the workstation does not affect its buffer
space. As a result of these differences, the idea of robustness
and robust control objectives in these studies are completely
different from those in this paper. For robust deadlock control
in [27], [38]–[42], [45], [46], [50], there must exist more
than one type of an unreliable resource, while in this study,
failure of an unreliable does not affect the processing of
part types that do not require the failed resource. To avoid
repetition here, readers can refer to [51] for more details about
the performance analysis and comparison of these robust
deadlock control policies [2], [26]–[37], [40], [42], [43], [45],
[48]–[50] and other policies not mentioned in this study.
Table 5 compares these robust supervisory control policies
based on Petri net model. The second column reveals the type
of deadlock control strategy used in the related research. The
third column shows the type of resource used in developing a
policy. The fourth indicates whether a policy can be applied
for AMS with multiple unreliable resources, while the fifth
reports whether a recovery subnet is used in a policy.

This study is limited to only an S3PR class of Petri
net model due to the type of AMS and the type resource
considered. The AMS considered is a single unit resource
allocation system where a part type requires a single unit
of a single resource type. The Petri net model of the system
represents only the buffer spaces and the movements among
them. Therefore, all resources or workstations are buffer
spaces. As a result, resource allocation and deallocation mean
allocation and deallocation of buffer spaces. In practice,
it is highly unlikely to have a situation whereby a part type
instance (a work piece) requires more than one buffer space
of a workstation. The Petri net model of such a system and its

resource allocation and deallocation fit only the definition of
an S3PR class of Petri net model.

VI. CONCLUSION
In this study a Petri net-based supervisory control policy that
can tackle both deadlock and blockage in automated manu-
facturing systems with unreliable resources is presented. The
policy can keep an AMS away from deadlock both absence
or presence of a resource. It has been demonstrated that the
proposed policy has higher permissiveness than the original
neighborhood policy. Future works should consider dealing
with failures, their analysis and recovery. We can look at a
system’s conditions (behaviors) under failure of its certain
parts, and howwe can handle recovery process while ensuring
continued operations of the unaffected parts. There is also a
need for more studies of robust supervisory control for more
complex systems such as systems that require multiple units
of resources and multiple resources at the same time and
flexible routing as well as uncontrollable and unobservable
events in AMSs to investigate robust supervisory control
issues. Future work also includes applying the proposed
methods to social networks and automated manufacturing
systems modeled with automata [65], [66].
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