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ABSTRACT A wearable is a lightweight body-worn device that relies on data-driven communications to
keep people connected purposefully, for instance, for fire-fighting, prompting fast-food clients, and medical
treatment. With rise of wearable computing in the era of IoT-driven smart applications, programmers now
expect the time to market for these devices to be shortened. While support for IoT programming in general
has gathered traction, tool proposals that automate the development of smart solutions based on the Internet of
Wearable Things, though of paramount importance, still stay on the sidelines. We propose a code generation
tool called Micraspis that allows a wearable to be described both functionally and architecturally – as if
they are two sides of the same coin. The tool has an underlying model-to-code transformation mechanism
to generates source code that is executable on a specific IoT programming platform such as Arduino. Our
experiments demonstrate that programming code generated by Micraspis amounts to at least 60% of the
source code needed to fulfill the business logic of ordinary wearable devices. We conduct an interview
to meticulously collect programmers’ assessment on how Micraspis assists them in programming and
architecting smart IoT wearables. A total of 161 programmers responded to a Likert scale questionnaire,
with which at least 65% of them either agree or strongly agree. Overall, the results show that Micraspis has
promising applicability in supporting IoWT-enabled smart solutions.

INDEX TERMS Wearable computing, code generation, state machine, Internet of Wearable Things.

I. INTRODUCTION
Following the Internet of Things (IoT) as as paradigm shift
in recent times [1], the proliferation of small body-worn
devices – known as IoT wearables or simply wearables, has
attracted the attention of business analysts, solution architects
and system integrators alike. Along with the explosion of dig-
ital transformation, a new segment came up as the Internet of
Wearable Things (IoWT) [2]–[4]. A wearable is a lightweight
body-worn personal device that is in use for specific purposes,
e.g., monitoring wearer’s health condition, coordinating res-
cue work at a disaster site [5]. Owing to the ever-expanding
capabilities of wearable sensors and wearable technologies,
IoWT promises to create an uptake of personal healthcare
solutions [5]–[8], agriculture production [9] and smart eye-
wear [10]. Uses of wearable devices continue to keep pace
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with IoT technological advancement [11]. Despite their rather
limited computing power, wearable devices play a central
role in many smart applications, thanks to their mobility
and connectivity [4], [12]. This shift in computing paradigm
would unlock the potential for the next-generation software
architecture, analogously to how the Web-based software
development communities enjoyed the mainstream n-tier
architecture that was made popular in the last decade [13].
Business processes operated in such an IoWT-enabled setting
should be geared up to best harvest the mobility and IoT
data-driven connectivity to keep people connected purpose-
fully for firefighting, collecting fast-food orders, medical
treatment, to name just a few [14], [15].

There are three fundamental yet separable functions of an
IoT-driven application: capturing raw data from the devices,
transmitting information extracted from the data over a
designated network, and taking action based on progres-
sively built-up insights. From a software engineering’s point
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of view, the enactment of business processes in such an
IoT-based solution necessitates, to some degree, the automa-
tion of these functions [16], [17] though they could be engi-
neered separately. It is noted that universal theories and tools
for developing software may not come into existence [18].
General consensus in this discipline is that software engineers
should narrow down the business domain to gain automation
on certain software activities [19]. The business domain of
an IoT-enabled smart application is characterized by a set
of business processes being enacted, where heterogeneous
IoT devices take part in autonomously. Let’s take smart fire-
fighting rescue as an example. Firefighters wear a designated
wearable device that allows them to report victims they spot
to a coordinating team by communicating with an on-site
server. They also receive instructions from the same server of
whether they should take care of the victim they found or keep
searching for unspotted ones, leaving the spotted victim for
a better-skilled rescuer to come and perform a professional
first aid. The rescuer’s wearable takes part in at least two
business processes: reporting victims and performing rescue.
The entire solution for this on-site firefighting rescue is essen-
tially a heterogeneous system that involves both contempo-
rary server-side programming and system programming (for
the rescuer’s wearable). Heterogeneity makes the first chal-
lenge when it comes to software automation for these smart
applications [16], [20], [21]. Another challenge is that while
the business processes are subject to change, one may expect
time for having them enacted to be shortened [22]. Let’s
take the pandemic situation of Covid-19 as another example
where many organizations and public healthcare institutions
demand a symptom-checking application in a rather short
time-frame. Business processes enacted using this symptom
checker to scan the skin temperature of big crowds are prone
to change since they depend on often-revised health measures
and regulation exercised by the health ministry.

General underpinning for IoT programming ranges from
access control [23], the model-view-controller pattern [24],
logic programming [25], script writing [26], flow-based pro-
gramming [27], [28], to visual programming [29], [30].
Model-based engineering in this realm either target IoT
heterogeneous objects [16], [31], mission-critical IoT sys-
tems [32], architecture and concepts [33] or propose an exten-
sion to proven object-orientation standards to cover certain
IoT domains [17], [34]–[36]. Nevertheless, domain-specific
approaches to IoT-enabled software architecture leave a lot
to be desired [37]. When it comes to code generation engines
for automating the development of IoT applications, existing
scholar work looks into ontology [38], state machine [39],
code integration [40], and specific IoT platforms [41]. The
construction of a wearable device (and therefore the enact-
ment of the business processes it takes part in) involves not
only a component-assembly design (i.e., wiring commonly
available hardware components to a mainboard) but also
some degree of hardware programming – just as two sides
of the same coin.

Proposals towards model-driven engineering and model-
to-code transformation for IoT-based software architecture
continue to catch up. The mainstream thought in this realm is
to raise the abstraction level with the objective of accelerating
the software development process and to enable design and
code reuse [21]. Unfortunately, direct support for IoWT pro-
gramming still stays on the sideline – to the best of our under-
standing, no tool proposals have specifically been devised
for. Existing work on IoWT tends to discuss the research
agenda for wearable computing in a rather broad scope [8],
[42]–[45]. Computer-aided solutions to the construction of
IoT devices leave a lot to be desired. To construct a wearable
device that will be functionally ready for a business process,
we shall (i) propose an effective component-assembly design
using common hardware components (e.g., LED, buzzer,
keypad); (ii) program the chosen hardware components to
realize the black-box specification of thewearable in question
in accordance to the said business process. Our first attempt
in this research line has resulted in our early thoughts on
a domain-specific modeling plus a prototypical code gen-
eration engine [46], and a proposal for semi-automatically
enacting business processes in smart healthcare [47]. In this
article, we present our tool called Micraspis, which follows a
model-to-code transformation approach and fulfills the afore-
mentioned requirements for the sake of enacting business
processes where IoWT plays a central role. We investigate
the notion of well-formedness on the design of a wear-
able as a whole. We analyze the co-existence of and the
correlation between its architectural design and behavioral
spec, which together with the design well-formedness, have
resulted in a definition of hardware constraints and syntactic
check used for validating a wearable design. Furthermore,
we study the roles such a tool might play in a rather extended
lifecycle of wearable devices. Our tool (a) offers a visual
hardware design for architecting the wearable device to be
constructed; (b) allows the business logic of a wearable
device to be represented primarily in the form of a state
machine – a proven way of effectively capturing the behavior
of IoT devices and objects [48]–[51]; (c) generates source
code and auxiliary files needed to program and deploy the
wearable device in question. We discuss the applicability of
Micraspis through a series of mini-projects with a logical pro-
gression to complexity. To validate our computer-aided pro-
posal, we measure the completeness of the generated source
code and the usefulness of the tool from the programmers’
perspective.
Paper Structure. Section II presents our research motiva-

tion and formulates our research questions. Related work
is surveyed in Section III. Section IV describes a layered
architecture concerning our code generation proposal and
presents how our Micraspis tool contributes to the soft-
ware automation in wearable computing. Section V reports
experiments conducted on our tool proposal. Section VI
draws some concluding remarks and points out the future
work.
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II. PROBLEM STATEMENT
A. CASE STUDY
Epidemics of dengue and measles often occur in tropical
countries like Vietnam.1 Effective healthcare for and treat-
ment of these two infectious diseases is crucial to containing
an outbreak. When a large number of patients are hospi-
talized in an outbreak, hospital doctors struggle to deliver
medical care, especially when their patients are mixed with
children. Traditionally, doctors rely on their nurses to keep
an eye on the development of these diseases using medical
thermometers. To handle this stressful situation, they finally
resort to an IoT-based system called iTempFoll that helps them
monitor and treat their patients with minimal delay. There
are two types of wearable being put in use for iTempFoll: the
patients wear one of them and the other is worn by doctors or
nurses. These body-worn devices, often of compact size, are
coordinated by a server that collects and analyzes patients’
body temperatures as time-series data. The server hosts a
module allowing the hospital management to define medical
rules for effectively tackling dengue and measles outbreaks
in the hospital. These rules, combined with measurement
data collected from the patients, enable the server to decide
what treatment should be applied, which otherwise has to
be decided by the struggling doctors in a chaotic hospital
environment.

What we learn from the coronavirus epidemic happening
in early 2020 into the beginning of 2021 is analyzing the
fluctuation of body temperature of infected patients is of
paramount importance. According to the Centers for Disease
Control and Prevention, patients infected with Covid-19 need
to stay home in isolation and bemonitored for symptoms such
as fever, cough, and others.2 Because of that oddity, iTempFoll
would set an example that finds increasing applicability in the
pandemic time. The coordinating server keeps track of the
historical body temperature measurement, allowing a more
insightful medical analysis to be done – as opposed to a quick,
superficial check of the instant body temperature measure-
ment (unfortunately, this is the only measure typically imple-
mented by a Covid-19 checkpoint at the entrance of many
buildings upon the arrival of a new wave of coronavirus).

A solution architecture for iTempFoll is depicted
in Figure 1. Speaking of the hardware architecture,
the patient’s wearable is made of an Arduino board and a
couple of components, including a body temperature sensor
and LEDs that show the wearing patient’s current status.
Likewise, a doctor’s wearable consists of an Arduino board,
a keypad, and an LCD for a higher degree of human-device
interaction (e.g., browsing and viewing detailed information
about the patients the wearing doctor takes care of). Both
of these wearables can transmit information to the coor-
dinating server via built-in Wifi that is readily available

1According to the National Agency of Preventive Medicine, Vietnam
has between 50 and 150 thousand cases of dengue every year. Particularly
in 2017, Vietnam had 183,287 dengue cases, of which 30 died.

2What to Do If You Are Sick https://www.cdc.gov/coronavirus/2019-
ncov/if-you-are-sick/steps-when-sick.html. Accessed 10 July 2020

FIGURE 1. IoT-driven architecture of iTempFoll.

on the said Arduino board. Programming these hardware
components to meet medical rules necessary for handling
the dengue/measles outbreak and perhaps the coronavirus
situation is typically a time-consuming task. Even when
programmed and properly bootloaded,3 they are still subject
to fine-tuning and re-programming due to changes in medical
policies and procedures, especially when rushing to contain
a new outbreak, necessitating code generation techniques
that ease the programming of wearable devices. Finding an
effective and systematic way of describing the business logic
of those wearable computers is essential for making such
code generation possible by, for example, harvesting some
proven model transformation techniques.

The first wearable of iTempFoll is for, and supposed to be
worn by, patients. It periodically sends the wearer’s real-time
body temperature to the coordinating server. Many of them
are in a serious health condition and may not be able to
cooperate voluntarily. The server keeps track of the patient’s
body temperature and decides what to do next in a rule-based
manner. For example, as listed in the row about dengue
in Table 1, if the patient’s body temperature falls between
37.5 and 38.5 degree Celsius for over 10 minutes and less
than 48 hours, the patient’s wearable will turn yellow to
signify an incubation phase. Simultaneously, the coordinating
server activates the said medical rule to notify a doctor/
nurse responsible for this patient. She is then supposed to
perform an X-ray for this patient and watch for other symp-
toms. A server-side rule activation also results in a con-
firmation being sent back to the patient’s wearable. This

3Microcontrollers are usually programmed through a bootloader unless it
comes with an alternative piece of firmware that allows directly installing
new firmware.
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TABLE 1. Medical rules for taking care of patients showing symptoms of dengue and measles.

update of the patient’s medical condition is illuminated in
colors telling how critical the wearer’s medical condition
is in.

The second wearable of iTempFoll is to be worn by the
medical staff, i.e., doctors and nurses. Its wearer can query
the status of any patient she is responsible for. In case a
medical rule kicks in, this wearable receives an alert sent from
the coordinating server. The server maintains a rather simple
database assigning a doctor or nurse to patients she takes care
of in the hospital. The entire medical process of monitoring
patients and alerting doctors is described in Figure 2 using a
de-facto modeling standard.

FIGURE 2. The medical process of iTempFoll.

B. RESEARCH QUESTIONS
The rationale behind model-driven engineering approaches
is that the implementation should best be derived from its
model through a systematic model-to-code transformation.
To be able to build a code generation tool for wearable
devices, we first need to ground some fundamental research
questions.

1) RQ1: DUAL-FACETED VISUAL DESIGN
Hardware design for embedded systems and IoT-based smart
systems alike has long been associated with an intuitive
assembly-component way of architecting. Software design
for these devices should follow suit. Furthermore, the two
facets of design should be coupled semantically, just as they
are two sides of the same coin.

2) RQ2: SEPARATION OF CONCERNS FOR THE SAKE OF
MODEL TRANSFORMATION
On the one hand, software abstraction and hardware design of
the same wearable computer could be done separately in light
of the so-called principle of separation of concerns. On the
other hand, to enable model-to-code transformation, design
of the wearable as a whole should be cohesive and coherent,
i.e. the behavioral description needs to be semantically linked
to its hardware counterpart of the same design. More con-
cretely, if we adopt UML as a de facto language for capturing
the wearable’s state machine, we would better formulate
the operations and transitions populated in this diagram in
terms of the hardware components used for architecting the
wearable in question.

3) RQ3: CODE GENERATION THAT REALIZES THE STATE
MACHINE AND THE PIN CONFIGURATION OF THE
WEARABLE TO BE CONSTRUCTED
Programmatically, the state machine of devices in a
IoT/embedded system is primarily implemented as a nested
switch statement in C programming [52]. We need a model-
to-code transformation that effectively yields this C pro-
gramming construct out of a well-formed UML statechart
diagram – a widely practiced apparatus for modeling the state
machine. Yet another programming burden when implement-
ing a wearable computer is to make sure the pin variables
representing the chosen hardware components (say, in C
source code) match how they are plugged physically into its
mainboard. Both of these coding exercises are burdensome
and error-prone, necessitating a dedicated code generation
tool.

III. RELATED WORK
This section is dedicated to the state-of-the-art of the pro-
gramming support for IoT-based architectures, which is not
necessarily confined to IoWT. In Subsection III-A, we dis-
cuss the code generation techniques used for IoT devices
and embedded systems. In Subsection III-B, we look into
model-engineering proposals for IoT programming.

A. CODE GENERATION BASED ON STATE MACHINE
State machine is a conventional schema used to describe
the behavior of devices and objects in system modeling.
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Generating source code from the state machine has been
entertained in many model transformation approaches [52].4

In general, source code generated from the state machine,
be it a UML statechart, finite state machine, or Harel state
chart, is diverse in terms of programming languages. In par-
ticular, generating source code for IoT applications from the
state machine has been studied extensively [53], and the
results look encouraging. Despite sounding promising, this
work faces themost prominent challenge that is the incapabil-
ity of reusing the generated source code on different devices
having the same hardware architecture.

B. MODEL-DRIVEN ENGINEERING FOR IoT
PROGRAMMING
Model-driven engineering (MDE) has long been advocated
by scholars and practitioners in software engineering. A great
deal of effort has been put into developing high-level
domain-specific languages (DSL) since IoT programming
came into the stage [54]. The rationale behindmost DSLs is to
abstract the application logic and peculiarities into intercon-
nected blocks via library modules. The general consensus for
engineering a DSL is that business analysts and requirements
engineers alike wish to raise its level of abstraction to stay
focused on the business logic, leaving the burden of obtaining
functional programming code to its underlying code gener-
ation engine [19]. MDE has started to draw traction in the
realm of IoT-enabled smart applications soon after the IoT as
a computing paradigm shift gave rise to the next generation
of software architectures and practices. In this subsection,
we offer an analysis of existingMDE frameworks for IoT pro-
gramming and assess them in light of our problem statement
given in Section II.

1) MIDGAR
Midgar [55] is an IoT programming platform that facili-
tates code generation. Midgar allows a system specifica-
tion to be abstracted in a DSL via a Web-based editor.
Source code generated by Midgar is deployable on inter-
connected heterogeneous objects that were pre-registered
and pre-defined. Code generation is performed through a
series of six nodes. The first four nodes correspond to the
programming language structure, including one conditional
node, two-loop nodes, and one sleeping node. The fifth node
allows for direct code insertion, and the last one describes
the actions to be executed. Midgar neither supports the
modeling of state machines nor the architectural design of
a wearable.

2) Asm2C++
Asm2C++ is a tool that automatically generates executable
C++ code for Arduino from a formal specification [39]
articulated as state machines. The code generation process
of Asm2C++, which is part of a broader framework for

4More than 50 proposals of model-to-code transformation from state
machine were systematically reviewed.

the analysis and validation of the model correctness [56],
follows a model-driven engineering approach where certain
transformation rules are applied to transform an abstract state
machines into executable code [57]. The tool does support the
modeling of state machines and hardware internals of an IoT
device. However, the principle of separation of concerns is
not fully respected due to high coupling between these dual
design facets.

3) IoTSuite
IoTSuite is an IoT application development platform that
allows an IoT-based system to be developed through a series
of design, implementation, and deployment [40]. By having a
compiler and deployment modules integrated, various stages
of development could be automated in IoTSuite. The plat-
form also allows for the integration of a modeling language
that make highly abstract models expressible. Its support for
hardware design is rather limited. Unfortunately, the source
code generated by this platform does not satisfactorily imple-
ments low-level event-driven handlers commonly found in an
IoT-based system.

4) UML4IoT
UML4IoT is a UML-based approach to exploit MDE in the
development of IoT systems [17]. By proposing a designated
UML profile, this approach establishes an IoT-compliant
layer into which the cyber-physical components of an IoT
system are transformed. In order for this wrapper layer to
generate what is essentially required for the cyber-physical
components to be effectively integrated into the modern
IoT production environment, UML4IoT looks into both the
UML diagrams (mostly activity diagrams) and the embedded
components of an IoT system. Code generation for what
is dubbed IoTwrapper is the primary contribution of this
approach towards the transformation of legacy systems into
an Industry 4.0 ready environment.

5) VIPLE
VIPLE is a visual language for IoT/robotics programming
developed at the Arizona State University [58]. Initially
developed based on Microsoft Visual Programming Lan-
guage that was later on discontinued, the VIPLE language
continues to support the Microsoft community on visual pro-
gramming. The language has drawn considerable traction in
educational settings and is known for its compatibility with
LEGOMindstorms EV3 robotic programming basics and the
underpinning communication technologies (e.g., Wifi, Blue-
tooth, JSON). The visual editor associated with the VIPLE
language permits the declaration of application variables and
the pin configuration of the IoT system or robotic application
being developed. The source code generated in VIPLE covers
non-trivial programming constructs including parallel and
event-driven processing. But it sustains limitation regard-
ing the scope of programming variables and as such needs
fine-tuning to be useful.
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TABLE 2. State-of-the-art analysis with regard to our research questions:
RQ1 – Visual design, RQ2 – Separation of concerns, RQ3 – Code
generation.

6) EL4IoT
EL4IoT [33] is a DSL framework that targets low-end IoT
devices and generates software code to be run on Con-
tiki – an open source operating system for low-power IoT
devices. This framework promotes the concept of design
automation to mitigate the burden of configuring and deploy-
ing on Contiki OS. Engineering a DSL for IoT-enabled
operating systems is one of the contributions of this work.
In addition, EL4IoT facilitates an automatic generation of
code for low-end devices in IoT applications that require an
IoT-compliant layer to provide interoperability and seamless
connectivity to the Internet.

7) ThingML
ThingML is an approach that includes a modeling lan-
guage and a source code generator for IoT applications [30].
ThingML relies on two key structures to deliver its modeling
expressiveness: Things that represent IoT devices and Con-
figurations that describe the interconnection between Things.
ThingML generates source code that spawns three contempo-
rary programming languages (C/C++, Java and Javascript).
ThingML falls short when it comes to software abstraction
and thus does not facilitate the concept of dual-faceted design.

8) COMPARISON
The aforementioned frameworks outline the big picture of
MDE-based code generation that supports the development
of IoT-based software systems. They exhibit the following
major units in common.
• An editor for visual design in the early phase of
software/system development

• An underlying model-to-code transformation technique
that transforms the high-level specification being edited,
coupled with the technical details of IoT compo-
nents being used into platform-independent executable
code

• A deployment module that produces device-specific
code, resulting in a distributed architecture that is col-
laboratively hosted. Technically, such a module relies on
a mapper and a linker to perform its job.

• A runtime environment – typically built on top of an
existing middleware platform, for the distributed execu-
tion of the IoT-based software system in question.

Table 2 shows our analysis on the above-mentioned frame-
works with respect to the research questions we have formu-
lated for code generation.

FIGURE 3. Phase-by-phase construction of a wearable device in which
the design & development activities are aided with.

IV. MICRASPIS AS A COMPUTER-AIDED TOOL FOR
PROGRAMMING IoT WEARABLES
This section highlights how we address our research ques-
tions while demonstrating our tool’s main features by walk-
ing through the previously described case study. Before
going into the specific features of our tool, we briefly
present a phase-by-phase flow for the construction of
wearable devices that the tool might fit into, as shown
in Figure 3. This flow, which primarily targets the develop-
ment and deployment of a wearable, consists of the follow-
ing four phases5: Conceptual & Hardware Design, Syntactic

5Due to paper format, we choose to present our flow in a layered style
though it might alternatively be presented in a spiral manner to be more eye-
pleasing. For this reason, we interchangeably refer to the phases as layers.
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FIGURE 4. A typical screenshot of Micraspis demonstrating its main widgets and windowing panes that are geared up for effectively working out the
multifaceted design of an IoT wearable.

Check & Constraint Evaluation, Code Generation, and
Deployment. Even thoughMicraspis does not fully span these
four phases, it’s worth mentioning how the tool assists in
developing and deploying an IoT wearable to facilitate the
enactment of business processes where the said wearable
device plays a role.
• Conceptual and Hardware Design. This layer provides a
graphics editor that allows developers to visually sketch
the hardware architecture of and a behavioral represen-
tation for a wearable device. Both of them are subject to
being checked against well-formnedness criteria in the
next layer.

• Syntactic Check and Constraint Evaluation. It is crucial
to make sure that the multifaceted design of an IoTwear-
able is well-formed before any attempt to generate the
programming source code could be made. This notion
of well-formedness refers to both the user-selected hard-
ware configuration and the logical appropriateness of the
wearable’s state machine. Micraspis is equipped with a
set of hardware constraints and a syntax for text annota-
tion in the state machine that together kick in whenever
design-time changes are made to the wearable in ques-
tion. Once the state machine and the hardware configu-
ration being edited have all passed this well-formedness
validation, the highlight is given to the next layer for the
sake of code generation.

• Code Generation. It is the goal of this layer to pro-
duce source code in C++ and auxiliary files to speed
up the development and deployment of IoT wearables.
We aim to establish a development baseline for program-
ming a wearable device on a specific IoT programming

platform (e.g., Arduino). Unlike skeleton code that
superficially lists class members and methods with-
out providing a non-trivial implementation of the listed
methods, the code generated in this layer should func-
tionally be operational (if not fully operational).

• At the Deployment layer, developers fine-tune the gen-
erated source code and have it loaded into their IoT
wearable to make the device functionally ready for the
enactment of business processes it participates in.

We relate the above-mentioned layers to our research
questions (see Subsection II-B) as follows: Conceptual and
Hardware Design addresses the research question of RQ1;
Syntactic Check and Constraint Evaluation targets the ques-
tion of RQ2; Code Generation – RQ3.

A. CONCEPTUAL AND HARDWARE DESIGN
To get started in constructing a wearable device, we sketch
a conceptual design and select hardware components for a
component-assembly design. Micraspis features a graphics
editor (see Figure 4) just like many other design tools to help
developers in this regard.

Figure 4 shows a screenshot of Micraspis demonstrating
its most typical windowing areas that are enumerated using
capital letters. Area A© shows a toolbar featuring shortcuts
that provide access to frequently-invoked commands. Area B©
depicts a project explorer to be used for navigating through
a workspace under Micraspis. Area C© showcases a palette
containing essential elements for describing a state machine
graphically. Area D© illustrates such an editing pane for
state machine. Similarly, area E© showcases another palette
containing visual elements for a hardware design which is
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FIGURE 5. Hardware configuration of the patient’s wearable in use for
iTempFoll.

FIGURE 6. Hardware configuration of the doctor’s wearable in use for
iTempFoll.

illustrated in area F©. Lastly, Micraspis provides a property
box for viewing and editing the details of a design element as
highlighted in area G©.
Figure 5 and Figure 6 are additional screenshots of

Micraspis that demonstrate how we graphically specify the
hardware structure of the two wearable devices in use for
iTempFoll. In terms of hardware design, the patient’s device is
made up of the following: four light-emitting diodes (LEDs)
for displaying the status of the patient using a color range
(i.e., red for an emergency, orange – dangerous, yellow –
inception, green – recovery, and blue – ready), a tempera-
ture sensor, and a Wifi module for communicating with the
server. Meanwhile, the doctor’s device features the follow-
ing components: an LCD for briefly displaying the patients’
information, a keypad for browsing the patients being display,
an LED that is illuminated while the wearer is receiving
an alert, and a Wifi module for communicating with the
coordinating server.

In Micraspis, a developer may switch between conceptual
modeling and hardware design at any time. Both of these
views offer a palette and a visual design area into which
she could simply drag-and-drop an element from the palette.
Micraspis directly supports conceptual modeling in the form
of state machines. Figure 7 shows the state machine of the
patient’s wearable being edited in Micraspis. Each patient’s
wearable may be in one of the following states at run-
time: Starting, Listening, Emergency, Recovery,
Incubation, and Fever, the first of which refers to the
moment when the wearable is switched on and establishes
a Wifi connection to the coordinating server. The wear-
able makes a transition to Listening when ready. In this

FIGURE 7. A state machine diagram being edited for the patient’s
wearable.

state, the wearable constantly takes a reading of its wearer’s
body temperature to communicate with the server. Should
the server decide to activate a medical rule, this wearable
will be asked to change its state to either Emergency,
Recovery, Incubation, or Fever. The wearable may
revert to Listening at any time upon receiving a confir-
mation from the server telling that she has received proper
medical treatment.

FIGURE 8. A state machine diagram being edited for the doctor’s
wearable.

Similarly, Figure 8 is a screenshot of Micraspis showing
the state machine of the doctor’s wearable that is being
entered for the sake of software abstraction. This device
is in Starting state when booting it up, followed by
Listening when the booting is done successfully. At this
moment, the wearable displays all patients whom the wearing
doctor is assigned to it. The wearable makes a transition to
state Emergency if it receives an alert (or more) from the
coordinating server. At the same time, an alert message pops
up in its LCD showing details of the patient who needs to
be taken care of. The wearable might receive another alert
while its wearer is on her job, resulting in a new record being
registered but no change to its state.

The wearing doctor is supposed to hit a designated key
in a keypad to notify once she has successfully delivered a
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medical action. This wearable may revert to Listening
state when and only if no more patients are on the waiting
list. When in Listening state, the wearer may want to
view additional information of a patient. Should she take this
function, her wearable is switched to Browsing state and
back to Listening state when she exits.

B. SYNTACTIC CHECK AND CONSTRAINT EVALUATION
As a design tool, Micraspis comes with a set of constraints
and syntactic rules.Wemay not proceed with code generation
without ensuring that both the hardware design and behav-
ioral specification of a wearable device being constructed are
well-formed. To this end, Micrapis undergoes two sub-phases
that both run in background to ensure this well-formedness.
The first sub-phase aims at the rationality of the device’s
architecture by iterating through a list of predefined hardware
constraints. The second sub-phase is dedicated to the syntac-
tic check that scans all text annotated to the state machine
being edited to check if there are any irregularities.

1) SUB-PHASE 1: CONSTRAINT EVALUATION
Speaking of the hardware architecture, the wearable has
a mainboard that harbors hardware components. Micraspis
arranges a configuration of themainboard pins throughwhich
these components could be attached.

As described in Table 3, Micraspis reinforces the following
hardware constraints: (i) nomore than one keypad/LCD/Wifi;
(ii) there are enough mainboard pins of each kind for all
hardware components; (iii) pin arrangement between hard-
ware items and the mainboard is attainable. Any time an
addition or modification is made to this hardware design,
the tool (re-)evaluates the above-mentioned constraints and
(re-)configures the pins to match the type of each hardware
components if needed. Should one of the above constraints
be violated, the tool issues a warning immediately.

TABLE 3. List of hardware constraints in Micraspis.

TABLE 4. Textual annotations in a state machine edited in Micraspis
should follow a syntax.

2) SUB-PHASE 2: SYNTACTIC CHECK
As mentioned, Micraspis allows developers to specify the
behavior of wearable using a state machine (as exemplified
in Figure 7, Figure 8). In this sub-phase, operations declared
for each state and text annotated to transitions in the state
machine are validated against a predefined grammar (see
Table 4). As we typically make reference to the selected
hardware items in this state machine via their identifiers,
this syntactic check should be followed by the constraint
evaluation previously performed on the hardware design in
Micraspis.

C. CODE GENERATION
Micraspis is available as a plugin of Eclipse – a widely
used integrated development environment in computer pro-
gramming. We rely on a meta-modeling framework in
Eclipse, called Eclipse Modeling Framework [59], to facil-
itate the code generation (see Subsection IV-C2 and
Subsection IV-C3). In Micraspis, we enjoy code generation
for the following programming aspects of an IoT wearable:
(i) generating a switch-case statement to implement the main
control loop; (ii) factorizing functions for most state transi-
tions and state operations; (iii) automatically arranging pins
to which hardware components are wired up to the main-
board; (iv) producing technical documentation.

Code generation from a state machine is by far more
difficult to accomplish than otherwise from a class dia-
gram [52], due primarily to the lack of direct and precise
mapping between concepts borrowed from state diagrams and
general-purpose programming languages. For example, there
is no counterpart of a transition or a state in contemporary
object-oriented programming languages. Unlike the so-called
skeleton code that could straightforwardly be produced out of
a class diagram, elements of a UML statechart diagram such

VOLUME 9, 2021 105401



L.-P. Tôn et al.: Micraspis: Computer-Aided Proposal Toward Programming

FIGURE 9. Meta-model of a wearable’s computer program in Micraspis.

as state, event, transition exhibit behavioral semantics that
should be translated into the implementation of functions and
methods in general-purpose programming. The underlying
code generation of Micraspis kicks off when the syntactic
check is done for these elements.

1) AN UNDERLYING CODE GENERATION ENGINE
Wearable devices typically function in an asynchronous
mode. Its main control loop is there to listen to state-changing
events. Like the operations of a state, the events could be
factorized as functions. Our tool takes a state machine as
the input for generating the implementation of all these func-
tions. For example, OFF greenLED in a statechart diagram
will translate into digitalWrite(greenLED, LOW);
when programmed in C++. Note that identifiers (such as
greenLED) given to hardware items being selected in the
hardware design are put as programming variables when
generating code. A self-transition (e.g., Emergency has a
transition that returns to itself) will boil down to a recursive
function in C++.

The underlying code generation engine of Micraspis pro-
grammatically allocates mainboard pins to components and
composes a document detailing this pin configuration accord-
ing to which the chosen components will be wired up
physically. This could be kept as a reference for wear-
able developers (for instance, Uno Arduino (R3) consists of
14-digital I/O pins, 6 of which can be used as pulse width
modulation outputs). While generating the code, the engine
keeps track of external libraries that are going to be imported
when preparing the programming environment for the gen-
erated source code. To this end, apart from generating source
code in C++ that turn the state machine and hardware design
of the wearable device being constructed into a functional
computer program, Micraspis additionally produces the fol-
lowing two files: (a) an HTML file explaining the pin layout
that instructs the developer how to wire up the selected hard-
ware components to the wearable’s mainboard; (b) an XML
file that describes external libraries needed to successfully
compile the generated C++ code.

2) ABSTRACT SYNTAX
Let us express the abstract syntax behind Micraspis’s code
generation engine using a meta-model as shown in Figure 9
and Figure 10, which correspond to the behavioral specifi-
cation and the hardware design of the wearable device being
constructed, respectively. In Figure 9, the concept in focus
would be State of which the subclasses represent the start/end
state and regular states (concept RegularState). In line with
the UML statechart diagram, there should be a single start
state, one or more end state(s), and of course multiple regular
states in a state machine being edited. However, we would not
allow nested states in Micraspis, expecting the state machine
to be represented in a flat structure. As indicated in the meta-
model, all states (the start and end ones included) may have
operations specified within. A computer program that oper-
ates a wearable device (concept Program) is programmati-
cally composed of several functions in C++. Additionally,
it includes necessary pre-processor statements, an entry point,
and the definition of constants needed for configuring the
wearable’s pin layout. Note that both the operations that
are visible in the state machine and the functions in C++
code that will be generated by our tool convergingly point to
concept Function in our abstract syntax.

Figure 10 is an excerpt of our meta-model capturing all
hardware pieces available to the developer in Micraspis.
Concept Component is an abstract class that represents all
components, which are subclassed into InputComponent,
OutputComponent, and Connectivity. Concept InputCompo-
nent stands for components that offer an input effect to
construct a wearable device, including keypads, buttons, and
sensors.OutputComponent is another subclass that represents
hardware pieces producing an output effect (e.g, LED, LCD,
buzzer). The Connectivity concept facilitate IoT connectivity
technologies (e.g., bluetooth, Wifi). As for the mainboard,
a wearable device architecturally consists of multiple hard-
ware components and a mainboard of which Arduino boards
like R3Arduino and ESP8266Arduino are currently supported
in Micraspis. The mainboard harbors a number of pins (con-
cept Pin) through which the hardware components of a wear-
able device may be wired up (hence, a UML association
between Component and Pin in this abstract syntax).

3) CONCRETE SYNTAX
The concrete syntax for what is presented in Figure 9 is
basically UML-like. Directed arrows denote state transition,
and a rounded rectangle signifies a regular state. Operations
are visible in its lower compartment, and we allow operations
to be specified for any kind of state in Micraspis. They are
diagrammatically represented for regular states. For start/end
states, while they may not be represented visually, they are
still listed in an editable fashion in a property box if a start/end
state is selected in the graphics area. The concrete syntax
for hardware components (for which the abstract syntax is
depicted by Figure 10) is rather straightforward, where icons
are extensively used to show them visually. In line with our
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FIGURE 10. Meta-model of hardware components that are currently supported by Micraspis.

abstract syntax, these icons are not supposed to be connected
using lines or arrows in the editing pane of Micraspis. More-
over, these hardware pieces are not hierarchically organized,
meaning their concrete syntax is of a flat structure – as can
be seen in the illustrated screenshots of our tool.

V. VALIDATION
Micraspis tool has been tested in a series of mini lab projects
with a logical progression to complexity. In this section,
we present them in detail (Subsection V-A) and report the
feedback we obtained from those who worked with our tool
in this series of lab projects (Subsection V-B).

A. MINI LAB PROJECTS
The mini lab projects were designed to incrementally exper-
iment on how Micraspis assists developers in assembling
and programming wearable device(s). In Table 5, we report
the mini projects6 as follows (from left to right): project’s
short name, total number of lines of code generated thanks
to Micraspis, total number of lines of code when fully
implemented, hardware components needed to assemble the
wearable(s) in the said project, how many states that were
conceptually represented. The rightmost column of Table 5
tells us the degree of code completion in the said project
as a metric for measuring the effectiveness of having source
code produced by our tool. Note that these mini projects are
placed in an order with a logical progression to complexity.
The first one in this list, which is a mere programming
exercise that simulates traffic lights, intentionally designed
for novices. The last project in this list is the most non-trivial

6Full description could be found at https://tinyurl.com/y8yuqu6v

TABLE 5. Computer-aided programming in mini projects thanks to
Micraspis.

one, detailing the construction of the doctor’s wearable and
patient’s wearable as featured in our iTempFoll case study.

B. FEEDBACK FROM PRACTITIONERS AND STUDENTS
To see howMicraspis addresses the three challenges of offer-
ing a computer-aided solution to the construction of wearable
computers (see Subsection II-B), we invited practitioners in
IoT-related domains and bachelor students having fundamen-
tal understanding of IoT-enabled smart systems to validate
Micraspis and have their say.

1) PROTOCOL FOR OBTAINING USERS’ FEEDBACK
A questionnaire was prepared to obtain feedback on
Micraspis from practitioners whose background was in
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IoT-related domains. Questions asked are largely about the
extent to which Micraspis addresses the three challenges that
are presented in Section II-B. To help them get acquainted
with Micraspis before actually filling out this question-
naire, we provided them with a tutorial detailing step-by-step
instructions for working with the Micraspis tool. The tutorial
and the questionnaire were testedwithin our research group to
estimate the time needed for a participant to complete the val-
idation and to remove ambiguity if any. A total of 31 software
engineers from 16 software development companies took part
in our validation. They reportedly had 2-15 years of experi-
ence in software development and computer engineering.

Undergraduate students were asked to undertake the
pre-defined mini lab projects (see Subsection V-A) on four
university campuses in Ho Chi Minh City, namely University
of Technology, Industrial University, University of Informa-
tion Technology, and Cao Thang College. Figure 11 gives an
example of a group of undergraduate students working with
our tool to get their programming tasks done in one of the
mini lab projects.

Due to the difference in the software practitioners’ avail-
ability, we decided to proceed with them individually. Where
face-to-face conversation was possible, the participants fol-
lowed the tutorial and then filled out the questionnaire them-
selves while receiving assistance either on the phone or via
an online chat. For those students who were willing to take
part in the validation, we organized them into groups of
three to five and guiding them more thoroughly. Instead of
following a pre-built scenario, the students performed exten-
sive tool-based practice on Micraspis through constructing
a wearable themselves. In total, we invited 161 practition-
ers/students to participate in this validation.

2) RATINGS
A total of 130 students took part in the validation of
Micraspis. Most of them were junior whose major was in
computer science. A few of themwere sophomore that all had
taken fundamental programming courses. They participated
in this validation while taking a bachelor course on IoT
programming. In this course, they were divided into groups of
less than five. Each group represented a course project with
an aim to make a fully operational IoT wearable. They then
answered a questionnaire to assess how Micraspis addressed
the three tool requirements and to give their feedback as if
Micraspis was employed as a teaching tool in their course.

We collected feedback of 31 practitioners, making 161 the
total number of respondents. Table 7 presents the breakdown
of their answers to the questions asked (being visualized
in Figure 12). All questions but the last were designed with
the Likert scale. Remarkably, the respondents overwhelm-
ingly agree that Micraspis should find more applicability
beyond health informatics in today’s IoT-enabled smart soci-
ety (as depicted by answers given to Q7 in the questionnaire).
Q2 and Q5 in the questionnaire are whereMicraspis performs
noticeably well, suggesting that the programmers generally
are happy with the amount of code being generated and

FIGURE 11. A group of undergraduate students working with the
micraspis tool on the campus of industrial university of Ho Chi Minh city.

appreciate the pin layout being arranged automatically by
Micraspis.

On the downside, hardware components available to pro-
grammers in Micraspis are not plentiful, as evidenced by
the answers we received for Q1 from the questionnaire.
This question is where the highest level of disagreement is
recorded. The respondents were not particularly impressed
by model-driven engineering techniques (and state machine
modeling in particular) being offered by the tool, as indi-
cated by the relatively low satisfaction rate for Q3, Q4 and
Q6 from the questionnaire. Interestingly, questions Q1, Q3,
Q4, and Q6 draw a mixture of respondents’ agreement and
disagreement.

Despite some negative feedback recorded, the answers we
obtained have not statistically rejected any research questions
we have identified. As can be seen in the rightmost column
of Table 6, we associate each interviewing question of the
questionnaire with a particular research challenge we have
formulated in Section II. If we filter out the feedback left for
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TABLE 6. List of interviewing questions.

TABLE 7. Breakdown of answers given by those who were interviewed
on the usability and capability of Micraspis, 19.3 % of whom were
engineers having experience in IoT domains.

all interviewing questions that are associated with a given,
previously stated research challenge, we will not see that
Micraspis markedly disappoints the programmers for any of
these research challenges. Those respondents who were not
happy with Micraspis might have found that the presentation
of the prototype was a little unappealing and cumbersome as
they have to click on many items before finally working out
their way to accomplish code generation.

C. LESSONS LEARNED: LACK OF PLAUSIBLE WAYS TO
MEASURE TIME SAVING
A natural question that readers might ask is to how much
our computer-aided proposal helps shorten the time to market
of wearable devices. As we have described a metric for
measuring the productivity of code generation in Table 5,
our attention is now turned into reporting the time saving
thanks to Micraspis when developing the wearables men-
tioned in our lab projects. Let us explain why we literally
had no plausible ways tomeasure this time saving objectively.

FIGURE 12. A bar chart that visualizes answers we collected for our
questionnaire about Micraspis.

For each mini lab project, we wished to conduct two exper-
imental development cycles of which the output (i.e., hav-
ing the said wearable(s) fully operational) and the human
resource (i.e. an individual or a team who carried out the
experiments) are identical. Purposefully, one of them was
with and the other without an aid of Micraspis. However,
simply recording the time diffidence of these two devel-
opment cycles may not precisely reflect the time saving
attributed to Micraspis, as there were many unaccountable
factors. For example, our respondents could have already got-
ten acquainted with the structure of the source code and the
component-assembly design of the wearable(s) in question
before heading for the latter experimental development cycle,
making the total time and effort significantly lower compared
to those in an alternative scenario where the latter experiment
otherwise went first. Furthermore, we were unable to make
sure that our respondents paid the same amount of attention
to programming and hardware design when participating in
these dual experiments on the same mini project.

VI. FINAL CONSIDERATIONS
The future of IoT is shaped by wearable technology – this
is not just a common saying. Wearable computing enables
new business models and software architecture that might
otherwise be impossible [3], [45].While a coordinating server
is expected to perform decision-making and other non-trivial
tasks in a typical IoT-based architecture, it relies on small
body-worn wearable devices for collecting measurement
data from people wearing them and dispatching instructions.
Wearable devices arguably play a key role in this ever more
distributed architecture, giving rise to IoWT as a sibling term
of IoT. Enabling hardware components and wearable tech-
nologies continue to advance, yet effectively programming
and deploying them poses a few challenges. First, wearables
are assembled and programmed to for their wearer to par-
ticipate in certain business processes, of which the enact-
ment can be tweaked at any time due to business changes.
Furthermore, a computer program already deployed on
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a wearable device is subject to software rebuild to keep
pace with technological changes (e.g., newly available hard-
ware components). Moreover, there is is still a programming
burden involved with data marshalling in IoWT program-
ming, which by nature is error-prone. Generating source
code to ease this painstaking task, though might sound an
old school way of software automation, is worth revisiting.
While research frameworks that target IoT programming look
abundant (e.g., IoTSuite [40], Midgar [55], Asm2C++ [57],
Viple [58], ThingML [30]), computer-aided proposals to
IoWT programming are anything near non-existent. Our
standpoint in this realm is to leverage model-driven engineer-
ing techniques, in particular model-to-code transformation
approaches that are tailored for the state machine. We iden-
tify the following three requirements for a tool that sup-
ports wearable programming: (i) dual-faceted visual design;
(ii) separation of concerns that enable model transformation;
(iii) dedicated code generation techniques. Our research has
resulted in a computer-aided tool calledMicraspis that allows
a wearable to be described both behaviorally and architec-
turally. The tool produces source code in C language featur-
ing an entry point, regular functions that respond to events
captured in the said state machine, and necessary variables
that represent the pin layout of all hardware components.

We conducted a couple of experiments to measure the
effectiveness of our tool proposal. On the one hand, we mea-
sured the amount of source code generated relative to what is
needed for having a wearable device fully operational. On the
other hand, we obtained feedback from programmers on how
they rated Micraspis in meeting the research challenges we
formulated. Measurably, code generation done by Micraspis
amounts to at least 60% of the full implementation in a
series of 6 mini IoWT projects. Most of the programmers we
interviewed express their positive attitude to how Micraspis
addresses the research questions we formulated for IoWT
programming. In total, 161 programmers responded to a
Likert scale questionnaire, with which almost 66% of the
respondents either agreed or strongly agreed.

Our plan is to release a Web-based version of Micraspis.
Work is currently underway to enrich the underlying model-
to-code templates to make code generation possible for a cou-
ple of variants of the target platform for IoWT programming,
e.g., Due Arduino, Mega Arduino, Raspberry Pi. It is known
that a state machine might be represented at several levels
of granularity. We make this choice available to the wear-
able programmers in the future versions of Micraspis for the
sake of design flexibility. We will reflect the programmers’
opinion we collected from the questionnaire in launching the
next substantially enhanced version of our tool (e.g., more
hardware components and additional business domains for
IoWT programming).

Discussions: Architecting and programming wearable
devices is part of the business process enactment for
IoT-enabled smart solutions. To make the enactment suc-
cessful, the coordinating servers and workstations that per-
form non-trivial computing tasks behind the scene (see our

iTempFoll case study) need to be programmed in concert.
The current version of our tool has nothing to do with the
design and implementation of software modules deployed
on these servers. Methodically, in order to fully support
the enactment of IoT-enabled processes, our computer-aided
proposal should cover this server-side programming, which
in fact might be done in a language that is different from
the target language of IoWT programming. For a relatively
complex IoT wearable device (e.g., having a great number
of states, each of which comes with a lot of operations),
it is crucial to prove that our model-to-code transformation
is theoretically sound. To achieve this rigor, we aim to follow
the principle of verified model-to-code transformation [60]
in the future releases of Micraspis. It should be pointed out
that the operations and transitions of the state machine being
edited in Micraspis are wired to the programming functions
in the target source code. While this approach makes code
generation straightforward and verifiable, it sounds too rigid
and might not be welcome by business analysts – who rather
prefer a lift in the abstraction level. The development of a
wearable device may be pat of a multidisciplinary system
engineering project where non-computing sciences and engi-
neering do matter [45]. We wish to make it explicit that our
tool Micraspis has nothing to do with non-computing aspects
of the craftsmanship of a wearable device, e.g., material
science & engineering, human factors & ergonomics.
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