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ABSTRACT Image-to-image conversion tasks are more accurate and sophisticated than ever thanks to
advances in deep learning. However, since typical deep learning models are trained to perform only one
task, multiple trained models are required to perform each task even if they are related to each other. For
example, the popular image-to-image convolutional neural network, U-Net, is normally trained for a single
task. Based on U-Net, this study proposes a model that outputs variable results using only one trained
model. The proposed method produces a continuously changing output by setting an external parameter.
We confirm the robustness of our proposed model by evaluating it on binarization and background blurring.
According to these evaluations, we confirmed that the proposed model can generate well-predicted outputs
by using un-trained tuning parameters as well as the outputs by using trained tuning parameters. Furthermore,
the proposed model can generate extrapolated outputs outside the learning range.

INDEX TERMS Image-to-image conversion, multiple tasks, U-Net, image binarization, background blur.

I. INTRODUCTION
Since the introduction of Convolutional Neural Net-
works (CNN) [1], studies on image analysis using deep
learning have been actively conducted [2], [3]. For example,
U-Net [4], a CNN-based image-to-image model, can perform
precise image segmentation. These U-Net-basedmodels have
shown significant strength in image transformations [5], [6].
However, to be trained, these U-Net-based models require
a dataset for each purpose. This means that even for task
with little variations, such as a threshold for global bina-
rization, a new U-Net needs to be trained. In contrast, tra-
ditional rule-based image processing techniques can easily
change the output based on a parameter. Therefore, these
rule-based techniques still are used for image transformation
tasks [7]. Fig. 1 demonstrates examples of generating multi-
ple outputs of traditional rule-based image processing (global
binarization).

Even though U-Net-based models also can perform tasks
similar to rule-based image processing methods, separately
trained U-Nets models for each purpose are required.
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FIGURE 1. Examples of a traditional image processing technique. The
traditional image processing technique (global binarization) can generate
multiple outputs by tuning threshold values. Images from left to right
correspond to the generated result by threshold values as 0.1, 0.3, 0.5,
and 0.7.

For example, in the case of image binarization, traditional
rule-based methods can utilize global threshold values easily,
as in Fig. 1. However, if a U-Net-based model wants to
perform the same task, individual models at each threshold
is required.

In addition, U-Nets require a large number of well-
annotated training samples. Generating annotated image
data is can be difficult because it often requires expert
guidance. Furthermore, the number of published training
data can be insufficient, like historical document image
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FIGURE 2. Comparison of model training process between traditional U-Net and the proposed model. For conducting multiple similar tasks,
several pre-trained U-Nets should be required. However, the proposed model can conduct multiple similar tasks by a single training process.

binarization. Consequently, securing several sets of training
data and training several individual U-Nets is a difficult and
time-consuming task.

Therefore, various solutions have been adopted in
U-Net-based models, such as using data augmentation [8],
utilizing compressed U-Nets [9], or designing conditional
U-Nets with generative models [10]. In the case of data
augmentation and compressed U-Net methods, even though
it might be possible to secure the data, the process of train-
ing several models is required for generating outputs under
different conditions. In the case of U-Nets with generative
models like Generative Adversarial Networks (GAN) [11],
even though they can tune outputs and generate multiple out-
puts [12], [13], the training process of the generative models
are relatively complicated compared with the conventional
U-Net’s training process.

In this paper, we propose Tunable U-Net (TU-Net), a novel
U-Net-based model to control the output efficiently. TU-Net
is designed to conduct multiple similar tasks like Fig. 2.
TU-Net is trained using a tuning parameter which can change
the output without the requirement of multiple trained mod-
els. Through the proposedmethod, we can perform traditional
image processing techniques that require a parameter like
Fig. 1. The proposed model is designed as an end-to-end
system.

To show the output controlling ability of TU-Net,
we trained the proposed model to conduct two tasks: image
binarization and image background blurring. Since tradi-
tional methods of image binarization can control the results
by tuning threshold values, we train the proposed method
similarly. Also, since background blurring can adjust the
degree of background blurring by controlling filter size, it is
used as the second task. In addition, background blurring
demonstrates the usefulness of using a network over tradi-
tional methods because the model needs to adaptively learn
the edges of the foreground and background. Through these
tasks, we can evaluate the tuning ability of the proposed
model effectively.

The primary contributions in this paper are as follows:

• We propose a novel architecture based on U-Net for
tuning outputs called a TU-Net. In the proposed model,
we propose the use of a novel tuning network for trans-
forming from scalar values to features.

• For evaluating the tuning ability of the proposed model,
TU-Net is evaluated on two tasks: image binarization
and image background blurring.

• We evaluate the ability of TU-Net with detailed quan-
titative and qualitative results by using MSCOCO [14]
and MSRA [15] datasets. The proposed model achieves
better results compared with individually trained con-
ventional U-Nets.

• We confirmed that TU-Net is able to generate
extrapolated results by using untrained tunable input
parameters. We analyze the qualitative results of the
extrapolated outputs compared with the interpolated
outputs.

The remaining of this paper is organized as follows.
Section II reviews related work. Section III provides details
of the proposed model and our considerations when we
designed the proposed framework. Section IV demonstrates
the quantitative and qualitative results. Finally, Section V is
the conclusion.

II. RELATED WORK
In this section, wewill briefly describe related works in image
binarization and blurring, and conditional generative models.

A. IMAGE BINARIZATION AND BACKGROUND BLURRING
METHODS
Since traditional binarization methods need a threshold value
for dividing foreground and background areas, research for
defining an optimal threshold value has been performed
[16], [17]. However, since setting the optimal threshold val-
ues can be difficult, the generated results by traditional image
processing methods are not always consistent [18].
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With the development of CNNs, image binarization sys-
tems also have been improved. CNN-based binarization
systems have shown significant performance [19], [20].
He and Schomaker [21] suggested a document image
binarization method that adopts an iterative deep learn-
ing framework. Vo et al. [22] designed a CNN-based
end-to-end binarization method by using multi-scale deep
supervised networks. Also, after the introduction of gen-
erative models, image binarization systems with genera-
tive models have been suggested [23]. For enhancing the
performance of image binarization, Bhunia et al. [24] and
Zhao et al. [25] develop binarization systems using a con-
ditional GAN (cGAN).

Image background blurring, called the bokeh effect, is a
photographic technique used to highlight a subject. Recently,
due to the increasing number of photographs taken with
smartphones, background blurring systems based on various
image processing techniques are utilized for complement-
ing the limited specifications of smartphone camera sensors.
Early image background blurring techniques were imple-
mented based on image processing techniques [26]–[28].
However, with the development of image segmentation using
CNNs, background blurring models using CNNs have been
proposed. Shen et al. [29] suggested an image background
blurring system with newly defined matting components.
Their end-to-end system, by using novel matting layers, clas-
sifies background, foreground, and unknown labels without
the user’s intervention. Wadhwa et al. [30] performed an
effective image background blurring by constructing a precise
person segmentation network using several U-Nets.

B. CONDITIONAL GENERATIVE MODELS
GANs, proposed by Goodfellow et al. [11], perform a model
training process through competitive learning between a gen-
erative model and a discriminate model. According to GAN’s
competitive learning process, GAN can create fake results
similar to real data. However, since the outputs of GANs
are uncontrollable, cGAN [31] was proposed by providing
a condition. Since cGANs has shown the ability that can
control the output, various cGAN-based models have been
suggested [12], [32], [33].

Advanced cGAN-based models can be divided into three
types of training data utilization: paired mapping, un-paired
mapping, and multi-domain mapping. Isola et al. [12] pro-
posed a novel photo-realistic image-to-image conversion
model (Pix2pix) which uses a cGAN with paired mapping
training data. However, preparing sufficient paired mapped
training image data is difficult, cycleGAN [32], Disco-
GAN [34], and GauGAN [35] were suggested for unpaired
image-to-image translation. For conducting multi-domain
image translation, starGAN was suggested to be trained with
different multi-domain datasets [33]. These cGAN-based
models have been also introduced in various fields:
complex image translation with auxiliary classifier [36],
high-resolution image synthesis [37], video synthesis [38],
and pose-based image generation [39].

Variational Auto-Encoders (VAE), proposed by Kingma
and Welling, can create results by utilizing latent values
that are produced from the encoder [40]. Sohn et al. [41]
suggested a conditional VAE (cVAE) for supervised and
semi-supervised learning. cVAE is trained and generates
results with the condition information. Esser and Sutter [10]
performed conditional appearance and shape generation
using U-Net and VAE. They can synthesize outputs with
that appearance in different geometrical layouts by concate-
nating the inferred appearance representation of VAE with
the bottle-neck representation of U-Net. cVAE based models
have been introduced in various fields: cVAE and GAN for
fine-grained image generation [42], and image generation of
people in clothing [43].

C. DIFFERENCE BETWEEN TU-NET AND cGAN-BASED
MODELS
The proposed method, TU-Net, has several differences from
existing conditional generative models. The differences are
as follows:
• Compared with cGAN-based models, TU-Net adopts a
single loss function and simpler architecture without a
discriminator network. Since cGAN-based models cre-
ate outputs heuristically by competing generator and
discriminator networks, cGAN-based models should be
trained by several loss functions. Therefore, the model
training of cGAN-based models is difficult compared
to TU-Net. However, TU-Net can generate outputs by
adopting the general architecture of image generation
networks like U-Net.

• Compared with cVAE-based models [41], TU-Net can
use a single scalar parameter to change the output and
it requires no modification to the input. In a TU-Net,
the whole model can be frozen and the output is changed
using only the tuning parameter.

III. THE PROPOSED MODEL
The TU-Net contains two parts. A conventional U-Net to
perform the image processing task and a tuning network to
control the output. This section will describe the parts.

A. U-NET IN TU-NET
The proposed model is based on a U-Net [4] architecture.
As shown in Fig. 3, an input image first passes through the
contracting path of U-Net. The contracting path is based on
VGGNet [44]. Like VGGNet, the contracting path of U-Net
extracts the features of an input image by using convolutional
layers and down-samples the extracted features by using
pooling layers. Through each down-sampling, the number of
channels is doubled and the size of the feature maps is halved.
The extracted features in the contracting path are compressed
in the bottleneck of U-Net.

In a conventional U-Net, to up-sample the extracted
features from the contracting path, the expanding path is
designed with deconvolutional layers. The architecture of the
expanding path is designed for dense prediction from coarse
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FIGURE 3. The detailed architecture of the proposed model. The proposed model has two inputs; an image and a paired scalar value.

maps. In the last layer of U-Net, a 1×1 convolution operation
is conducted for generating a 1-channel image.

U-Nets also adopt skip-connections between the contract-
ing path and the expanding path for effective pixel-wise
image transformation. Through each up-sampling step,
up-sampled feature maps are concatenated with cropped fea-
ture maps of the contracting path by using skip-connections.

1) TUNING NETWORK IN TU-NET
The proposed method has the same contracting and expand-
ing path structures as a conventional U-Net. The difference
between a conventional U-Net and the proposed TU-Net
is the addition of a scalar input parameter, or the tuning
parameter. The tuning parameter allows for the output of
the network to be tuned accordingly. It should be noted
that during training, multiple different tuning parameters are
trained simultaneously in one TU-Net model. This is opposed
to a conventional U-Net which would need to separate trained
models for each tuning parameter.

We modify the conventional U-Net at the bottleneck layer
with the addition of a tuning network, as shown in Fig. 3.
The tuning parameter is a scalar value and the output is a
feature map that is concatenated inside the U-Net. The tuning
parameters are simple scalar values that reflect attribute infor-
mation of the training data. This means that to change some
attribute of the generated output image, different external
scalar values can be adjusted without requiring re-training the
network.

The proposed tuning network of TU-Net uses a
Multi-Layer Perceptron (MLP) to incorporate the tunable
parameters into the model. The MLP is organized with
fully-connected layers. However, since a conventional U-Net

only consists of convolutional layers, the output of the tuning
network should be transformed to fit the U-Net. Therefore,
we reshape the output of the tuning network from independent
nodes into amatrix of the same size of the featuresmaps in the
bottleneck layer. By injecting the output of the tuning network
with the bottleneck layer, the information from the tuning
network is propagated through the expanding path layers to
affect the output. This means that we can control the output
easily by tuning the features of the bottleneck. To do this,
we concatenate the reshaped matrix of the tuning network
to the bottleneck of U-Net. In the TU-Net, 1,023 channels
are feature maps from standard convolutional filters and
1 channel is the reshaped output of the tuning network. Since
the size of the used training images is 256× 256, the size of
the injected matrix is 16× 16.

IV. EXPERIMENTAL RESULTS
We created new datasets using published datasets to verify
the proposed model. Since the proposed model changes the
output by utilizing external scalar values, the ground truth
images were generated using traditional image processing
techniques with corresponding scalar values. We tackle two
tasks, image binarization and background blurring. Image
binarization is used as a simple target to verify the pro-
posed model’s effectiveness as well as test the ability to
perform a global image processing technique. On the other
hand, background blurring is a complex task that needs to
simultaneously identify and ignore the subject of the image
and blur the background. We trained the proposed model
for conducting these two tasks, and the results were verified
quantitatively and qualitatively and compared with the results
of a conventional U-Net.

103282 VOLUME 9, 2021



S. Kang et al.: Tunable U-Net: Controlling Image-to-Image Outputs Using Tunable Scalar Value

A. DATASETS
1) DATASET FOR IMAGE BINARIZATION
We trained the proposed model to perform image binarization
by using the MSCOCO [14] dataset. The MSCOCO dataset
is a popular dataset that contains more than 330,000 images.
To generate the ground truth images, we used a global fixed
threshold. The global fixed threshold binarizes the images
by assigning all the pixels brighter than a given threshold to
white and the rest to black. Using the global fixed threshold is
ideal for the proposed scenario because the threshold can be
used as the tuning parameter. To use the global fixed threshold
as a tuning parameter, we generated binarized images at nine
equidistant thresholds and used the thresholds as the scalar
tuning parameters. For our experiment, the threshold values
are normalized to integers between 1 and 9. The number
of scalar tuning parameters is arbitrary and can be selected
for other purposes. We use nine because it is a balance of
having enough to not have dramatic steps between parameters
and not so many that the differences between them are still
present.

Even though we generated nine different sets of binarized
ground truth images, we only utilized a portion of the sets for
training in order to test the interpolation and extrapolation
abilities. There were two versions of the proposed model,
Proposed (3) that uses three scalar values (3, 5, and 7) and
Proposed (5) that uses five scalar values (1, 3, 5, 7, and 9).
The Proposed (5) model has the full range of threshold values
from 1 to 9 but must infer the missing thresholds. Proposed
(3) is similar except that it must extrapolate the binarization
to the top and bottom tuning parameters.

For the experiments, 1,000, 200, and 100 randomly
selected original images from MSCOCO were used for the
training set, validation set, and test set, respectively. The
original images were then transformed using the previously
mentioned global fixed thresholding at the various levels.
Thus, Proposed (3) had a total of 3,000 training and 600 vali-
dation images, and Proposed (5) had a total of 5,000 training
and 1,000 validation images. For testing both models, all nine
thresholds were used for a total of 900 images.

2) DATASET FOR IMAGE BACKGROUND BLURRING
To perform image background blurring, the MSRA [15]
dataset was used. Similar to theMSCOCOdataset, theMSRA
dataset contains natural scene images. However, the rea-
son why the MSRA dataset is used is that it contains seg-
mented ground truth for foreground and background areas.
Therefore, we are able to create background blurring ground
truth images by utilizing a Gaussian filter on only the
background regions. Compared to the global fixed thresh-
olding binarization, background blurring is a complex task
that must inherently understand the parts of an image that
are background and which are foreground without explicit
identification.

Similar to the image binarization task, we used different
levels of blurring on the input images to construct the ground
truth. To blur the backgrounds, we set Gaussian blur filters

to kernel sizes 5, 15, and 45. The tuning parameters are the
kernel sizes normalized to 1, 3, and 9, respectively. For the
background blurring experiment, the proposed model was
trained with 3,000 training samples with 1,000 from each
trained blurring level, 600 validation samples, and 900 test
samples.

B. EXPERIMENTAL SETUP
Training of the model is similar to that of a conven-
tional U-Net, except with the additional scalar input and
a more appropriate loss function. Because our applica-
tion is image-to-image instead of a segmentation task,
we used Mean Absolute Error (MAE) loss instead of Cross-
Entropy (CE) loss. The model is trained using Adam opti-
mizer [45] with an initial learning rate of 0.0001. The model
was trained with early stopping with patience of 50 epochs of
no change and a maximum of 1,000 epochs.

As the comparative method, a conventional U-Net is used.
The U-Net has the same structure as the proposed TU-Net
except without the tuning network. Also, the comparative
U-Net has the same training regimen as the proposed method.
Unlike the proposed method, individual independent U-Net
models are required for each of the tuning parameters. Thus,
nine U-Net models are trained. Also, this means that for
the untrained tuning parameters, the U-Net comparisons are
granted ground truth that the proposed method does not have
access to.

C. BINARIZATION EXPERIMENT
In this section, we evaluate the proposed method by compar-
ing independent U-Nets to the proposed TU-Net on image
binarization. We demonstrate various qualitative and quan-
titative results for an in-depth analysis. First, we show
comparative qualitative results that include the results of the
conventional U-Net. Next, we compare the results of TU-Net
and the conventional U-Net by utilizing quantitative eval-
uation criteria. The conventional U-Nets, our comparative
model, were trained by nine models to generative different
nine binarized images.

In Fig. 4, for the qualitative evaluation of the proposed
model, we demonstrated the generated result images of the
proposed model with five tuning parameters (Proposed (5)).
The first row of Fig. 4 is the ground truth images generated
by a global fixed thresholding method. The second row is
the result images of the conventional U-Net. The third row
is the results of Proposed (5). The last row indicates the nine
tuning parameters (from P = 1 to 9) that are used for output
generation. The red tuning parameters (P = 2, 4, 6, 8) are
non-trained tuning parameters of TU-Net.

As shown in Fig. 4, Proposed (5) can control the output
properly and generate well-predicted images in all tuning
parameters. In Fig. 4, we demonstrated controlled outputs
from P = 1 to 9 by using four input images. Even though
we conducted just model training once by using TU-Net,
the results of Proposed (5) are superior to the results of each
nine U-Nets that were trained by each tuning parameter.
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FIGURE 4. Examples of binarized image results. The red tuning parameters are not explicitly trained by the proposed model.

In Fig. 4, we want to discuss two issues why TU-Net
is good to generate multiple similar outputs. First, even

though the conventional U-Nets were also shown good image
binarization from P = 3 to 7, the predicted images of the
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TABLE 1. Average test results for binarization. P is the tuning parameter.

FIGURE 5. Graphs of PSNR at different values of P . The graphs from the upper left to the lower right correspond to the images in Fig. 4.

U-Nets are worse than Proposed (5) in P = 1, 8, and 9.
We thought that the conventional U-Net is only trained

for image-to-image transformation like image binarization.
However, TU-Net can be trained the degree of changing

VOLUME 9, 2021 103285



S. Kang et al.: Tunable U-Net: Controlling Image-to-Image Outputs Using Tunable Scalar Value

FIGURE 6. Examples from Proposed (3) which show results from tuning parameters external to the range that it was trained with. The red
tuning parameters are not explicitly trained by the proposed model. The blue circles of tuning parameters indicate extrapolated tuning
parameters.

FIGURE 7. Examples of background blurring results. P is the scalar tuning parameter.

output as well as image-to-image transformation simulta-
neously. Therefore, even when it is not easy to perform
image conversion, such as P = 1,8, and 9, TU-Net can
generate well-binarized images compared with the U-Nets.
Second, TU-Net can predict images with the non-trained
tuning parameters (P = 2, 4, 6, 8). Due to the inference

ability of TU-Net, computational cost and memory burden
for conducting multiple similar tasks by U-Net-based model
can be decreased.

In Fig. 5, for the quantitative evaluation of the proposed
model, we plot graphs that include the Peak Signal-to-Noise
Ratio (PSNR) values of the conventional U-Net, TU-Net with
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FIGURE 8. Comparative results of background blurring between the MLP-based proposed model and TU-Net with a flat-valued matrix. Images from left
to right correspond to the result image of P = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 30. The red tuning parameters are not explicitly trained by the proposed model.
The blue circles of tuning parameters indicate extrapolated tuning parameters.

three tuning parameters (Proposed (3)) and Proposed (5).
Since the PSNR measurement criterion can calculate the
degree of image distortion by the Mean Square Error (MSE),
the PSNR is still utilized with other measurement criteria in
an evaluation of document image binarization [46].

In Fig. 5, Proposed (3) and Proposed (5) achieve better
PSNR results in almost all tuning parameters compared with
the U-Nets. According to Fig. 5, we recognized two things
in the proposed model. First, several PSNR results of Pro-
posed (3) are good as well as the results of Proposed (5).
It means even if we train TU-Net with fewer tuning parame-
ters, the trained TU-Net can generate well-predicted images.
Second, The proposed model (Proposed (3) and (5)) achieved
a huge gap of PSNR values in P = 1, 8, and 9 compared
with the results of the U-Net. These quantitative results prove
that TU-Net can generate well-predicted results. According
to these two things, the proposed model can control outputs
effectively in all tuning parameters.

The average test results for each tuning parameter P
are shown in Table 1. The table has results for six mea-
sures, Precision, Recall, F-measure (FM), Structural Simi-
larity Index Measure (SSIM), Normalized MSE (NMSE) as
well as PSNR. The quantitative results were calculated by
utilizing 100 test images. Compared with U-Net, Proposed
(5) achieves better results for all measures and at all values of
P despite not being explicitly trained at P = 2, 4, 6, and 8.
Furthermore, Proposed (3) also achieves better results in all
P for the most part compared with U-Net. In addition, we can
confirm that Proposed (3) achieves the robust performance
of output control and image generation in the extrapolated
tuning parameters (P = 1, 9). This indicates that the proposed
method is able to accurately infer and interpolate the missing
P values, although the missing P values are extrapolated
values. In Fig. 6, the result images of Proposed (3) prove
that TU-Net can predict outputs in the extrapolated range of
the tuning parameters as well as the interpolated range of the
tuning parameters.

FIGURE 9. The result images by injecting an external range of tuning
parameters used for the model training.

D. BACKGROUND BLURRING EXPERIMENT
Since the goal of image background blurring is to blur back-
ground areas and to preserve foreground areas simultane-
ously, before blurring the background areas of an image,
detecting the foreground areas is important. In [26], Yan et al.
proposed an image processing-based blurring system that
has several techniques for segmenting foreground and back-
ground areas such as Lazy Snapping [47], face detection,
and depth map generation method. Therefore, if researchers
want to design a CNN-based image background blurring sys-
tem, they should design two CNN models for segmentation
and background blurring at least. In addition, bokeh effect
in a photography can control the degree of blurring back-
ground areas using aperture sizes. Therefore, if CNN-based
image background blurring systems want to generate various
types of blurred outputs at different aperture sizes, several
pre-trained CNN-based systems are required. That is why the
proposed model is suggested for generating multiple blurred
outputs.

In this section, we trained the proposed model by using
three scalar values for background blurring in Fig. 7. When
we trained the proposed model, we used only three scalar val-
ues (P = 1, 5, 9) since we confirmed that the proposed model
with three scalar values also shows robust output tuning
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FIGURE 10. The output of the tuning network at different values of P . The red tuning parameters are not explicitly trained by the proposed
model.

performance in Fig. 6. Therefore, except for these three scalar
values, used other scalar values in Fig. 8 is created. However,
these created scalar values do not get out of the scalar values
used for the training. We can call these results interpolated
results.

Fig. 7 illustrated comparative results between the predicted
and ground truth images. In Fig. 7, we confirmed that the
proposed model blurs the image’s background areas and
detects a proper foreground area in the image at the same
time. Also, according to the third and fifth row’s images of
Fig. 7, the proposed model can conduct background blurring
with non-central foreground images. It means that the pro-
posed model is not biased or process background blurring in
the middle of an image. In Fig. 8, the results of the U-Net
and the proposed model on images with multiple foreground
objects. The proposedmodel shows clear boundaries between
the foreground and background. According to Fig. 7 and
Fig. 8, we can recognize two strengths of the proposedmodel,
first is controlling successive blurring steps by using only
scalar values, and the second is detecting the real foreground
targets in an image even though there are two foreground
areas in an image. Also, by increasing scalar values in the
proposed model, the relatively stronger target (foreground)
still remains.

E. WHY WE USE A MLP-BASED TUNING NETWORK IN
TU-NET
In this section, we demonstrate the results of the proposed
model by modifying the input part. We demonstrate the mod-
ified TU-Net by injecting amatrix instead of theMLPs.When
we designed the proposed model, we considered that used
MLPs in the proposed model are biased in the middle-side
of the input image. According to Fig. 7, and 8, even though
we can check this fact by using non-central targets of images,
we should verify our proposed model by using matrices.

Since the matrices filled by scalar values are not only the
same size as the output of an MLP-based tuning network but
also consist of exceedingly few parameters compared with an
MLP-based tuning network, we thought that using a matrix in
TU-Net can be efficient compared with using an MLP.

In Fig. 8, the comparative results between the proposed
model and the modified TU-Net by injecting a matrix instead
of an MLP. Fig. 8 demonstrates the background blurring
results of the proposed model by using scalar values from
P = 1 to 9 and 30. Since the proposed model was trained
by using three scalar values (P = 1, 5, 9), the results (P =
2, 3, 4, 6, 7, 8) are interpolated predicted results. Even

though TU-Net with a flat-values matrix also can control
outputs as well as MLP-based TU-Net, the successive output
change of TU-Net with a flat-values matrix is worse than
MLP-based TU-Net. Especially, the extrapolated predicted
results of MLP-based TU-Net can detect multiple foreground
areas and blur background areas compared with TU-Net with
a flat-values matrix.

To evaluate the performance of predicting extrapolated
values in TU-Net, we inject an external range of the scalar
values as shown in Fig. 9. Fig. 9 shows the result images of
P = 30 and 90. We also injected the smaller values of the
minimum value of used scalar values for model training (P =
0.1, 0.5). We could not find a big difference compared with
the result image by using P = 1. According to Fig. 9, even
though we did not consider cases of using an external range
of used scalar values when we train the proposed model,
the proposed model’s outputs can be controlled by using the
external range of used scalar values. In addition, by increasing
scalar values, the degree of blurring effect in the images is
increased.

Fig. 10 demonstrates the outputs of an MLP-based and a
flat-values matrix. We can confirm that an MLP-based tuning
network can control the output of TU-Net compared with
a flat-values matrix. As shown in Fig. 8 and 10, we can
confirm that the modified TU-Net cannot predict well when
the modified TU-Net uses created scalar values compared
with the proposed model.

According to this experiment, we confirmed two things.
First is that the proposed TU-Net shows robust performance
compared with TU-Net with a flat-values matrix. It means the
predicted results of the proposed model are not biased in the
middle from the MLPs. Second, even though the modified
TU-Net shows better performance, in the prediction ability
to use non-trained scalar values, the proposed model shows
much better performance since MLPs can contain lots of
information compared with matrices.

V. CONCLUSION
In this study, we proposed Tunable U-Net that can control the
output by utilizing scalar values. In the proposed model, for
controlling an output of the U-Net, an MLP-based tuning net-
work is suggested. The proposed model shows good perfor-
mance in image binarization and image background blurring
by using the MSCOCO and MSRA datasets compared with
conventional U-Nets. According to these evaluation results,
the proposed model not only shows robust performance
in trained tuning parameters but also shows well-predicted
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outputs in untrained tuning. Moreover, the proposed model
shows the extrapolated results by injecting an external range
of used scalar values for mode training. Furthermore, accord-
ing to the results of the proposed model by using a matrix
input instead of the proposed tuning network, we showed that
the MLP is essential.

In the future, we hope to utilize the proposed model in
various research fields. It has a wide range of applications,
especially for computer vision tasks that require a manual
parameter. In addition, in the future, wewill pursue the idea of
training Tunable U-Nets that perform multiple tunable tasks
simultaneously.
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