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ABSTRACT Retrieving incidents from video stream plays an important role in many computer vision appli-
cations. However, most video surveillance system can neither recognize incidents nor support content-based
retrieval before the video stream is saved into files. As an emerging type of sensing modality, Wi-Fi signal
have the potential to become a signal synchronized with the video stream to perform the incidents detection
and recognition. In this work, we simultaneously collect the video stream and the Wi-Fi signal in two
surveillance scenarios, and develop a LSTM-based classification model that is able to recognize the incidents
in surveillance scenarios. Specifically, we first deploy a video surveillance system in two scenarios to capture
the video stream and the synchronized Wi-Fi signal that is very sensitive to environmental changes. Second,
an incident detection method based on the entropy change ofWi-Fi signal is proposed to find out the start and
end time of the incident in the CSI sequence, thus greatly reducing the computational complexity compared
with shot detection in the video stream. Third, the deep network LSTM is adopted to develop an incident
recognition model that would be used to classify each size-variable CSI segments into known categories
corresponding to the types of the incidents. Fourth, usingWi-Fi signal to locate and recognize incidents in the
video stream, we build a quick content-based video retrieval system. Last, the experimental evaluation was
performed on a group of real Wi-Fi signal samples. The statistical results shows that the proposed incident
detection method is feasible and effective to find out the incidents in video files with an average error of 1.5 s.
And the evaluation experiment results demonstrate that the proposed multi-classification model acquires an
average value of 0.972, 0.973, 0.985, 0.972 and 0.962 for recall, precision, accuracy, F-1 score and Kappa
coefficient, respectively.

INDEX TERMS CSI, video surveillance, incident retrieval, time series recognition, LSTM, Wi-Fi.

I. INTRODUCTION
With technological progress and social development, video
surveillance system that would be used to capture some
incidents have been deployed in many applications in our
daily life. However, locating and recognizing incidents from
dozens to thousands of hours of video stream has always
been a challenging problem and also a research hotspot in
the community [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Khin Wee Lai .

Strictly speaking, video retrieval problem refers to the
retrieval of videos that are similar to the video clips provided
by users in a large video database [2]. To complete this type
of retrieval task, it is first necessary to go through shot detec-
tion [3], key frame extraction [4], feature extraction [5], index
classification and other steps to construct a video feature
library. Then, in the retrieval stage, the features of the video
clips provided by the user are extracted and compared with
the features in the database to complete the retrieval task.
It should be noticed that video content recognition can’t be
supported by video retrieval, that is, the video clips cannot be
classified into specific categories in the vedio retrieval stage.
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Video content recognition which has broad range of appli-
cation is a far more complicated problem compared to static
image classification. No matter the previous works that use
hand-crafted representations [6]–[8] or based on deep learn-
ing [9]–[11], must not only needs to overcome variations
such as object diversities, scale and noise, but also has to
analyze incident cues in video stream, thus leading to more
computational complexity and inefficiency.

Considering about the essence of the video stream care-
fully, it is just a medium that truly records the infromation
about the past incidents to meets human visual requirements.
Due to the complex spatial-temporal characteristics of video
stream, performing retrieval and recognition tasks onwhich is
not only computationally expensive, but also lacks real-time
performance. Suppose there is a signal that is synchronized
with the video stream, is easy to process, and can record the
spatial-temporal pattern corresponding to the incidents hap-
pened in the surveillance scenario. We can perform incident
retrieval and recognition based on this signal and the video
signal is just used as a storage medium to provide visual
evidence, then everything will become simple and elegant.
Inspired by this point of view, we set our sights on the
pervasive Wi-Fi signal in our daily life.

With the rapid development of wireless communication
technology, Wi-Fi signal has been gradually extended from
pure communication and networking to wireless perception
and localization, opening up a new research band, namely:
device-free passive sensing technology [12]. Wi-Fi signal
is essentially electromagnetic wave radio frequency signal,
the propagation path of which will change along with the
electromagnetic changes caused by human activities or some
incidents in the surveillance place during its propagation from
the transmitter to the receiver. Concretely, the changes will be
reflected in the channel state information (CSI) sequence in
wireless physical layer (PHY), by analyzing the fluctuations
of which, researchers have proposed fine-grained wireless
sensing solutions, such as activity recognition [13]–[17],
localization [18]–[22], identification [23]–[27] and so on.

However, all current existing research efforts aims to use
Wi-Fi signal as a single sensing modality to realize intelligent
sensing, ignoring the fusion and integration with other sens-
ingmedium, like video stream. Different from previous work,
the main goal of this work is to achieve rapid retrieval and
recognition of incidents in the video stream. The main data
to be processed is not the video stream itself but the Wi-Fi
signal instead, thus leading to better real-time performance
and lower computational complexity. Specifically, by using
off-the-shelf Wi-Fi devices and calling the open-sourced
firmware [28] of the wireless network card, the CSI sequence
of Wi-Fi signal reflecting some incidents or human activities
is synchronously collected with the video stream. For the
collected CSI sequence, an algorithm based on the entropy
change of the sliding window is adopted to capture the start
and end time of the incidents so as to obtain the segments
of CSI sequence corresponding to the incidents. Based on
a dataset that we have built for specific categories of the

incidents, a deep recurrent neural network (RNN) is also
trained to recognize the category of each CSI segment.

To sum up, the contributions of this work are as follows.
First, we pioneered the fusion of Wi-Fi signal and video

stream, and converted the traditional video retrieval and
recognition problem into the analysis and processing of CSI
sequence of Wi-Fi signal, thus realizing video retrieval and
recognition more efficiently. The conversion of the data
object from 3-D video to 2-D CSI sequence greatly reduces
the computational complexity and is also beneficial to protect
user privacy.

Second, we develop an algorithm based on the entropy
change of the sliding window to locate the start and end time
of the incidents in the CSI sequence of Wi-Fi signal, thus
greatly reducing the computational complexity compared
with the shot detection in video data.

Third, we construct a RNN-based multi-classification
model to classify each CSI segment into specific categories
corresponding to specific types of the incidents. To the best of
our knowledge, this is the first work to retrieve and recognize
incidents in video stream by fusing Wi-Fi signal so as to
simplify the pipeline of content-based video retrieval and
recognition.

Last, we construct a dataset that contains 5 644 CSI
sequence samples in four categories in the dormitory hall
scenario, and 4 700 samples in three categories in the garage
exit scenario.

The rest of this paper is organized as follows. The dataset
construction, incidents detection method and LSTM-based
multi-classification model will be illustrated in detail in Part
II. The experimental evaluation metric and the experimental
results will be shown in Part III. A concise discussion will be
presented in Part IV. And in Part V, we conclude our work and
look ahead to possible future research directions.

II. MATERIALS AND METHODS
A. PRINCIPLES OF WI-FI SENSING TECHNOLOGY
Wi-Fi signal is typically the electromagnetic signal, the chan-
nel characteristics of which are determined by the trans-
mission medium, that is, the electromagnetic environment
in propagation space. It is well known that there will be
a multipath effect when the Wi-Fi signal propagate from
the transmitters to the receivers due to the human activities
or the occurrence of incidents in the surveillance scenario.
Therefore, the received signal is a combination of a series
of multipath signals. Specifically, there are two types of
propagation paths ofWi-Fi signal, namely line of sight (LOS)
and reflection path, as shown in Fig. 1.

Assuming that the transmitted signal is a sine wave,
defined as:

x(t) = A cosωct (1)

where x(t) denotes the transmitted signal,A denotes the signal
amplitude and t denotes the time. When the Wi-Fi signal
arrives at the receiver through various paths, the received
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FIGURE 1. Wi-Fi signal propagation paths.

signal can be modeled as:

y(t) =
n∑
i=1

Ai(t) cos[ωct + ϕi(t)]

=

n∑
i=1

Ai(t) cosϕi(t) cosωct −
n∑
i=1

Ai(t) sinϕi(t) sinωct

= X (t) cosωct − Y (t) sinωct (2)

where y(t) denotes the received signal, Ai(t) and ϕi(t) respec-
tively denotes the amplitude and phase of the signal trans-
mitted along with the i-th path. Moreover, X (t) and Y (t)
satisfy (3) and (4), respectively.

X (t) =
n∑
i=1

Ai(t) cosϕi(t) (3)

Y (t) =
n∑
i=1

Ai(t) sinϕi(t) (4)

where X (t) and Y (t) are mutually independent random vari-
ables. When n is large enough, both of them tend to be nor-
mally distributed. Therefore, y(t), namely Rayleigh channel
model, is defined as:

y(t) = V (t) cos[ωct + ϕ(t)] (5)

where V (t) =
√
X2(t)+ Y 2(t), denotes the envelope of the

received signal and ϕ(t) = arctan(Y (t)/X (t)), denotes the
phase of the received signal.

When human activities or incidents happen in the surveil-
lance scenario, both V (t) and ϕ(t) of the received signal
will change significantly and show a specific spatial-temporal
pattern corresponding to the categories of the incidents
(see Fig. 2).

As a PHY layer metric of the wireless network based
on Wi-Fi signal, CSI is able to reveal a group of chan-
nel measurements by sampling the timestamp, received sig-
nal strength indicator (RSSI), radio frequency chain, noise,
matrix of channel frequency response and so on. Therefore,
analyzing the spatial-temporal pattern of the above indicators
in the CSI sequence and deriving the physical changes occur-
ring in the surveillance scenario constitute the core of Wi-Fi
sensing technology.

FIGURE 2. Signal pattern of the incident.

FIGURE 3. Signal collection system.

TABLE 1. The structured form of a CSI packet.

B. SIGNAL COLLECTION
As illustrated in Fig. 3, the CSI sequence of Wi-Fi signal
is synchronously collected with the video stream. The main
devices that make up the entire system are camera, wireless
router and a laptop that receive Wi-Fi signal. We select a
TP-LINK wireless router equipped with one single antenna
as the transmitter, and use a Thinkpad laptop with a network
interface card (NIC) equipped with 3 antennas as the signal
receiver.

The sampling rate of the CSI packet in Wi-Fi signal is
set to 200 Hz, so even the tiny channel response fluctua-
tions in the surveillance scenario can be captured in a high
precision. Massive CSI packets are stored in accessible data
files (e.g.,.dat or .txt file) in a structured form as depicted
in Table 1.
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TABLE 2. The structure of the CSI packet.

The channel frequency response between each pair of
transmitting-receiving antennas in the form of complex, like
[Real, Imag], is recorded in each CSI packet, and the value of
which is recorded as aNt×Nr×30 complex matrix, whereNt
denotes the number of transmitting antennas, Nr denotes the
number of receiving antennas, and 30 represents the number
of subcarriers in each radio beam according to IEEE 802.11
a/g/n standard [29]. We extract the most useful fields in each
CSI packet, and organize the massive CSI packets into a
time series according to the TimeStamp field, thus providing
a CSI sequence for Wi-Fi sensing technology. As depicted
in Table 2, the structure of CSIi,j packet with Real and Imag
denoting the real and imaginary part of the channel frequency
response between the i-th transmitting antenna and the j-th
receiving antenna.

For an n × m multi-input and multi-output (MIMO) wire-
less communication system, assuming that the transmitted
signal is X = [x1, x2, . . . , xn] and the received signal is
Y = [y1, y2, . . . , yn], then the channel transformation from
the transmitter to the receiver can be defined as:

Y = H · X+ N (6)

where N is the pseudo-random noise that can be modeled by
the circular symmetric complex normal distribution, that isN
∼ cN(0, S), and H is the transformation matrix, defined as:

H =


H1,1 H1,2 · · · H1,m
H2,1 H2,2 · · · H2,m
...

...
...

...

Hn,1 Hn,2 · · · Hn,m

 (7)

where Hi,j(1 ≤ i ≤ n, 1 ≤ j ≤ m) denotes each chan-
nel transformation between the i-th transmitter and the j-th
receiver.

The transformation matrix H contains the electromag-
netic changes caused by physical environmental changes
during the signal propagation from the transmitter to the
receiver. Specifically, these changes containing several key
indicators such as RSSI, amplitude, phase and propagation
delay, reveal the signal reflection, scattering and power atten-
uation. The human activities or incidents in the surveillance
scenario can be derived by analyzing these indicators. Mathe-
matically, the transformation matrix H can be approximately
estimated as:

H̃ =
Y
X

(8)

FIGURE 4. System architecture.

As a matter of fact, the CSI sequence as shown in Fig. 3 is
just an estimation of matrix H. The number of transmitting
antenna Nt is set to 1, and the number of receiving antennas
Nr is set to 3 in our proposed signal collection system. There-
fore, at a given time t , thematrixH can be specifically defined
as:

H(t) =

 H1,1(t)
H1,2(t)
H1,3(t)



=


h11,1(t) h21,1(t) · · · h301,1(t)
h11,2(t) h21,2(t) · · · h301,2(t)
...

...
...

...

h11,3(t) h21,3(t) · · · h301,3(t)

 (9)

where H(t) denotes the CSI matrix contained in the received
signal at time t, hki,j(t) (i = 1, 1 ≤ j ≤ 3, 1 ≤ k ≤
30) is a complex number, denoting the channel frequency
response of the k-th subcarrier in the radio beam between
the i-th transmitting antenna and the j-th receiving antenna at
time t .

C. SYSTEM ARCHITECTURE
To the best of our knowledge, almost all existing video
surveillance systems are deployed with camera, router, video
display system and specialized network. As more and more
wireless routers are deployed in video surveillance systems,
making it possible to achieve video retrieval and recognition
assisted byWi-Fi signal. Thewhole system consists of several
major modules such as video recording, CSI data collec-
tion, data preprocessing, incident detection, incident recog-
nition, video stream annotation, and video retrieval modules
(see Fig. 4).
• The video recording module is the core of the video
surveillance system. It mainly collects video stream
through a camera, and forms a video file in the computer
disk after transmission via a specialized network.

• The collection module of CSI sequence uses the exist-
ing wireless router in the video surveillance system as
the signal transmitter, and uses the computer wireless
network interface card (NIC) as the signal receiver to
build a Wi-Fi communication system. By calling the
driver of NIC, the system collects the CSI sequence
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of Wi-Fi signal and stores it in the form of accessible
files to form static data. From a real-time perspective,
the CSI sequence can also be dynamically processed in
the memory.

• The data preprocessing module mainly performs carrier
aggregation and other preprocessing operations on the
CSI sequence to provide data support for incident detec-
tion and recognition.

• The video stream annotation module consists of inci-
dent detection and incident recognition submodules. The
main purpose of the incident detection module is to
locate the start time and end time of the incident in
the video stream. An anomaly detection algorithm is
implemented based on the entropy change of the sliding
window on the CSI sequence. It finally find out the start
time of the incident in the video stream and tracks its
duration. Simultaneously, the incident recognition mod-
ule classifies the CSI segments output by the incident
detectionmodule into specific categories of the incidents
via the trained deep learning classification model.

• The content-based video retrieval module is completed
by inserting the results of the incident detection and
recognition into the relational database. Specifically,
for each incident in the CSI sequence, its start time,
duration, category and corresponding file names of
video data and Wi-Fi signal data are all organized as
a fixed record and inserted it into a table of the rela-
tional database, thus providing the possibility to achieve
content-based video retrieval via SQL statements. In the
retrieval stage, the user can send a query request by
constructing a SQL statement like ‘‘ SELECT ∗ FROM
incident_table WHERE incident_type = ‘walking into’
AND start_time ≥ ‘2020-07-28 09:18:00’ ’’, where
‘incident_table’ is the table name of the database, and
‘incident_type’ and ‘start_time’ are two fields in the
table. The database engine will cut out specific video
clips in the corresponding video file according to the
query result of the relational database and present it to
the user.

D. INCIDENT DETECTION
As depicted in Fig. 2, when no incident occurs in the surveil-
lance scenario, the electromagnetic environment of the Wi-Fi
signal remains stable and the channel state is not affected
by drastic changes in the physical environment, so the CSI
sequence shows a relatively ‘‘stable’’ state. The occurrence of
human activities or incidents will cause drastic fluctuations in
the CSI sequence, which is regarded as an abnormality of the
Wi-Fi signal. When the incident go past, the CSI sequence
returns to be ‘‘stable’’ again. Intuitively, the abnormality in
CSI sequence denotes the human activities or the occurrence
of incidents in the surveillance scenario.

In our proposed system, there are three pairs of
transmitting-receiving antennas, each pair has 30 subcarriers
it its radio beam, so there are a total of 90 subcarriers. In order
to facilitate the anomaly detection in the CSI sequence,

we first aggregate 90 subcarriers into one signal according
to equation (10).

H(t) =
1
90

90∑
k=1

fk
fi,j
×

∣∣∣hki,j(t)∣∣∣ (10)

where H(t) is the aggregated signal, hki,j(t) is the
k-th (1≤ k ≤30) subcarrier between the i-th (i = 1)
transmitting antenna and the j-th (1 ≤ j ≤ 3) receiving
antenna, fk is the frequency of the k-th subcarrier, and fi,j is
the center frequency of the radio beam.

Due to the high synchronization of CSI sequence and video
stream in time, we developed an anomaly detection algorithm
based on Isolation Forest [30] to detect outliers in the CSI
sequence to locate the start time of the incident. Isolation
Forest is an unsupervised anomaly detection algorithm, and
the principle of which is that the anomalous points are those
points that are sparsely distributed and far away from a
high-density group. In the feature space, the probability of
an incident occurring in a sparse area is much lower, thus
the anomalous points can be segmented in fewer calculation
steps during segmentation. The anomaly detection algorithm
is based on two definitions, namely isolated tree and path
length, which are defined as follows.
Isolated Tree: Let T be a node of the isolated tree. It is

either a lead node or an internal node with two child nodes
(Tl , Tr ). In each step of segmentation, for the feature q and
the threshold p, the points that satisfies q < p are segmented
to the left child node Tl , and the points that satisfies q ≥ p
are segmented to the right child node Tr .
For a given set X = {x1, x2, . . . , x3}, assume that the

feature dimension is d . When constructing an isolated tree,
you must select feature q and the segmentation threshold
p, then recursively segment X until any of the following
conditions are met.
• The height of the tree reaches the limit value.
• There is only one sample on the node.
• All features of the sample on the node are the same.
Path Length h(x): The number of edges traversed from the

root node of the isolated tree to the leaf nodes.
The shorter the path length, the higher the probability that

the sample point is an abnormal point. We define an anomaly
score index to evaluate the probability of whether a sample
point is an anomaly one. Given a data set X , which contains
n sample points, the average path length of the tree is defined
as:

c(n) = 2H (n− 1)−
2(n− 1)

n
(11)

where c(n) is the average path length of the isolated tree when
the size of the sample set is n, which is used to standardize the
path length h(xi) of each sample xi. AndH (i) denotes the har-
monic number that is estimated using ln(i)+0.5772156649.
Then the anomaly score of the sample xi is defined as:

s(xi, n) = 2−
E(h(xi))
c(n) (12)

100212 VOLUME 9, 2021



Y. Hao et al.: Incident Retrieval and Recognition in Video Stream Using Wi-Fi Signal

FIGURE 5. Anomaly detection in CSI sequence.

where E(h(xi)) is the expectation of the path length of the
sample xi in a batch of isolated trees.
When E(h(xi))→ c(n), s(xi, n)→ 0.5, that is, the average

length of the sample xi is close to the average length of the
tree, and it is difficult to distinguish whether xi is an abnormal
point.

When E(h(xi)) → 0, s(xi, n) → 1, that is, the average
length of the sample xi is close to 1, and xi is judged to be
an abnormal point.

When E(h(xi)) → n − 1, s(xi, n) → 0, xi is judged as a
normal point.

Fig. 5 shows the anomaly detection results (red points) of
the algorithm on an instance of CSI sequence.

The first red point in Fig. 6 denotes the beginning of the
incident. To extract a specific segment of the incident saved
in the video file, in addition to record the start time of the
incident, it is also necessary to track the duration of it to
ensure the time integrity.

E. CALCULATE THE DURATION OF THE INCIDENT
We measure the fluctuations of the CSI sequence by track-
ing the approximate entropy [31] of a sliding window, thus
calculating out the duration of the fluctuation caused by the
incident. The rationale behind this is that the occurrence of
the incident makes the CSI sequence continue to fluctuate
until the incident go past. During the duration of the incident,
the approximate entropy of the CSI sequence is much greater
than that of the usual time when no incident occurs.

The approximate entropy is a non-negative number that
can measure the complexity of a time series. The more com-
plex the time series, the greater the approximate entropy.
In other words, the more obvious the fluctuation of the CSI
sequence, the greater the approximate entropy of it. For a
given time series {u(i)}, its approximate entropy can be cal-
culated according to the Algorithm 1.

Usually, m is set to 2, and r is in the interval [0.1 × std,
25× std], where std is the standard deviation of {u(i)}.

Furthermore, the impact of the occurrence of the incident
on the CSI sequence is local rather than global. Therefore,
we develop an approximate entropy trackingmethod based on
sliding window, which can judge the local fluctuations of CSI
sequence by calculating and comparing the local approximate

Algorithm 1 ApEn({u(i)},m, r)
Input:
{u(i)}— Time series.
m— Length of sub-sequence.
r — Preset threshold.

Output:
ApEn({u(i)}, m, r) — Approximate entropy of time

series {u(i)}.
Process:
(1) Reconstruct the vector X (i) of length m.

X (i) = [u(i), u(i+ 1), . . . , u(i+ m− 1)],
i = 1 ∼ N − m+ 1

(2) Calculate the distance between the vector X (i) and the
rest of the vector X (j).
for each X (i)

d[X (i),X (j)] = max
k=0∼m−1

|u(i+ k)− u(j+ k)|

end for
(3) Calculate the ratio of the number of vectors with

d[X (i),X (j)] < r to the total number of vectors N -
m+ 1.
for each X (i)

Cm
i (r) =

size(d[X (i),X (j)]<r)
N−m+1

end for
(4) Take the logarithm ofCm

i (r) and find the average value.

8m(r) =

N−m+1∑
i=1

lnCmi (r)

N−m+1
(5) Add 1 to the value of m and repeat the process

of (1) ∼ (4) to get 8m+1(r).
(6) Calculate the approximate entropy of the time series

{u(i)}.
ApEn(u(i),m, r) = 8m(r)−8m+1(r)

FIGURE 6. The process of tracking approximate entropy via sliding
windows.

entropy. From the beginning of the incident, the approximate
entropy of a sliding window with fixed size is tracked, when
it is less than a preset threshold ε, the incident is considered to
be over and the corresponding time of the sliding window is
regarded as the end time of the incident. The specific process
is illustrated in Algorithm 2.
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Algorithm 2 FindTail({u(i)}, pos, s, ε)
Input:

{u(i)} — Time series.
pos—Beginning time of incident.
size— Size of the sliding window.
ε− Preset threshold of approximate entropy.

Output:
FindTail({u(i)}, pos, size, ε) — The end time of the

incident.
Process:
(1) Construct a CSI subsequence with size of s before the

abnormal point u(pos) to form the first sliding win-
dow S0.

S0 = [u(pos− m− 1), . . . . . . u(pos− 2), u(pos
−1), u(pos)]

(2) Calculate the approximate entropy of S0 according to
Algorithm 1.

E0 = ApEn(S0,m, r)
(3) Starting from the abnormal point u(pos), a sliding win-

dow of size s is constructed, and the sliding step is set to
1. For each sliding window, calculate its approximate
entropy Ek according to Algorithm 1. Then calculate
the absolute error between Ek and E0, when |E0-Ek
| < ε, the window stops sliding.
k = 1
do{

Sk = [u(pos+ k), u(pos+ k + 1), . . . , u(pos+ k
+m− 1)]
Ek = ApEn(Sk )
k = k + 1

}while(|E0-Ek | < ε)
(4) Return pos+ k as the end time of the incident.

Fig. 6 shows the process of tracking the approximate
entropy of sliding windows via Algorithm 1 and Algo-
rithm 2. After detecting the anomaly point P, first use the
CSI sequence before the point P to construct the sliding
window S0 of size 5 seconds and calculate the approximate
entropy of S0 as E0 = 0.1408. After that, the sliding window
begin to slide, thus producing a series of sliding windows
S1, S2,. . . , Sk with the approximate entropy of E1 = 0.2020,
E2 = 0.4055, . . . ,Ek = 0.1691, respectively. During the
whole sliding process, the absolute error between E0 and Ek
(k ≥1) is always tracked. When it is less than the preset
threshold ε = 0.05, the window stops sliding. The starting
point Q of the last window Sk is considered to be the end
point of the incident and the distance between P and Q is the
duration of the incident.

So far, we have used Wi-Fi signal as the key signal to
synchronize with the video stream, and obtained the start time
and duration of the incident on the time axis. We store these
key information in the designed relational database table (see
Table 3), which lays the foundation for content-based video
retrieval via SQL statements.

TABLE 3. Registration form of the incidents.

Although Table 3 has a quite simple structure, the value of
which is quite important for building a content-based video
retrieval system. Each record in the table corresponds to an
incident. The fields of ID, FileName, Pos, Len and Type
of the table respectively denotes the index, the video file
name, the start time, duration and category of the incident.
It is worth noting that the value of Type field relies on the
multi-classification model based on deep learning, and the
specific implementation of the model will be presented in
Section F, Part II.

F. INCIDENT RECOGNITION
All supervised deep learning methods heavily rely on the
dataset, and the network models can learn a large number of
parameters from the massive labeled samples. In this section,
we first construct a dataset of CSI segments corresponding
to the specific categories of the incidents. Then, using the
constructed dataset, a multi-classification model based on
long-short term memory (LSTM) network is trained.

1) WI-FI SIGNAL DATASET
In a video surveillance system, there is no doubt that the
incidents that have occurred are stored in files in the form
of video clips, which can directly provide human visual evi-
dence. However, it is also accompanied by some troubles,
such as complex calculations, poor real-time performance,
and disclosure of user privacy. In our system, the occurrence
of the incident is recorded as a CSI segment, in which the
signal spatial-temporal pattern when the incident occurs is
stored. This novel way of saving incident history with CSI
sequence ofWi-Fi signal reduces the computational complex-
ity of information retrieval and protects user privacy when
necessary.

For each CSI segment corresponding to a specific category
of the incidents, 10 hand-crafted features (see Table 4) are
extracted from which to form the training samples that would
be fed into the multi-classification model.

Specifically, by manually labelling each CSI segment of
Wi-Fi signal corresponding to a specific incident in the video
stream, we construct a dataset containing 10 344 CSI segment
samples in two surveillance scenarios of dormitory hall and
garage exit. More specifically, there are four types of inci-
dents in the dormitory hall scenario, including 1 000 sam-
ples of ‘‘no one’’ type, 1 024 samples of ‘‘single passing’’
type, 1 060 samples of ‘‘many passing’’ type and 960 sam-
ples of ‘‘tarrying’’ type. Similarly, there are three types of
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TABLE 4. Features of the CSI segment.

incidents in the garage exit scenario, including 1 200 samples
of ‘‘no car’’ type, 1 100 samples of ‘‘car passing’’ type, and
1 050 samples of ‘‘jam’’ type.

2) MULTI-CLASSIFICATION MODEL
The problem of incident recognition is essentially a prob-
lem of pattern classification. Based on the establishment
of the dataset, we use a data-driven supervised deep learn-
ing model to solve the problem. Specifically, we convert
the video recognition problem into the classification of CSI
segments, thus greatly reducing the computational complex-
ity and improving the real-time performance of the system.
Due to the advantages of recurrent neural network (RNN)
[32] in processing time series, we adopt long short-term
memory (LSTM) [33] network based on RNN to classify
CSI segments.

The LSTM network is a special recurrent neural network
that is capable of learning long-term dependencies. The basic
unit of LSTM is the memory cell that is able to remove and
add information to the cell state. The structure of the memory
cell is depicted in Fig. 7.

For a LSTM network, each layer of which is composed
of memory cells that has the ability to maintain, remove or
add information to the cell state through three types of gates.
The gates are a way to optionally let information through.
They are composed of a sigmoid or tanh neural net layer and
pointwise operation.

• Forget gate: The first step in the cell is to decide what
information we are going to remove from the cell state.
A sigmoid layer namely ‘‘forget gate’’ is used to make

FIGURE 7. The structure of the memory cell in LSTM. ht−1 is the output of
the previous cell, Ct−1 is the cell state at time t-1, ht is the output of
current cell, Ct is the cell state at time t , and the symbols ⊕ and ⊗

denotes the pointwise addition and pointwise multiplication.

the decision. For two inputs xt and ht−1, the sigmoid
function with the expression ft = σ (Wf · [ht−1, xt ]+bf )
output a number between 0 and 1 for each number in the
cell state Ct−1. A 1 means ‘‘keep this information’’ and
a 0 represents ‘‘throw it away’’.

• Input gate: The second step is to decide what infor-
mation we are going to add in the cell state. First,
a sigmoid layer with the expression it = σ (Wi ·

[ht−1, xt ] + bi) is utilized to decide which information
will be updated. Second, a tanh layer with the expression
Ĉt = σ (Wc ·[ht−1, xt ]+bc) is used to create a new vector
of candidate values that could be added to the cell state.
Third, the old cell state, Ct−1, is going to be updated
with the expression Ct = ft ∗Ct−1+ it ∗ Ĉt , in which the
things we are going to forget is expressed by ft ∗ Ct−1
and the information to be added is expressed by it ∗ Ĉt .

• Output gate: The final step is to decide the output of
current cell. First, a sigmoid layer, expressed by Ot =
σ (Wo · [ht−1, xt ]+bo), is run to decide which part of the
cell state we are going to output. Then, the cell state Ct
is feed into the tanh layer (to put the value to be between
−1 and 1) and multiply it by the output of the sig-
moid layer, so the output of output gate is expressed by
ht = Ot∗ tanh(Ct ).

In this work, we develop a LSTM-based multi-
classification model consisting of one input layer, five hidden
LSTM layers, a fully connection layer, a softmax layer and a
classification output layer (see Fig. 8).

The details of the multi-classification model based on
LSTM are described as follows.

• Input Layer:A 10× t feature matrix extracted from each
CSI segment will be fed into the input layer, where t
denotes the duration of the CSI segment corresponding
to the incident.

• LSTM Hidden Layers: Three are five LSTM hidden
layers in our multi-classification model and the number
of memory cells within each hidden layer is 150, 125,
100, 75 and 50, respectively.
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FIGURE 8. The structure of the multi-classification model based on LSTM.

• Fully Connected Layer: The fully connected layer plays
the role of mapping the learned ‘‘distributed feature
representation’’ to the labelled space of the samples,
that is, it can convert the 2-D features of the LSTM
hidden layers to 1-D output corresponding to the specific
category of the CSI segments.

• Softmax Layer:The Softmax function, also known as the
normalized exponential function. It is the promotion of
sigmoid in multi-classification model, the purpose is to
show the results of multi-classification in the form of
probability.

• Classification Layer: This layer is to transform the out-
put probability of the softmax to the categories of the
CSI segments, i.e., no one, single passing, many passing
or tarrying.

III. EXPERIMENTAL EVALUATION
In this part, the developed LSTM-based multi-classification
model will be evaluated by using a group of labelled samples
of CSI segments in two different surveillance scenarios.

A. EXPERIMENTAL SCENARIOS
In order to verify that CSI sequence of Wi-Fi signal have
different responses to the incidents of different granular-
ities and can record their spatial-temporal patterns accu-
rately, we deploy our experiments in two completely different
surveillance scenarios, each of which have different action
granularities.

As depicted in Fig. 9(a), the signal collection system was
deployed to simultaneously collect the video stream and the
CSI sequence of Wi-Fi signal for capturing real behaviors of
human in dormitory hall scenario. ATP-LINKwireless router
equipped with one single antenna is used as the transmitter,
and a Thinkpad laptop with the network interface card (NIC)
equipped with 3 antennas as the receiver to collect CSI
sequence of Wi-Fi signal. The height of the transmitter and
receiver was set to 1.5 m, and the distance between them is
set to 3.5 m. Meanwhile, an off-the-shelf camera was used
to record the video information in the scenario. The camera

FIGURE 9. Two experimental scenarios.

is fixed on the ceiling of the hall to ensure that the whole
scenario can be covered by its field of vision. In this scenario,
we mainly focus on four types of incidents composed of
human actions, namely, no one in the hall, a single person
passing, multiple people passing at the same time and some-
one tarrying at the hall (tarrying).

Compared with the fine-grained human actions in the dor-
mitory hall scenario, we also set our sights on three types of
larger-grained incidents in the garage exit scenario, namely,
no vehicles passing, vehicles passing and traffic jams. The
deployment of the experiment is shown in Fig. 9(b).

B. EVALUATION METRIC
Succinctly speaking, this work is to use Wi-Fi signal as
the medium to solve the problem of detecting and recog-
nizing incidents in video surveillance scenarios. It is nec-
essary for us to measure the time accuracy of the incident
detection algorithm and the classification performance of the
multi-classification model.

For the incident detection algorithm in the video stream,
the performance of which is mainly reflected in the time.
An algorithm that can accurately locate the start and end time
of an incident is considered to be good. Therefore, we first
propose a comprehensive error index that measures the time
accuracy of the incident detection algorithm, namely CE,
defined as:

CE =

N∑
i=1
α
∣∣Tpb_i − Tgb_i∣∣+ N∑

i=1
β
∣∣Tpe_i − Tge_i∣∣

N
(13)

100216 VOLUME 9, 2021



Y. Hao et al.: Incident Retrieval and Recognition in Video Stream Using Wi-Fi Signal

where N is number of samples in the test set, Tpb_i, Tpe_i
denotes the predicted start time and the predicted end time
of the i-th incident in the test set, and Tgb_i, Tge_i denotes the
ground truth start time and the ground truth end time of the
i-th incident, respectively. α and β are the scale factors, which
are set to α = 0.8, β = 0.2 in this work. This is because we
believe that the start time of the incident in the video stream
has a greater weight, and the greater the error in its estimation,
the lower the performance of the incident detection algorithm.

Another metric we made is for the classification perfor-
mance of the multi-classification model based on LSTM.
Each CSI segment fed into the classification model will falls
into one of the four categories.
• True Positive (TP):A positive sample is correctly recog-
nized as a positive sample.

• False Positive (FP): A negative sample is incorrectly
recognized as a positive sample.

• False Negative (FN): A positive sample is incorrectly
recognized as a negative sample.

• True Negative (TN): A negative sample is correctly rec-
ognized as a negative sample.

Based on the above indicators, we define recall (Rec),
precision (Prec), accuracy (Acc) and F-1 score as:

Rec =
TP

TP+ FN
(14)

Prec =
TP

TP+ FP
(15)

Acc =
TP+ TN

TP+ FP+ FN + TN
(16)

F − 1 =
2× Prec× Rec
Prec+ Rec

(17)

It is necessary to point out that the above indicators are only
suitable for evaluating two-classification model, but not suit-
able for evaluating multi-classification model. In this work,
we make some modifications to the definitions of the above
indicators to enable them to evaluate multi-classification
model.

As depicted in Fig. 10, we give the definition of TP, TN,
FP and FN on the confusion matrix for the two-classification,
three-classification and four-classification situation. The con-
fusion matrix is used to demonstrate the classification result
by the model, each row of which represents the total number
of samples of a specific category, and each column of which
represents the number of samples classified into each cate-
gory by the model.

We also evaluate the effectiveness of themulti-classification
model by the Kappa coefficient (K ), defined as:

K =
Acc− Pe
1− Pe

(18)

where the probability Pe is defined as:

Pe =

C∑
i=1

Ci ×Mi

N 2 (19)

FIGURE 10. Definitions of evaluation metric for multi-classification
model. For a sample in a certain category, if the model classifies it into
that category, it will be regarded as a positive sample; for samples that
are not classified into this category, it will be regarded as a negative
sample. Therefore, the definitions of the indicators TP, TN, FP and FN vary
with different types of the samples in multi-classification
model.

where C is the number of categories of the dataset, Ci is the
number of samples of the i-th category, Mi is the number of
correctly classified samples of the i-th category and N is the
total number of samples in the dataset.

Kappa coefficient can evaluate the effectiveness of the
model in classification. When 0≤ K ≤0.2, the model
effectiveness is ‘‘extremely low’’; When 0.2< K ≤0.4, the
model effectiveness is ‘‘normal’’; When 0.4< K ≤0.6,
the model effectiveness is ‘‘medium’’; When 0.6< K ≤0.8,
the model effectiveness is ‘‘high’’; When 0.8<K≤1.0, the
model effectiveness is ‘‘extremely high’’.

C. EXPERIMENTAL RESULTS
As mentioned in Section F, Part II, we construct a dataset of
CSI segments in two completely different surveillance sce-
narios. The timestamp and specific category of the samples
are labelled by manually efforts thus providing the ground
truth to evaluate the incident detection algorithm and the
multi-classification model.

1) INCIDENT DETECTION RESULTS
We first measure the time accuracy of the incident detec-
tion algorithm using equation (13) defined in section B,
Part III. For each incident in the dataset, the absolute error
between the predicted start time in CSI sequence and the
ground truth start time manually labelled in the video stream
is calculated, and the absolute error between the predicted
end time in CSI sequence and the ground truth end time
labelled in the video stream is also be calculated. The sta-
tistical results demonstrate that the CE of the incident detec-
tion algorithm on the entire dataset is 1.5 s. Table 5 shows
20 incident detection records randomly extracted from the
dataset.

VOLUME 9, 2021 100217



Y. Hao et al.: Incident Retrieval and Recognition in Video Stream Using Wi-Fi Signal

TABLE 5. Incident detection records.

TABLE 6. Distribution of samples in the dataset.

TABLE 7. Main parameters setting of the model.

2) INCIDENT RECOGNITION RESULTS
In the experiments of this work, we utilize 70% of the
dataset for training the model, and the rest 30% for testing.
Table 6 shows the specific distribution of the samples in two
different scenarios.

As we can see in Table 6, there are seven types of incidents
in two scenarios. However, in order to verify that the CSI
sequence has different responses to the incidents with differ-
ent granularities, we input all samples of the train set into
one network for training. Table 7 shows the main parameters
setting of the model in this work.

FIGURE 11. Training process of the multi-classification model based on
LSTM.

TABLE 8. Evaluation metrics for dormitory hall scenario.

TABLE 9. Evaluation metrics for garage exit scenario.

According to the network model shown in Fig. 8 and the
main parameters settings in Table 7, a LSTM-based multi-
classification model is trained and tested on a workstation,
the basic configuration of which are as follows.

• CPU: Intel CORETM i7 8700
• Memory size: 16 GB
• GPU: NVIDIA GTX 1080 Ti
• Platform: Windows 10 +Matlab R2019a

As shown in Fig. 11, as the number of training iterations
continues to increase, the accuracy of the multi-classification
model is increasing, and the loss of the network is decreasing.
It can be seen that the entire training process is basically
stable, and there is no obvious fluctuation in the accuracy
curve and the loss curve.

Finally, the LSTM-based multi-classification model
obtains a mini-batch accuracy of 92% after 80 epochs of
training for a total of 45 440 iterations, and the loss is less
than 0.18.

Table 8 and Table 9 show the quantitative experimental
results of the indicators defined in Section B, Part III in the
two surveillance scenarios.
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FIGURE 12. The confusion matrix obtained by the LSTM-based
multi-classification model on the test set.

Analyzing the experimental results, we can at least make
the following well-reasoned inferences.
• The LSTM-based multi-classification model can clas-
sify the CSI segments into different categories with a
very high recall and precision, thus obtaining a high
accuracy in two surveillance scenarios.

• As listed in Table 5, although the number of samples of
the garage exit scenario is smaller than that of the dor-
mitory hall scenario, the trained model is more accurate
in classifying the samples in garage exit scenario. This
shows that the LSTM-based multi-classification model
has better classification performance for larger-grained
incidents.

• The Kappa coefficient (K ) of the model is extremely
high, in other words, the model has a very good effec-
tiveness in classifying the samples of the dataset.

As depicted in Fig. 12, by giving the confusion matrix,
we further examine that the CSI sequence have different
responses to the different-grained incidents.

We can see in the above confusionmatrix, the classification
performance of ‘‘Tarrying’’ class is the best in the dormitory
scenario, and there is no confusion with other classes. Among
the 400 samples of class ‘‘Many passing’’, 360 are correctly
classified, but 40 are incorrectly classified into class ‘‘Sin-
gle passing’’. Besides, out of 400 samples of class ‘‘Single
passing’’, 383 are correctly classified and 17 are incorrectly
classified into class ‘‘Many passing’’. Furthermore, out of
400 sample of class ‘‘No one’’, only 1 is mistakenly classified
into class ‘‘Single passing’’.

Using the same method to examine the model’s classifi-
cation performance of samples in garage exit scenario. It is
obvious that most of the samples of each class can be cor-
rectly classified, and only a few samples are confused during
classification.

It is worth noting that in the same scenario, the model
confuses samples of different categories with a very low
probability. However, the samples between dormitory hall

TABLE 10. Comparison results of algorithm performance.

scenario and garage exit scenario are not confused (all cells
with the light blue background have the value of 0 in Fig. 12),
which shows that CSI sequence have different responses to
the different-grained incidents. This might be due to the fact
that the incidents in the two types of scenarios have different
granularities and the CSI sequence can delicately capture the
incidents with different granularities and retain the important
features for distinguishing them.

3) PERFORMANCE ANALYSIS
The incident recognition completely relies on the way of the
information representation. In the traditional incident repre-
sentation methods, the information carrier is undoubtedly the
video signal, and the representation method is either based on
hand-crafted features or based on machine-learning feature
map. The biggest difference from the previous works is that
we use the CSI sequence of the Wi-Fi signal to represent
the incident in this work. This novel way of presentation
makes incident presentation more efficient. In this section,
we compare the performance differences between our pro-
posed method and previous typical methods, and safely draw
the conclusion that the method based on CSI sequence repre-
sentation of incidents can obtain higher performance.

Shot detection is an important step for video incident
detection in the video-represented methods. The typical
methods are absolute inter-frame difference [34], color his-
togram [35], frame pixel difference [36], frame correlation
coefficient [37], compressed domain difference [38], edge
tracking [39], motion vector [40] and some deep learning
methods, such as 3-D ConvNet [41], Two-Stream CNN [42]
and CNN-LSTM [43]. We compared the above method with
our method in terms of the dimension of raw data, the number
of parameters representing the incident, the time complexity
of the feature extraction algorithm, and the memory required
by the algorithm. The detailed experimental results are shown
in Table 10.
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As shown in Table 10, each frame of the video is an image,
plus the time dimension, the video sequence is actually
3-D sequence data. Assume that the width and height of each
video frame is H and W . In practical applications, the video
resolutionH∗W is oftenmuch greater than 320∗480.We con-
servatively assume that the video resolution is 320∗480 when
estimating the performance of the algorithm. We also assume
that the duration of an incident is t , the number of key frames
representing the incident is N , and the number of features
extracted per frame isM .

Analyzing the data in Table 10, it is not difficult to find that
the video-representedmethod needs to process more complex
3-D video data when detecting and recognizing incidents.
The amount of model parameters is huge (see ‘‘Param. No.’’
column in Table 10), the time complexity is high, and the
memory required to process a single incident is large. In sharp
contrast, the CSI-represented method relies on the ‘‘record’’
of environmental changes in the CSI sequence of the Wi-Fi
signal when completing incident detecting and recognizing.
According to the IEEE 802.11 standard, the radio wave
between a pair of antennas contains 30 subcarriers. When the
number of transmitting antennas is 1, the number of receiving
antennas is 3, and the data sampling rate is 200 Hz, the size
of one frame of the CSI data is only 720 B, which is much
smaller than one frame of the video.

From the perspective of feature extraction, whether they
are based on hand-crafted features or convolutional fea-
ture map, video-represented methods have high computa-
tional cost to locate the region of interest (ROI) in video
frames. Besides, comparing to the CSI-represented methods,
the time complexity of video-represented methods are much
higher in the feature extraction process due to the variable
background, lighting changes in video frames. Specifically,
the time complexity of the video-represented methods are
often positively correlated with the video resolution (see
‘‘Complexity’’ column in Table 10), and the situation even
worsens as the number of convolutional neural network layers
increases.

After representing incident by CSI sequence of Wi-Fi
signal, the situation has greatly changed. In the subcarrier
space of Wi-Fi signal, the impact of incidents on the signal
is recorded in detail in the CSI sequence. Since CSI sequence
is essentially 2-D signal, compared with 3-D video data,
the computational cost of its feature extraction process is
relatively low, the incident can be characterized by fewer
features, and the required memory is also very large less (see
‘‘Memory’’ column in Table 10). In general, the algorithm
performance is obviously better than the video-represented
methods.

IV. DISCUSSION
Different from previous traditional works in which the video
stream was the main object data to be processed, we took
another way to go. By using the Wi-Fi signal as an auxiliary
signal synchronized with the video stream and realizing inci-
dent detection and recognition in the surveillance scenario,

FIGURE 13. Different-grained incidents in fresnel zones of Wi-Fi signal.

a content-based video retrieval and recognition solution was
provide.

From the experimental results, we can see that 1) the
proposed incident detection algorithm is effective to locate
the start time and track the duration of the incident in CSI
sequence; 2) the proposed LSTM-based multi-classification
model is able to classify the CSI segments into known cate-
gories with a high accuracy. The approach of using the CSI
sequence of Wi-Fi signal as the processing object greatly
reduces the computational complexity, and in some scenar-
ios, it can prevent the video signal from leaking user pri-
vacy. Of course, if necessary, we can easily implement video
retrieval based on SQL statements according to the database
table obtained by the results of CSI incident detection and
recognition. Furthermore, in some occasions where real-time
performance is required, the proposed system can perform
incident detection and recognition on real-time Wi-Fi sig-
nal, thereby overcoming the drawbacks of traditional video
surveillance systems, that is, the system needs to wait until
the video files are generated before data processing and lacks
real-time performance.

Notably, we verified that the CSI sequence have different
responses to the different-grained incidents. Jumping out of
inherent pattern-based thinking mode, we try to make expla-
nation from a model-based way. To the best of our knowl-
edge, the Fresnel zone model [44] can meticulously describe
the relationship between the motion position, granularity of
the sensing target and the induced CSI power amplitude
variations caused by the motion of the target. As depicted
in Fig. 13, different subcarriers of Wi-Fi signal will form a
series of concentric ellipsoids, namely Fresnel zones. When
the sensing target moves from one Fresnel zone to another,
the Wi-Fi signal will be positively enhanced or reversely
weakened. Furthermore, the greater the granularity of the
incident, the more Fresnel areas will be affected, and themore
complex the spatial-temporal pattern of the CSI segment.
Conversely, the number of Fresnel areas affected by fine-
grained incident is smaller, and the signal spatial-temporal
pattern is relatively simpler. This basically explains why the
CSI sequence has different classification responses to the
different-grained incidents.
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However, things are far from over. As a novel sensing
modality, the CSI sequence of Wi-Fi signal contains detailed
information that can reflect electromagnetic changes in the
physical environment.We have not yet developed and utilized
the phase or other indicators of the signal, and the related
research, such as the issues of position dependence, blind
zone of sensing, and transfer learning in incident recognition,
needs to be further in-depth.

V. CONCLUSION
Focusing on the retrieval and recognition of the incidents in
the video stream, we have provided a novel solution based
on the ubiquitous Wi-Fi signal in this work. First, an inci-
dent detection algorithm was developed to locate the start
and end time of the incident in the CSI sequence of Wi-Fi
signal that is is highly synchronous with the video stream.
Second, a LSTM-based deep learning multi-classification
network was trained on a dataset and used to classify the
CSI segments into specific categories of the incidents, thus
achieving the incident recognition. Third, we verified that
the CSI sequence have different classification responses to
different-grained incidents in the surveillance scenarios. Last,
the experimental evaluation have been performed on the test
set in two different scenarios. The experimental results have
demonstrated that our proposed incident detection algorithm
is effective to capture the incidents in video stream with an
average error of 1.5 s, and that the developed LSTM-based
multi-classification model is feasible and effective to rec-
ognize the CSI segments with an average value of 0.972,
0.973, 0.985, 0.972 and 0.962 for recall, precision, accuracy,
F-1 score and Kappa coefficient, respectively.

Looking forward to the future, we make a plan to extend
our work in the following directions.
• First, further improve the Wi-Fi-based incident sensing
system and deploy it in security scenarios that have cer-
tain requirements for real-time and privacy protection.

• Second, we plan to make use of the phase and other
indicators in CSI sequence to dig out the patterns of
which corresponding to the physical changes.

• Third, we plan to extend Wi-Fi-based sensing technol-
ogy to more fine-grained scenarios, such as respiration
monitoring, gesture recognition, indoor localization, etc.

• Last, we intend to transplant the model to embedded
systems such as Raspberry Pi and try to provide a pos-
sibility that the LSTM-based Wi-Fi signal detection and
recognition system can play an active role in various IoT
scenarios.
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