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ABSTRACT Homomorphic Encryption (HE) has drawn significant attention as a privacy-preserving
approach for cloud computing because it allows computation on encrypted messages called ciphertexts.
Among the numerous HE schemes proposed thus far, HE for Arithmetic of Approximate Numbers (HEAAN)
is rapidly gaining in popularity across a wide range of applications, as it supports messages that can tolerate
approximate computations with no limit on the number of arithmetic operations applicable to the ciphertexts.
A critical shortcoming of HE is the high computation complexity of ciphertext arithmetic; specifically,
HEmultiplication (HEMul) is more than 10,000 times slower than the correspondingmultiplication between
unencrypted messages. This has led to a large body of HE acceleration studies, including those that exploit
FPGAs; however, a rigorous analysis of the computational complexity and data access patterns of HE
Mul is lacking. Moreover, the proposals mostly focused on designs with small parameter sizes, making it
difficult accurately to estimate the performance of the HE accelerators when conducting a series of complex
arithmetic operations. In this paper, we first describe how HE Mul of HEAAN is performed in a manner
friendly to non-crypto experts. Then, we conduct a disciplined analysis of its computational and memory-
access characteristics, through which we (1) extract parallelism in the key functions composing HEMul and
(2) demonstrate how to map the parallelism effectively to popular parallel processing platforms, CPUs and
GPUs, by applying a series of optimizations such as transposing matrices and pinning data to threads. This
leads to performance improvements of HE Mul on a CPU and a GPU by 2.06× and 4.05×, respectively,
over the reference HEAAN running on a CPU with 24 threads.

INDEX TERMS Computer applications, computer architecture, cryptography, multicore processing.

I. INTRODUCTION
As cloud computing becomes an increasingly domi-
nant means of providing computing resources, numerous
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computations are performed on datacenter servers rather
than on personal devices [7], [41]. This enables a client
without expensive hardware to receive services requiring
complex computations. However, security and privacy issues
are emerging with the growth of cloud computing [26], [65].
When a client sends private data to a server, security issues
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during data transfers can be resolved by sending the data
after encryption. However, data encoded by a conventional
encryption method must be decrypted to perform compu-
tation in the server. Therefore, a user has no choice but to
use the cloud service with the risk of security or privacy
attacks (e.g., abuses) that can occur during the computation
of unencrypted data.

Homomorphic Encryption (HE) [62], an encryption
scheme that enables computation between encrypted data,
has attracted significant attention as a solution to this pri-
vacy problem. The concept of HE was initially suggested
in 1978 [62]. However, early proposals of HE were either
unsafe [62] or supported only one type of HE operations,
namely HE addition (HE Add) or HE multiplication (HE
Mul) (e.g., ElGamal [32] and Paillier [60]). Accordingly,
it was difficult to put HE into serious applications. However,
the fully HE (FHE) [34] proposed in 2009 made a major
breakthrough by supporting both HEAdd andHEMul.More-
over, FHE supports bootstrapping, a method of initializing
noise in encrypted data, enabling an unbounded number of
HE Add and Mul operations without decryption.

Among numerous FHE schemes [14], [20], [21], [31], [33],
HE for Arithmetic of Approximate Numbers (HEAAN [20]),
also known as CKKS (Cheon-Kim-Kim-Song) is rapidly
gaining popularity [42], [43] as it supports the approxi-
mate computation. HEAAN enables the HE Add and Mul
of approximate data, with the result nearly identical to that
of the original operation with only a tiny degree of error.
However, the execution time for computation on encrypted
data (ciphertext) increases by 100s to 10,000s of times com-
pared to that on native, unencrypted messages. Therefore,
it is highly desired to reduce the computation time of HE
operations before HE can be used practically.

Numerous studies have focused on accelerating HE oper-
ations. However, FPGA-based acceleration studies target HE
schemes (e.g., BGV [14], LTV [51], and BFV [33]) that
only support computations of integer numbers [24], [28],
[59], [63], [64], or that operate with only limited parame-
ter sizes [61]. They all target performing a small number
of HE Mul without considering bootstrapping, inhibiting
their applicability to a wide range of applications requiring
hundreds to thousands of multiplications (e.g., deep learn-
ing). GPU implementation studies [6], [9], [10], [25] do not
exploit the algorithm’s internal parallelism sufficiently, oper-
ate on only limited parameters, or do not optimize modulo
operations.

In this paper, we demystify HEAAN, a representative
FHE scheme, by describing/analyzing/optimizing it in a way
friendly for non-crypto experts. We explain the pertinent
details of the encryption/decryption/computation aspects of
HEAAN, demonstrating that the following four functions
account for more than 95% of HE Mul, the most computa-
tionally expensive operation of HE: CRT (Chinese Remain-
der Theorem), NTT (Number Theoretic Transform), iNTT
(inverse NTT), and iCRT (inverse CRT). We conduct an
in-depth and disciplined analysis of these primary functions

to grasp their computational complexity and access patterns
on input, output, and precomputed data (critical for the
strength reduction of operations such as modular multiplica-
tion), across a range of key HE parameters.

The parallelism exposed through the analysis is exploited
to accelerate HE Mul on a CPU and GPU, the most popu-
lar computing platforms, which are already equipped with
hundreds to thousands of ALUs. On a CPU, we utilize
multiple cores (inter-core parallelism) and AVX-512 instruc-
tions supported by the latest Intel architectures (intra-core
parallelism). On a GPU, we utilize massive thread-level
parallelism expressible through the CUDA programming
model. We improve the performance further by proposing a
series of optimizations, in this case matrix transposition to
better exploit access locality, loop reordering to expose more
parallelism, and to utilize the synergy between precomputa-
tion and delayed modulo operations. We achieve 2.06× and
4.05× speedups of HE Mul on a single CPU and a GPU,
respectively, compared to the reference HEAAN [1] on a
24-core CPU.

II. BACKGROUND: COMPUTATIONAL CHALLENGES
OF HE
HE can be categorized into two groups, somewhat HE (SHE)
and fully HE (FHE), according to whether there is a limitation
on the number of arithmetic operations applicable to the
ciphertext. In a HE scheme, noise is accumulated during
each operation; this makes the ciphertext of a SHE scheme
indecipherable after performing a certain number of opera-
tions. In contrast, FHE schemes support a bootstrapping algo-
rithm [19], which refreshes the accumulated noise. Therefore,
although there is an upper bound with regard to the number
of arithmetic operations that can be consecutively applied to
a ciphertext, by periodic bootstrapping, we can continue to
manipulate the ciphertext without decrypting it. This property
makes FHE well-tailored to meet the demands of a wide
range of applications (e.g., deep neural networks [8], [13],
[22], [30], [48]) that require a massive number of operations
applied to encrypted data.

Representative FHE schemes include Brakerski-Gentry-
Vaikuntanathan (BGV) [14], Lopez-Alt, Tromer, and Vaikun-
tanathan (LTV) [51], Brakerski/Fan-Vercauteren (BFV) [33],
fast FHE over the torus (TFHE) [21], and Cheon-Kim-
Kim-Song (CKKS) [20]. Among these, only CKKS sup-
ports approximate computations on real numbers, making it
a top candidate for many real-world applications requiring
numerous operations on data that can tolerate tiny errors
due to the approximate computation characteristic. CKKS
is rapidly gaining in popularity in a wide range of appli-
cations exploiting HE, such as machine learning [48]. For
example, the winner and the most runner-ups of a recent HE
challenge involving a secure genome analysis competition
(iDASH 2018 [42] and 2019 [43]) used CKKS or correspond-
ing hybrid versions. Therefore, we investigate the HEAAN
(HE for Arithmetic of Approximate Numbers) scheme [1]
developed by the authors of CKKS.
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HEAAN can perform arbitrary types of computations by
combining HE multiplication (HE Mul) and HE addition
(HE Add), which are correspondingly multiplication (mul)
and addition on ciphertexts. However, the execution time of
HE operations increases significantly compared to the corre-
sponding times of the original unencrypted messages. Table 1
compares the execution time for the addition/mul operations
of original messages and ciphertexts using a single core from
the system specified in Section VI. We measure the execution
time of the addition/mul of a complex number in a message
consisting of 32,768 complex numbers. HE Mul (Add) is
27,721× (168×) slower than the native message operation.
When the message consists of fewer numbers, the slowdown
is even greater.

TABLE 1. Execution time for addition and multiplication of messages vs.
ciphertexts in HEAAN.

Considering that most approximate number operations
consist of mul/addition, the long execution times for HE
operations represent an obstacle preventing the practical use
of HE. Figure 1 shows the time-breakdown when training a
binary classification logistic regression model with HE [37],
[38] with a subset of an MNIST dataset [50]. One training
iteration with a mini-batch (whose size being 1024) takes
109.2 seconds, which is 68,250× slower than that without
HE (i.e., training with unencrypted messages [37]). Out of
the total training time, HE Mul and HE Rotation (HE Rot)
account for 80%. HE Rot is a homomorphic operation that
performs a circular shift on a message, which is a vector
of complex numbers in HEAAN. HE Rot is similar but
slightly less computationally expensive than HEMul, as they
share the same expensive core functions as HE Mul. There-
fore, to use HE practically, it is essential to accelerate the
HE operations, especially HE Mul as it is 342× slower
than HE Add.

FIGURE 1. Time-breakdown of one iteration in training a binary logistic
regression model using HE [38]. We trained the model with an MNIST
dataset and a batch size of 1024 as described in [38] by running their
code [37] on a system specified in Section VI.

III. A BRIEF INTRODUCTION TO HEAAN
Prior to accelerating HE Mul, we introduce the pertinent
details of HEAAN, focusing on how to convert an input
message to a ciphertext through encoding/encryption steps
and how to perform arithmetic operations on ciphertexts.

A. HEAAN ENCODING AND ENCRYPTION
HEAAN converts an input message to a ciphertext through
encoding and encryption steps. An input message consists
of n complex numbers, each composed of a double-type real
and imaginary number. The encoding step initially converts
an input message to a plaintext (t), a polynomial of at most
degree (N − 1) with N integer coefficients. t is placed in a
cyclotomic polynomial ring (R = Z[X ]/(XN + 1) = c0X0

+

c1X1
+ . . .+c(N−1)X (N−1)) space with the magnitude of each

coefficient bounded by the ciphertext modulus, the integer q
(t ∈ R/qR). Therefore, each coefficient (ck ) is the residue
number according to q, where q is a BigInt (big integer) much
larger than 264. The encoding step converts the floating-point
numbers of a message to integer numbers after multiplication
with a scaling factor (1), after which the remaining fraction
numbers are rounded down. Each coefficient is a logq-bit
BigInt, and n ≤ N

2 .
Then, the encryption step converts a plaintext to a cipher-

text consisting of a pair of polynomials c.ax and c.bx using a
public key pair (pk0 and pk1) as follows:

c.ax = u× pk1 + e1
c.bx = u× pk0 + e0 + t

In the equations above, u is a polynomial of at most degree
(N − 1), where each coefficient is either -1, 0, or 1 fol-
lowing the distribution described in [20]. e0 and e1 are also
polynomials of at most degree (N − 1) with random error
values to ensure security, following a Gaussian distribution
with a small standard deviation value (e.g., σ = 3.2 in [20]).
pk1 is a polynomial of at most degree (N − 1) with random
coefficients bounded by q, whereas pk0 is a product of pk1
and a secret key (sk) plus a polynomial having small (similar
to e0 and e1) random errors.

To extract the original message from a ciphertext, first we
convert the ciphertext to plaintext by exploiting the following
relationship between c.ax and c.bx:

c.bx = c.ax × sk + t + e′

Then, the plaintext t can be returned to the originalmessage
through decoding; in this case, the inverse of scaling factor
(1/1) is multiplied to obtain the approximate values.

HEAAN limits the maximum size of the ciphertext modu-
lus q to a constant Q. HEAAN chooses pL for Q, where L is
the multiplicative depth, the number of consecutive HE Mul
operations applicable to a ciphertext before it loses encrypted
data, and p is the rescaling factor. The message size in a
ciphertext increases exponentially as we multiply the cipher-
text repeatedly. To prevent an explosion of the message size,
HEAAN performs rescaling after each HE Mul operation by
dividing the coefficients of the output ciphertext by p. The
size of q, the ciphertext modulus, is then adjusted to q′, where
q′ = q/p. Therefore, logq of a just encrypted ciphertext
starts at logQ, decreases by logp upon each HE Mul, and
becomes 0 after experiencing L HE Mul operations, losing
data.When p is fixed, more HEMul operations can be applied
to a ciphertext with a larger Q value.
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TABLE 2. Multiplicative depth (L) and required N over logQ to guarantee
80-bit security level (an attacker needs 280× of operations in polynomial
ring with the current best algorithm).

To apply more HE Mul operations to a ciphertext, FHE
re-initializes the ciphertext through bootstrapping. How-
ever, bootstrapping is costly (reportedly takes minutes [17])
because it consists of dozens of HE Mul and shift operations,
reinforcing the importance of accelerating HEMul. To reduce
the overhead of bootstrapping for the practical use of HE, it
is necessary to use large Q values to increase L. Moreover, N
should increase as Q increases to guarantee a certain level of
security in HE (see Table 2). As largerQ andN values require
more computation and incur higher data storage costs per HE
Mul operation, it is not efficient to use too large a value of Q;
we discuss in further detail this trade off in Section VIII. We
use (p, L, Q, N ) with corresponding values of (230, 40, 21200,
216), respectively, the default values of the official HEAAN
repository [1].

B. HEAAN COMPUTATION
Arithmetic operations in HEAAN, HE Add and Mul, are
conducted through computation between the polynomials of
operand ciphertexts. Here we assume that the two operand
ciphertexts in a HE operation have the same ciphertext mod-
ulus value q.
HE Add computes an output ciphertext (c3) from two input

ciphertexts (c1 and c2) through the following operations:

c3.ax = mod(c1.ax + c2.ax, q)

c3.bx = mod(c1.bx + c2.bx, q)

HE Add is relatively simple because it performs the
element-wise addition of BigInt coefficients and then the
modulo of q for each output coefficient; mod(x, y) means x
modulo y.
HE Mult consists of two steps (see Figure 2). We compute

a tensor product first:

c3.ax = mod(c1.ax · c2.ax, q)

c3.bx = mod(c1.ax · c2.bx + c1.bx · c2.ax, q)

c3.cx = mod(c1.bx · c2.bx, q)

Then, we update the output ciphertext with the evaluation
key (evk), which is the encryption of a square of sk multiplied
by Q:

c3.ax = mod(c3.ax + 1/Q · c3.cx · evk.ax, q)

c3.bx = mod(c3.bx + 1/Q · c3.cx · evk.bx, q)

FIGURE 2. The overall flow of HE Mul in HEAAN. A white (black) filled
symbol represents an operation conducted in an RNS (BigInt) domain.
Region 1 and region 2 use different moduli because the former multiplies
two logq-bit numbers whereas the latter multiplies a logq-bit number
with an evaluation key polynomial composed of logQ2-bit numbers.

This second step, called relinearization, enables the output
ciphertext to continue to be representable with a polyno-
mial pair.

HE Mul is much more costly than HE Add, as polyno-
mial mul requires the multiplication of BigInt coefficients by
N 2 times. We assume that β is the size of the integer data
type (called a word size) that a computer natively supports
with high performance (e.g., β = 264 for 64-bit CPUs).
A logq-bit BigInt is represented as qLimbs(= dlogq/logβe)
words. Then, one BigInt mul consists of (qLimbs)2 logβ-bit
word mul and 2(qLimbs)2 − 1 word addition (simply add)
operations. For example, because qLimbs is 19 when using
the representative parameters (N = 216, logq = 1, 200,
logβ = 64), 361 64-bit mul and 721 64-bit add operations are
required in addition to carry propagation per BigInt mul. As
described above, polynomial mul requires N 2 (= 4.3 billion)
BigInt mul, which requires at least 4.6 Tera 64-bit operations.
To reduce the complexity of this polynomial mul, HEAAN
and other HE schemes use the Chinese Remainder Theorem
(CRT [27]) and Number Theoretic Transform (NTT [23]).

1) CRT TO REDUCE THE COMPLEXITY OF BIGINT MUL
CRT states that for m coprime integers {mi|0 ≤ i < m}, the
residue set {xi = mod(X ,mi)|0 ≤ i < m} of any integer
0 ≤ X <

∏m−1
i=0 mi is unique. HEAAN exploits CRT by

defining a set of m integers {pi|0 ≤ i < m}, where each
modulus pi is a prime number smaller than β and

∏m−1
i=0 pi =

P ≥ q2. Then, a logq-bit BigInt number B, which is the
coefficient of the ciphertext polynomial, can be represented
in the residue number system (RNS) by the set of remainders
{b0, b1, . . . , bm−1} where bi = mod(B, pi).
A key property of RNS is that when adding, subtracting,

and multiplying numbers represented in RNS, it is sufficient
to perform the same modular operation on each residue pair
(a congruence relation). For a pair of logq-bit BigInt numbers
(A, B) and their corresponding RNS representations ({ai|0≤
i < m}, {bi|0 ≤ i < m}), the product of A and B is C
represented by {ci|0≤ i< m} such that ci = mod(ai · bi, pi).
This relation holds because we set P ≥ q2 and because the
product of two logq-bit BigInt numbers is smaller than q2.

VOLUME 9, 2021 98775



W. Jung et al.: Accelerating Fully HE Through Architecture-Centric Analysis and Optimization

TABLE 3. Representative parameters in homomorphic encryption (HE).

Therefore, a logq-bit BigInt number is converted into m
logβ-bit data in the RNS domain, where we refer to the
conversion as a CRT function or simply as CRT, and a BigInt
mul is changed to m logβ-bit modular mul; hence, the time
complexity per BigInt mul is changed from O(qLimbs2) to
O(m). In general, qLimbs2 � m (see Table 3), meaning
that the number of operations required for BigInt mul can
be greatly reduced by CRT. However, multiplying two Big-
Int polynomials still has complexity of O(m · N 2) because
polynomial mul requires N 2 coefficient mul operations.

2) NTT TO REDUCE THE COMPLEXITY OF POLYNOMIAL MUL
NTT is a discrete Fourier transform over a finite field (inte-
ger). Fast polynomial mul can be implemented with the Fast
Fourier Transform (FFT) [12]. We can translate the polyno-
mial mul with O(N 2) complexity into the element-wise mul
with O(N ) complexity with fast NTT, a variant of FFT that
is limited to integer values. Although fast NTT (simply NTT)
incurs a transformation cost ofO(N logN ), it is beneficial to
use NTT when N is large enough.

Figure 2 depicts the overall flow of HE Mul in HEAAN,
which includes regions 1 and 2. Region 1 multiplies and
adds the polynomials of the input ciphertexts, while region
2 conducts relinearization. In total, HE Mul consists of five
polynomial mul operations, each performing (1) CRT, (2)
NTT, and (3) element-wise modular mul operations, fol-
lowed by (4) inverse fast NTT (iNTT) and (5) RNS-to-BigInt
conversion (iCRT) to return to the polynomial with BigInt
coefficients.

Region 1 configures m to deal with logq2-bit BigInt,
the intermediate result of polynomial mul between two input
ciphertexts, whose coefficients are logq-bit long. Region
2 sets m to be larger to represent (logq+logQ2)-bit BigInt

as the coefficient size of evk is logQ2-bit long. The shift
operations in region 2 ( ) reduce the amount of error accu-
mulated during mul. The following adds and subtractions
among the results of polynomial mul produce the result of
HE Mul (c3.ax and c3.bx); we can obtain an approximate
value of mul between two original messages by decrypting
this result using sk .

FIGURE 3. HE Mul time breakdown (total 3,907 ms).

Figure 3 shows the execution time breakdown of HE Mul
using a single-threaded reference HEAAN in the system and
configuration described in Section VI. CRT, NTT, iNTT, and
iCRT account for 95.8% of the total execution time. The
remaining operations, such as element-wise modular mul,
account for only 4.2%. The total execution time is 3,907 ms,
approximately 36,000× slower than the original message
mul. Therefore, accelerating HE Mul is essential to realize
the practical use of HE, and it is necessary to accelerate CRT,
NTT, iNTT, and iCRT.

IV. AN IN-DEPTH ANALYSIS OF MAJOR FUNCTIONS IN
THE HEAAN MULTIPLICATION OPERATION
To accelerate the primary functions (CRT, NTT, iNTT, and
iCRT) in HE Mul, first we conduct an in-depth analysis
of how each function works. In the following descriptions,
IN/OUTfunction(X ,Y ) represents an X by Y matrix used as
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Algorithm 1 CRT
Require: INCRT(N , qLimbs), TBCRT(m, qLimbs)
Ensure: OUTCRT(N ,m)
1: for (i = 0; i < N ; i← i+ 1) do
2: for (j = 0; j < m; j← j+ 1) do
3: accum← 0
4: for (k = 0; k < qLimbs; k ← k + 1) do
5: accum += INCRT[i][k]× TBCRT[j][k]
6: OUTCRT[i][j] = mod(accum, pj)

Algorithm 2 Shoup’s Modular Multiplication (ModMul)
Require: X ,Y , pj,YShoup
Ensure: r = mod(X × Y , pj)
1: Quhi = (X × YShoup)� logβ
2: r = X × Y − Quhi × pj
3: if r > pj then
4: r = r − pj

the input/output of a function, while TBfunction(X ,Y ) repre-
sents a precomputed table of the X by Y matrix.
CRT (Algo. 1) takes INCRT(N , qLimbs) representing N

log q-bit BigInt numbers and produces OUTCRT(N ,m),
the result of a modulo operation on each BigInt with m
different primes {pj|0≤ j<m}. The operation consists of two
stages: (1) computing the matrix-matrix mul of INCRT with
TBCRT

ᵀ and (2) applying modulo operations to each output
element.

A BigInt A is expressed by qLimbs logβ-bit words; i.e.,∑qLimbs−1
k=0 ak · βk , where {ak |0≤ k < qLimbs}. The modulo

operation on the BigInt is then as follows:

mod(A, pj) = mod(
∑qLimbs−1

k=0 ak · βk , pj)

= mod(
∑qLimbs−1

k=0 ak · mod(βk , pj), pj)

Here because β and pj are independent of the input,
HEAAN precomputes TBCRT, mod(βk , pj) for all k and j.
Therefore,

∑qLimbs−1
k=0 ak · mod(βk , pj) is performed by mul-

tiplying INCRT and TBCRT.
We can exploit Shoup’s modular mul (Shoup’s Mod-

Mul [64]) for the modulo operation in line 6 of Algo. 1.
Shoup’s ModMul (Algo. 2) computes mod(X · Y , pj) with
three muls and a single correction step if the value of YShoup
(= bY ·βpj c) is known in advance. This replaces a costly divi-
sion operation with relatively inexpensive mul, comparison,
and subtraction operations. We apply the algorithm for the
modular mul on accum spanning up to three limbs (accum0+

accum1 ·β+accum2 ·β
2) using precomputed YShoup values of

Y = {1, β, β2}. The operations of CRT can be performed in
parallel for each coefficient (total N ) and each prime number
(total m).
NTT implements the Cooley-Tukey algorithm [23], which

recursively divides an N -point FFT into n N/n-point FFTs
and combines their results (called radix-n FFT). An exemplar
radix-2 NTT in Algo. 3 takes the matrix INNTT(m,N as an
input and runs the butterfly algorithm butt. It uses a pre-
computed table (TBW) of powers of the 2N -th root of unity
for all m prime numbers. For each prime, butt (Algo. 4) is

Algorithm 3 NTT
Require: INNTT(m,N )← OUTCRT

ᵀ,TBW(m,N )
Ensure: OUTNTT(m,N )
1: for (i = 0; i < m; i← i+ 1) do
2: t = N
3: IN = INNTT[i]
4: TBW = TBW[i]
5: for (j = 1; j < N ; j← j× 2) do
6: t = t / 2
7: for (k = 0; k < j; k ← k + 1) do
8: for (l = k × 2t; l < k × 2t + t; l ← l + 1) do
9: butt(IN[l], IN[l + t], pi,TBW[j+ k])
10: OUTNTT[i] = IN

Algorithm 4 Butt
Require: A,B, pi,W
Ensure: A,B
1: U = mod(B×W , pi)
2: B = A − U
3: A = A + U

Algorithm 5 iCRT
Require: INiCRT(m,N )← OUTiNTT(m,N )

TBinvP(m),TBPdivp(m,PLimbs)
Ensure: OUTiCRT(N ,m)
1: for (i = 0; i < N ; i← i+ 1) do
2: for (j = 0; j < m; j← j+ 1) do
3: temp[j][i] = mod(INiCRT[j][i]× TBinvP[j], pj)

4: for (i = 0; i < N ; i← i+ 1) do
5: accum = 0
6: for (j = 0; j < m; j← j+ 1) do
7: for (k = 0; k < PLimbs; k ← k + 1) do
8: accum+ = temp[j][i]× TBPdivp[j][k]× β

k

9: OUTiCRT[i] = mod(mod(accum,P),q)

called logN · N2 times. As butt requires modular mul, it also
uses Shoup’s ModMul, as was done in CRT.
iNTT is slightly different from NTT. It has a different

loop order, calls inverse butterfly (ibutt) instead of butt,
deals with a different precomputed table (consisting of the
inverse of the powers of the primitive root of unity (TBinvW)),
and finally divides each element by N . However, except for
the last element-wise division by N , iNTT is symmetric to
NTT in terms of the numbers and types of operations. Both
NTT and iNTT are completely parallelizable for each prime
number.
iCRT converts the matrix OUTiNTT(m,N ), where each

element is a remainder smaller than β, back to N log q-bit
BigInts (see Algo. 5). It starts with (1) the Hadamard product
between an input matrix and a precomputed table TBinvP,
whose elements are modular inverses of P/pj for all pj, fol-
lowed by an element-wise modular mul with each pj. Shoup’s
ModMul can also be applied here for an efficient modular mul
operation. (2) Then, each output element of (1), a scalar value,
is multiplied by a BigInt P/pj according to its j and accu-
mulated to a temporary BigInt accum. Here, each instance of
P/pj is precomputed and stored in tableTBPdivp(m,PLimbs),
where PLimbs = max

j
(log(P/pj)/ logβ). (3) A reduction of

accum modulo P and q (q · Q in region 2) is performed.
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TABLE 4. The number of arithmetic operations and computational complexity of major functions of HE Mul.

TABLE 5. Input and precomputed data size of major functions of HE Mul.
The unit of data size is β.

Algorithm 6 iCRT Algorithm in the Matrix-Matrix Mul
Form. The First Three Lines Are the Same as Algo. 5.

. . .
4: for (i = 0; i < N ; i← i+ 1) do
5: accum = 0
6: for (k = 0; k < PLimbs; k ← k + 1) do
7: accumsmall = 0
8: for (j = 0; j < m; j← j+ 1) do
9: accumsmall+ = temp[j][i]× TBPdivp[j][k]

10: accum = accum+ accumsmall × β
k

11: OUTiCRT[i] = mod(mod(accum,P),q)

We summarize the number of arithmetic operations needed
for each major function in Table 4 and the size of input and
precomputed data for each function in Table 5.

V. ARCHITECTURE-CENTRIC OPTIMIZATIONS TO
MAXIMIZE HE MUL PERFORMANCE ON CPUs AND GPUs
Previous HE studies [61], [64] sought to propose new hard-
ware architectures (e.g., through FPGA implementation) for
performance improvements. In contrast, we initially improve
the performance of HE by utilizing the most popular com-
putation platforms, CPUs and GPUs, which are already
equipped with hundreds to thousands of ALUs.

All of the major functions of HE Mul have massive paral-
lelism that can be exploited by CPUs and GPUs. All residual
numbers (N × m) can be computed in parallel on CRT. NTT
and iNTT perform m independent transformations and lever-
age the algorithmic optimization of FFT, whereN/2 pairs can
be computed in parallel at each individual stage during FFT.
Henceforth, we identify the key challenges and solutions we
devise when accelerating HE Mul on CPUs/GPUs.

A. LOOP REORDERING TO EXPOSE MASSIVE
PARALLELISM IN iCRT
iCRT recombines the residual numbers into integers of size
logq for each coefficient of the resulting ciphertext; hence,
it may be regarded that the degree of parallelism is smaller

than CRT (N vs. N · m). However, the limited N -degree
parallelism can be expanded to N ·PLimbs-degree parallelism
by reordering two loops in iCRT (lines 6 and 7 in Algo. 5;
see the modified algorithm in Algo. 6). After reordering,
the sequence of the original mul between a scalar and a
BigInt becomes a matrix-matrix mul between a temp matrix
and a TBPdivp matrix. Then, iCRT should be modified such
that the partial sum in the inner-most loop is accumulated
into accumsmall (double or triple word), rather than accum
(BigInt), which is aggregated to accum at the end of the
loop. With our loop reordering, the resulting matrix-matrix
mul exposes a massive parallelism of degree N ·PLimbs in
iCRT, providing abundant parallelization opportunities to
contemporary hardware platforms.

B. ACCELERATING HE MUL ON CPUs
The strategies that a modern CPU utilizes to exploit
parallelism from an application are twofold: populating
(1) multiple cores and (2) ALUs supporting short-SIMD
instructions in each core. For example, the Intel Xeon CPU
we use has 24 cores per socket, with each core supporting
AVX-512 instructions capable of executing eight 64-bit (64b)
integer operations [29]. We take advantage of the innate
parallelism in the major functions of HE Mul by initially
distributing operations to multiple threads and then to AVX-
512 SIMD lanes in each thread while minimizing the per-
formance drop by frequent cache ($) misses from poor data
access patterns; during this process, whether an input matrix
follows a column- or a row-major order can vastly affect the
performance.

Figure 4 shows the output of the four major functions and
howwe parallelize them to multiple threads and then to AVX-
512 lanes. During CRT, a CPU thread takes responsibility for
a portion of the N coefficients (line 1 in Algo. 1), whereas
each lane of an AVX-512 port performs operations on differ-
ent prime numbers (line 2 in Algo. 1). During NTT/iNTT, a
thread does its job on a portion of the prime numbers, (line 1
in Algo. 3), whereas each lane of AVX-512 computes some of
the coefficients (line 8 in Algo. 3). In the iCRT case, we take
different approaches for the two iteration phases. During
phase 1 (lines 1-3 in Algo. 5), each thread and an AVX-
512 lane undertake computation on some of theN coefficients
(both on line 1). During phase 2 (lines 4-11 in Algo. 6), each
thread also computes some of the coefficients (line 4), but
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FIGURE 4. Output of the major functions and their processing order in
our CPU implementation. Data are represented in row major order. Each
colored square represents an AVX-512 lane of a thread producing an
output in the inner-most loops. Red arrows represent the order of loop
iteration.

each lane is on a different k , the positional index on the limbs
of P/pj (line 6).

The reference HEAAN [1] also uses multi-threading but
without SIMD. It relies on a different strategy in CRT from
ours; each thread operates on different prime numbers (result-
ing in m-degree parallelism).

1) MATRIX TRANSPOSITION IN iCRT

SIMD instructions can lead to a poor $ utilization if they
access a matrix storing elements in a row-major order accord-
ing to the column direction (or vice versa), as this demands
multiple $ lines at once. The resulting performance degra-
dation is more prominent when the access stride is too
large for a hardware prefetcher to be effective. iCRT expe-
riences this issue because the matrix-matrix mul (line 9 in
Algo. 6) accesses the temp matrix that stores the elements
in a row-major order according to the column direction. We
implicitly transpose the tempmatrix using the scatter instruc-
tions in AVX-512 to address this issue.

2) EMULATING ARITHMETIC OPERATIONS
AVX-512 does not support parallel 64b mul or 64b ADC
(addition with carry) yet. Therefore, 64b mul is emulated
with four parallel 32b mul, five 64b add, and five 64b shift
instructions. Also, one 64b compare and one additional 64b
add are required to handle the carry operation per addition.
This emulation narrows the performance gap between the
AVX-512 implementation and the reference HEAAN (no
AVX-512). To improve the performance further under this
constraint, we modify Shoup’s ModMul as follows.

The original Shoup’s ModMul requires three operations:
one 64bmulhi to computeQuhi and two 64bmullo to compute
Quhi ·pj and X ·Y , whereQu is the estimation of the quotient,
and 64b mulhi (mullo) returns the upper (lower) 64b of the
mul result, which is 128b long. A single 64b mulhi can be
emulatedwith four 32bmul (hi·hi, hi·lo, lo·hi, lo·lo), four 64b
add, and five 64b shift operations. In this case, the estimated
remainder lies in the range of [0, 2pj).

However, one of the 32b mul operations (lo · lo) for emu-
lating 64b mulhi is used only for computing a carry from the
low 64b of mul. We can remove this lo · lo mul if the carry is
ignored and produce an approximated 64b mulhi (Quhi′ ) with
only threemuls instead of four. By applying this optimization,
the estimated remainder lies in the range of [0, 4pj). As the
upper bound of a remainder grows to 4pj, one additional
correction step (conditional subtraction) is needed, but the
number of more expensive operations is reduced to one 32b
mul, two 64b add, and one 64b shift instruction.

3) REDUCING THE SIZE OF β TO 232

We can remove the overhead of emulating 64b operations by
using β of 232 instead of 264, as AVX-512 naturally supports
32b mul and ADC. Using the smaller β changes the number
of instructions for mul and ADC to one, and reduces the
number of instructions for modular mul to less than half.
However, this strategy also has shortcomings in that qLimbs
should roughly be doubled to express numbers whose sizes
are up to q. m must also be doubled because the upper bound
of each prime number is β. Larger qLimbs andm imply larger
precomputed tables and more iterations for CRT, NTT, iNTT,
and iCRT. It also increases the number of operations other
than mul, modular mul, and ADC. A preliminary implemen-
tation shows no improvement in performance when using a
small β for CPUs.

C. ACCELERATING HE MUL ON GPUs
Modern GPUs (e.g., Volta [54] and Turing [55]) have as
many integer (INT32) units as single-precision floating-point
(FP32) units, resulting in multiply-accumulate throughput for
INT32 numbers identical to that for FP32 numbers. Such
massive throughput of integer operations makes the GPU an
attractive candidate for accelerating HE operations.

1) PARALLELIZATION STRATEGIES
The CUDA programming model [56] for GPUs has the
following hierarchical structure of threads: multiple GPU
threads are grouped to form a thread block and multiple
thread blocks comprise a grid. A thread block is allocated
to one Streaming Multiprocessor (SM). The threads in a
thread block share the resources (e.g., shared memory) of
the SM. Each thread block in a grid is allocated to each SM
in a round-robin fashion, and the number of thread blocks
(grid dimension) and number of threads in a block (block
dimension) are configured at each GPU kernel launch.
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Algorithm 7 Pseudocode of Baseline iCRT With CUDA
Require: INiCRT(m,N ),TBinvP(m),TBPdivp(m,PLimbs)
Ensure: OUTiCRT(N ,m)
1: Launch N threads. Each thread performs the below steps.
2: i = threadIdx.x + blockDim.x · blockIdx.x
3: accum = uint32_t[MAX_NUM_PRIMES_TO_USE]
4: for j ∈ [0,m) do
5: temp = (INiCRT[j][i] · TBinvP[j]) % pj
6: // accumulate low parts
7: mad.lo.cc.u32 accum[0], temp,TBPdivp[j][0], accum[0]
8: for k ∈ [1,PLimbs) do
9: madc.lo.cc.u32 accum[k], temp,TBPdivp[j][k], accum[k]

10: // accumulate high parts
11: mad.hi.cc.u32 accum[1], temp,TBPdivp[j][0], accum[1]
12: for k ∈ [1,PLimbs) do
13: k ′ = k + 1
14: madc.hi.cc.u32 accum[k ′], temp,TBPdivp[j][k], accum[k ′]

15: Do accum % P by subtracting P · m2 ,P ·
m
4 , . . . ,P conditionally.

16: for j ∈ [0,m) do
17: OUTiCRT[i][j] = accum[j]

Algorithm 8 Pseudocode of iCRT in Algo. 6 With CUDA
Require: INiCRT(m,N ),TBinvP(m),TBPdivp(m,PLimbs)
Ensure: OUTiCRT(N ,m)
1: Launch N · m threads. // the 1st kernel
2: temp[j][i] = INICRT[j][i] · TBinvP[j] % pj for each i, j.
3: Launch N · PLimbs threads. // the 2nd kernel
4: gid = threadIdx.x + blockDim.x · blockIdx.x
5: i = gid / PLimbs
6: k = gid % PLimbs
7: (carry, hi, lo) = (0, 0, 0)
8: for j ∈ [0,m) do
9: in = temp[j][i]
10: tb = TBPdivp[j][k]
11: mad.lo.cc.u32 lo, in, tb, lo
12: madc.hi.cc.u32 hi, in, tb, hi
13: addc.cc.u32 carry, carry, 0
14: accumlo[i][k] = lo
15: accumhi[i][k] = hi
16: accumcarry[i][k] = carry
17: Launch N threads. // the 3rd kernel
18: Merge accum∗ arrays into accum.
19: Do line 15-17 in Algo. 7.

The basic parallelization strategy is to assign each indepen-
dently computable output element to a thread.We launchN ·m
threads for CRT so that each thread computes one output ele-
ment (a residue). NTT and iNTT launchN/2·m threads each,
where each thread performs a butterfly operation (Algo. 4)
per butterfly step using a simple radix-2 iterative NTT
algorithm [40].

In the iCRT case, a naïve parallelism strategy uses
N -degree parallelism, where one thread takes charge of pro-
ducing one output BigInt type of coefficient. Prior stud-
ies [10], [25] utilized the same strategy. Algo. 7 shows the
baseline iCRT implementation with CUDA based on the
results of prior studies. However, by changing the loop order
as described above, we transform the corresponding core
operation into a matrix-matrix mul operation, thereby taking
advantage of N · PLimbs-degree parallelism to maximize
thread-level parallelism (see line 3-6 in the modified imple-
mentation in Algo. 8).

Algorithm 9 Pseudocode of CRT With CUDA
Require: INCRT(N , qLimbs),TBCRT(m, qLimbs)
Ensure: OUTCRT(N ,m)
1: Launch N · m threads. Each thread performs the below steps.
2: gid = threadIdx.x + blockIdx.x · blockDim.x
3: i = gid / m
4: j = gid % m
5: (carry, hi, lo) = (0, 0, 0) // accum in Algo. 1
6: for k ∈ [0, qLimbs) do
7: // perform (carry, hi, lo) += INCRT[i][k] · TBCRT[j][k]
8: in = INCRT[i][k]
9: tb = TBCRT[j][k]
10: mad.lo.cc.u32 lo, in, tb, lo
11: mad.hi.cc.u32 hi, in, tb, hi
12: addc.cc.u32 carries, carries, 0
13: temp = (carries� 32) | hi % pj // 64b modulo a 32b
14: temp = (temp� 32) | lo % pj
15: OUTCRT[j][i] = temp

2) 64B EMULATION VS. 32B WORDS
As opposed to the most CPUs that natively support 64b
words, modern GPUs natively support 32b words and emu-
late 64b integer operations. To avoid the overhead of 64b
emulation (whose throughput is more than one order of
magnitude lower than that of the 32b counterpart), prior
studies accelerating HE on GPUs [10], [25] use 32b words
(β = 232) and the prime numbers smaller than β. We also
use 32b words and operations. Another advantage of using
32b words on GPU is that the operations with carry-in and
carry-out processes can be executed without emulation; mod-
ern NVIDIAGPUs support carry operations (e.g., addc, subc,
and madc in assembly-like virtual ISA, PTX [57], where the
operations are called extended-precision integer arithmetic
instructions). The throughput of these instructions is identical
to that of those without a carry in recent GPUs [54], [55],
enabling efficient computations of large integers without
emulation.

3) DIFFERENT STRATEGIES FOR BIGINT MODULO IN CRT

A naïve BigInt modulo is done by repetitive logβ-bit shift,
add, and modulo operations; for example, cuHE [25], takes
this approach. In contrast, HEAAN accumulates the result of
modulo on each ak · βk using a precomputed table in CRT.
In this case, the BigInt variable accum (line 3 in Algo. 1) can
span two or three words depending on m and the size of each
prime number. In the CPU implementation case, accum is
guaranteed to span two words when using the representative
parameters specified in Table 6, as an overflow does not occur
for m ≤ 264−58 = 64 with prime numbers smaller than
258. To guarantee that accum is two words long, we use 257

as a lower bound of the prime for AVX-512 implementation
instead of 259, the default value of the reference HEAAN.
However, on a GPU with a 32b β, with primes smaller than
230, only up to four (= 232−30) accumulations are allowed
to guarantee that the overflow issue does not arise, which
is nearly impossible as m is 90 or higher when using the
representative parameters.
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To prevent an overflow, one may (1) use a three-word
accum with an additional ADC operation included in the
inner-most loop (see line 12 of the CRT implementation
shown in Algo. 9) to avoid expensive modulo operations,
or (2) may conduct modulo operations intermittently in the
inner-most loop (e.g., for every four accumulations in our
case) to ensure that accum spans only two words [9]. We
implemented these two strategies and found that using a
three-word accum performs better as it requires fewermodulo
operations.

4) PER-THREAD STORAGE FOR ACCUMULATION IN iCRT

The baseline iCRT with N-degree parallelism allocates a
BigInt accum (line 8 in Algo. 5) as a long array in a per-thread
manner. If accum is not carefully allocated to fast storage,
frequent $ thrashing may occur, degrading the performance
significantly. The latest NVIDIA GPUs [54], [55] have a
variety of storage types (e.g., register, L1/L2 $, device mem-
ory, and read-only constant memory). In the original iCRT
implementation (Algo. 7), temp[j][i] in Algo. 5 is stored
in register memory (temp in Algo. 7), so that it can be
loaded quickly in a single cycle. On the other hand, because
accum is declared as a thread-local array that is dynami-
cally indexed in the algorithm (i.e., accum[idx]0≤idx<PLimbs
where PLimbs is given as an input variable to the ker-
nel), it is not stored in the register, the fastest storage on
a GPU. Instead, the CUDA compiler stores it in global
memory and caches it into L1 and L2 (CUDA calling this
local memory [56]).

However, the heavy use of local memory can lead to $
thrashing when the grid and block dimensions increase, caus-
ing a number of threads to compete for $ and degrading the
overall performance. To mitigate the $ miss penalty, we sug-
gest two different optimizations when using N parallelism in
iCRT: (1) using fewer threads by simply reducing the block
and grid dimensions via the grid-stride loop method [39],
or (2) pinning each accum array (line 3 in Algo. 7) in L1 $
by allocating the array in shared memory; this is possible as
the shared memory shares capacity with the L1 unified $. We
compare the methods on cuHE’s iCRT kernel [25] in Algo. 7,
which implements Algo. 5 with N parallelism, along with
loop reordering with N · PLimbs parallelism in Algo. 8.

5) HIGH-RADIX NTT AND iNTT

For radix-2 NTT, GPU reads and writes a large input
INNTT(m,N ) (dozens of megabytes with typical m and N
values specified in Table 3) by log2 N times. At each butt
in Algo. 3, a GPU thread reads two values of IN from device
memory and writes two output values back to the device
memory. By increasing the radix k , each thread reads and
writes k values within IN for butt, performing k-point
NTT. It changes the number of elements of IN to transfer
from log2 N above to logk N , reducing the number of main
memory accesses needed for NTT. Because the device mem-
ory bandwidth is a scarce resource, this reduction typically
translates to higher performance. However, increasing the

radix is not always beneficial; as each thread takes more
inputs, the register pressure on each thread increases. Using
registers that exceed the register file size of an SM causes
register spillover to local memory, degrading the performance
due to additional data loads from the main memory. Given
this constraint, we use a proper radix size (radix-32) to bal-
ance the pressure from the memory bandwidth and register
spillover.

D. SCALABILITY STUDY
We also extend our implementations of HE Mul to sup-
port distributed-memory multi-GPU systems and study the
corresponding scalabilities on CPUs and GPUs. For CPU
implementation with multi-socket processors, we can use the
same parallelization approach described in Section V-B and
populate more cores. However, we take a different approach
for the implementation that exploits multiple GPUs because
they take a distributed memory architecture.

It is critical to determine how to distribute the work and
data to multiple GPUs. We dedicate one polynomial to the
memory of a single GPU and let the GPU operate on the
polynomial (see Figure 5). As we dedicate each polynomial
to a GPU and an HEMul takes four polynomials as its inputs,
there exist four streams in an HE Mul, each being a sequence
of operations executed on a GPU. When performing unary
operations, such as CRT, iCRT, NTT, and iNTT, a stream
does not require data transfers or synchronization to another
stream. A stream only synchronizes to another stream for
a binary operation, waiting for one of its operands to be
transferred from the other stream.

FIGURE 5. The workflow of multi-GPU HE Mul in HEAAN. Each stream is
assigned to a GPU and is entirely executed on that GPU. Other details are
the same with Figure 2.

Our technique can exploit up to four GPUs for a single
HE Mul by assigning one stream to a GPU. If we utilize
fewer than four GPUs, we assign more than one stream to the
same GPU; for example, one should decide how to assign the
four streams to the two GPUs appropriately when exploiting
only two GPUs. To assign the streams to GPUs, we consider
the ideal latency of an HE Mul, which is determined by the
critical path in stream 1, the most computationally expensive
stream. We assign stream 1 to one GPU and streams 2, 3,
and 4 to the other; this arrangement performs best on the
multi-GPU configurations used in Section VII.
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VI. EXPERIMENTAL SETUP
We compared the performance of the reference HEAAN [1],
our AVX-512 implementationwithmulti-threading, andGPU
implementation. We used an Intel Xeon CPU (Cascade
Lake-based Xeon Platinum 8260 operating at 2.4 GHz) and
NVIDIA GPUs (Turing Titan RTX operating at 1.35 GHz
for the single-GPU case, and Pascal Titan X and Volta
V100 operating at 1.405 GHz and 1.245 GHz, respectively,
for the multi-GPU cases). The CPU consists of 24 cores per
socket and each core has two AVX-512 FMA units, achieving
peak 64-bit integer performance of 1.84 TOPS per socket.
Each core has a 32 KB L1I and L1D cache and a 1 MB
L2 cache. A 35.75 MB L3 cache is shared by all the cores
within a socket, and each socket has six memory channels,
each equipped with DDR4-3200 DRAMmodules.We did not
use HyperThreading. In each setup, the Titan X, Titan RTX,
and V100 GPUs consist of 28, 72, and 80 SMs, each with
128, 64, and 64 CUDA cores, performing up to 3,584, 4,608,
and 5,120 32-bit integer operations per cycle, respectively.
The corresponding sizes of each per-SM L1 cache are 48 KB,
64 KB, and 128 KB, and those of the per-GPU L2 shared
caches are 3 MB, 6 MB, and 6 MB, respectively. All the
hardware performance metrics of the GPU kernels were mea-
sured with NVIDIA’s profiling tool (Nsight Compute [58]
version 2021.1). For functions that include multiple kernels
(e.g., iCRT in Algo. 8), we took the weighted average of
the measurements using each kernel’s execution time as the
weight.

We also evaluated our multi-GPU implementation of HE
Mul on two multi-GPU systems, one with four NVIDIA
V100 GPUs and the other with four Titan X GPUs. Their
network topologies and the corresponding peer-to-peer band-
width measurements are shown in Figure 6. The number of
orange lines between a pair of twoGPUs indicates the number
of NVLinks bonded to the two GPUs, which is proportional
to the peer-to-peer bandwidth.

FIGURE 6. The interconnect topologies of two different multi-GPU
systems. (a) In V100, each NVLink offers the peer-to-peer bandwidth
of 48.5 GB/s, whereas (b) in Titan X, PCIe offers 20.4 GB/s (26.1 GB/s)
when passing (not passing) through the PCIe host bridge.

Table 6 includes the key parameters for HE Mul on a
CPU and a GPU. We measured the execution time of HE
Mul, excluding the time for memory operations, in this case
malloc, free, and data transfers from host to the device

TABLE 6. HEAAN parameter settings for CPU and GPU.

for GPUs.1 We conducted each experiment 32 times and
reported the average.

VII. EVALUATION
A. IMPLEMENTATIONS
We evaluated the effectiveness of the proposed optimizations
for accelerating HEAAN mul in a comparison against the
performance of the reference HEAAN (Ref). For the CPU
case, we compared the basic implementation utilizing AVX-
512 (AVX), the setup with the modified Shoup’s ModMul
on top of AVX (AVX-M), and the setup transposing the
temp matrix on top of AVX-M (AVX-MT). In the basic
GPU implementation (GPU), we adopted radix-2 NTT for
NTT and iNTT. We modified the CRT kernel of cuHE [25],
which only exploits N -degree parallelism, to exploit N ·m-
degree parallelism. Also, we used the iCRT kernel of cuHE.
We compared GPU with the following: the implementation
optimizing CRT by using ADC instead of intermittently con-
ducting modulo operations (GPU-C), that which adjusted
the number of launching threads on top of GPU-C (GPU-
CT), the implementation using shared memory to pin the
arrays of each thread to the L1 unified $ on top of GPU-
C (GPU-CP), the implementation applying loop reordering
(Algo. 6) to translate a majority of the iCRT computations
into matrix-matrix mul to use N ·PLimbs-degree parallelism
on top of GPU-C (GPU-CL), and the implementation with
high-radix NTT and iNTT to reduce main memory accesses
and utilize the GPU’s computing power more efficiently on
top of GPU-CL (GPU-CLH).

We made the following key observations. First, exploiting
the massive parallelism supported by modern CPUs and
GPUs results in an approximate performance improvement
of 4.05× in HE Mul. Table 7 shows the execution time and
the relative speedup of the CPU and GPU implementations
after applying a series of architecture-centric optimizations.
AVX-MT and GPU-CLH, the implementations giving the
best performance for the CPU and GPU cases, achieve 2.06×
and 4.05× speedup, respectively, compared to the reference
HEAAN (Ref-24). GPU-CLH performs 3.0× and 1.8× bet-
ter than AVX-MT on CRT and iCRT owing to more ALUs

1In a single HE Mul with the parameters in Table 6, the cost of data
transfers between CPU and GPU is around 40%. However, the overhead can
be mostly amortized as GPU can reuse data during a series of HE Muls of
real applications, and memcpy operations are overlapped with GPU kernel
computation when the application executes several HE Muls concurrently.
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FIGURE 7. Comparing HE Mul execution time among Ref, AVX-512 implementation (AVX), and optimized AVX (AVX-M and AVX-MT) when (a) one and (b)
24 threads are utilized, and (c) per-function speedup when using 24 threads.

TABLE 7. Comparing the execution time of HE Mul among a single- and
24-thread reference HEAAN (Ref-1 and Ref-24), a 24-thread optimized
AVX-512 implementation (AVX-MT-24), and an optimized GPU
implementation (GPU-CLH).

populated on the GPU. Also, by reducing the main memory
accesses by increasing the radix, GPU-CLH achieves 1.9×
and 1.6× performance improvements in NTT and iNTT,
respectively, compared to the AVX-MT’s implementation.
Second, our CPU implementations are highly scalable

across both intra-core and inter-core dimensions. AVX is
effective regardless of the number of CPU threads popu-
lated, providing 1.6× and 1.8× performance gains over Ref
when a single and 24 threads are utilized, respectively (see
Figure 7(a) and (b)). Among the primary functions, NTT is
best in terms of scalability, leading to a 3.2× speedup for
AVX over Ref when 24 threads are populated. Overall, AVX
experiences a 25.2× speedup when the number of populated
threads increases from 1 to 24, exhibiting better scalability
than Ref (22.2×) for the following reasons. AVX and Ref
exploit parallelism in different ways for CRT, as described
in Section V. In Ref, each thread operates on different prime
numbers (m-degree parallelism), where m is not large (e.g.,
42 or 63). Hence,Ref is more susceptible to a load imbalance
across the threads. In contrast, each thread operates on dif-
ferent coefficients (N -degree parallelism) inAVX, exhibiting
better scalability. For iCRT, data accesses for the matrix
occur in the column direction duringmatrix-matrixmul, caus-
ing the performance to be memory-bound because hardware
prefetching becomes ineffective. However, with 24 threads
being utilized, hardware prefetching hits more frequently
because a thread may access the data in adjacent columns that
are prefetched by other threads, leading to even superlinear
speedups.

TABLE 8. Cache ($) hit rates in iCRT implementations. GPU-CP case is not
shown here because it mostly exploits shared memory and accesses L1 $
much less.

The additional optimizations applied to the AVX-
512 implementation are effective as well. Figure 7(c) shows
the impact of these optimizations on each major function
when 24 threads are used. In AVX-M, NTT is 8% faster
and iNTT is 10% faster than AVX because these functions
compute modular mul frequently. iCRT experiences a 21%
speedup in AVX-MT compared to AVX-M because the
matrix transposition alleviates the memory-bound issue.
Third, the performance of GPU reaches nearly full

potential through our architecture-centric optimizations.
Figure 8(a) shows the execution time of HE Mul on vari-
ous GPU implementations compared to that of the reference
HEAAN running on a CPU with 24 threads (Ref-24). The
baseline GPU implementation (GPU) is slower than Ref-24
by 1.47×, as iCRT inGPU, whose implementation we adopt
from cuHE [25], performs poorly; it is 3.12× slower than
that inRef-24 and takes 81.8% of the total HEMul execution
time.

To reduce the execution time of iCRT, we devised the
following optimizations and compared their performance
in Figure 8(c) and cache ($) hit rates in Table 8. The infe-
rior performance of iCRT in the GPU case is due to cache
thrashing. Because the thread-local array accum (line 3 in
Algo. 7) is stored in local memory, all of the in-flight threads
compete for a cache resource, leading to low cache hit rates
(see Table 8). The baselineiCRT issues only 0.03 instructions
per cycle per warp scheduler on average (1.0 is the machine
peak); the major reason for a stall is the long scoreboard
dependency, resulting in 193.0 stall cycles between issuing
two instructions on average.

By adjusting the number of launching threads, we reduced
the degree of the performance impact due to $ thrash-
ing, achieving a speedup of 4.22× (GPU-CT) compared
to that of GPU. GPU-CT increases the instruction issue
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FIGURE 8. Comparing HE Mul execution time (a) among Ref-24, the baseline GPU (GPU), and optimized GPU (GPU-C, GPU-CL and GPU-CLH), and the
execution time and relative speedup of (b) GPU and GPU-C for CRT, (c) GPU and GPU-C[T/P/L] for iCRT, and (d) GPU-CL and GPU-CLH for NTT/iNTT.

FIGURE 9. SM utilization, the relative execution time, and the relative
number of executed instructions on various CRT kernels. GPU-x means
one modulo operation is applied at every x iteration. We used the
parameters in region 1.

throughput from 0.03 to 0.16 while reducing the scoreboard
stall cycle to 2.0.

Although GPU-CT increases the hit rates of both L1 and
L2 $, it exhibits a low occupancy, the average ratio of the
number of in-flight warps to the maximum, of 11% as it
launches fewer threads. Pinning thread-local arrays to L1 $
(GPU-CP) performs better than GPU-CT, resulting in a
speedup of 6.79×. GPU-CP increases the occupancy to
16%; here, the occupancy is limited due to the heavy use of
shared memory. Finally,GPU-CLwas the best among all the
iCRT optimizations (a 9.58× speedup) because it effectively
exploitedN ·m-degree parallelism through the loop reordering
(explained in Section V). GPU-CL hits $ better than GPU
because PLimbs threads in GPU-CL share one input coef-
ficient, whereas the threads in GPU each takes one input
coefficient. This reduces the $ contention between warps,
as each warp demands fewer input coefficients, which are
much larger than the precomputed table (TBPdivp in Algo. 5),
while also offering higher occupancy (67.3% on average).

For CRT, performing fewer modulo operations led to
better performance. Figure 9 compares the various imple-
mentations of CRT kernels. GPU does not precompute mod
(βk , pj) and performs a modulo operation on every limb
(one limb for β) of the BigInt, exhibiting a SM utiliza-
tion rate of 88.9% (specifically, the utilization of FP64
(double-precision floating-point) pipes). The modulo oper-
ations, each being translated to hundreds of instructions,
place significant pressure on arithmetic pipes.GPU-1, which
transforms the repetitive logβ−bit shift and add operations
into muls with the precomputed mod(βk , pj), performs even

worse than GPU by 1.02× because the number of modulo
operations remains the same. By applying modulo opera-
tions intermittently (GPU-2 to GPU-4), both the number of
instructions and the execution time are drastically decreased;
GPU-4 outperforms GPU by 2.79×. Finally, by letting the
partial sum (accum) span three words instead of two words
while utilizing ADC in every iteration,GPU-C performs best
with a speedup of 3.64×.

B. PERFORMANCE-LIMITING FACTORS
We also analyzed the performance limiting factors of a sin-
gle HE Mul on the CPU and GPU implementations that
perform best. In AVX-MT, we measured the instructions
per cycle (IPC) for AVX-512 instructions (whose maximum
value is two per core [44]. CRT, NTT, iNTT, and iCRT
achieved 87.6%, 59.4%, 66.9%, and 80.7% of the peak IPC,
respectively. While the utilization rates are all high, NTT and
iNTT present lower numbers because they are more often
bound to the memory bandwidth.

In GPU-CLH, the main performance bottlenecks come
from the bandwidth of L1 $ and the main memory. CRT,
iCRT,NTT, andiNTT utilize themain-memory bandwidth at
rates of 8.7%, 24.1%, 69.9%, and 79.3%, respectively, where
the peak bandwidth reaches 672GB/s [2]. Large precomputed
tables of NTT and iNTT having O(N · m) sizes (see Table 5)
demand high memory bandwidth, lowering the arithmetic
intensity. In contrast, CRT is mainly bottlenecked by the
L1 data $ load bandwidth. CRT consumes 61% of the L1 $
bandwidth as measured from a microbenchmark stressing
L1 $ (56.2B per cycle per SM [45], [46]). The gap from
the peak comes from the transposing of an output at the end
of CRT and from cold start misses. Three phases of iCRT
stress different parts of the GPU microarchitecture. 1) The
Hadamard product (lines 1-2 inAlgo. 8) is limited by themain
memory bandwidth, utilizing 64% of the peak bandwidth.
2) The phase computing the partial sums of each BigInt
coefficient (lines 3-16 in Algo. 8) is mainly bottlenecked
by L1 data $, reaching 77.2% of the L1 $ load bandwidth.
Its computational characteristic is similar to that of CRT
(matrix-matrix mul); it achieves higher utilization due to the
absence of output transposition. 3) The last phase aggregates
the partial sums and reduces them to BigInt coefficients (lines
17-19 in Algo. 8). Here, the parallelism we can exploit is
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FIGURE 10. HE Mul execution time and speedup of (a) AVX-MT on a
various number of CPU cores, and (b) GPU-CLH implementation on
multi-GPU systems with different numbers of GPUs utilized.

limited to just N . We use the best-performing method of
pinning thread-local, similar to GPU-CP. This offers a low
occupancy (16%) due to the heavy use of shared memory,
where its limited capacity becomes a bottleneck.

C. MULTI-CPU AND MULTI-GPU SCALABILITY STUDY
We also evaluated the scalability of our CPU and GPU
implementations of HE Mul. For the CPU implementation,
we populated up to 96 cores on a four-socket server with
the node interleaving option enabled. Figure 10(a) shows the
performance of AVX-MT when utilizing different numbers
of cores. As the number of cores increases, the performance
improves; however, owing to the synchronization overhead,
it becomes saturated after 72 cores, eventually resulting in an
overall speedup of 1.76× on 96 cores compared to that with
24 cores.

Figure 10(b) shows the speedup of HE Mul with multiple
GPUs compared to the execution time with a single GPU
(GPU-CLH), showing outcomes of 106.9 ms and 33.7 ms
on Titan X and V100, respectively. Using two GPUs results
in a 1.78× speedup for V100 and a 1.70× speedup for Titan
X, while using four GPUs results in corresponding outcomes
of 2.02× and 1.85×. The scalability of our multi-GPU imple-
mentation is primarily limited by the workload imbalance
between the streams. As described in Section 5, the sequence
of computational kernels in stream 1, which is the critical path
of the workflow, takes much longer than the other streams.
In the cases with two GPUs, as we assign stream 1 to only
one GPU and streams 2, 3, and 4 to the other GPUs, the per-
formance degradation due to the workload imbalance is less
significant, with the speedup as high as 1.78×. In contrast,
in the cases with four GPUs, the GPUs in charge of stream 2
or stream 3 are mostly idle, waiting for stream 1 and stream 4
to finish the operations in region 2.

The communication overhead limits the performance less
significantly; with four V100 (Titan X) GPUs, 12.34%
(12.75%) of the execution time of an HE Mul is blocked by
synchronization for data acquisition.

VIII. DISCUSSION & RELATED WORK
A. OVERHEAD OF EMULATION ON AVX-512
As described in Section V, the cost of emulating 64-bit
mul, modular mul, and ADC operations is significant in the

TABLE 9. The number of required AVX-512 instructions (add, sub, mul,
shift, and cmp) for each function with (m, qLimbs) of (43, 19) when 64-bit
mul, modular mul, and ADC is supported by emulation or by a single
native instruction.

AVX-512 implementation. To evaluate the emulation over-
head in these cases, we analyzed the changes in the number of
AVX-512 instructions when the CPU supports single native
instructions for these operations. Table 9 summarizes the
number of AVX-512 instructions required to perform each
major function by comparing the cases where each case of
64-bit mul, modular mul, and ADC is supported by either
emulation or a single native instruction. CRT and iCRT
require 17.3% and 15.8% of AVX-512 instructions if a CPU
supports these instructions natively, not through emulation.
NTT and iNTT require one-third of the instructions via
instruction extension. These results show why the use of
AVX-512 achieves an insufficient performance improvement,
also implying that we can substantially accelerate HE Mul
by natively supporting these SIMD instructions. Previous
work [49], [53] also showed that SIMD can effectively accel-
erate NTT and iNTT on CPUs and GPUs.

B. IMPACT OF Q ON THE CHARACTERISTICS OF HE MUL
Q determines the multiplicative depth L; a larger depth
requires a largerQ. However, N must increase proportionally
to logQ to ensure a certain level of security (see Table 2).
Also, qLimbs, m, and PLimbs increase in proportion to logQ.
Based on these relationships, the computational complexity
shown in Table 4 can be expressed in terms of Q. The com-
plexity of CRT and iCRT is O((logQ)3) whereas that of
NTT and iNTT is O(log(logQ) · (logQ)2). Figure 11 shows
the estimated number of operations for HE Mul according
to logQ. When Q is small (e.g., logQ = 150), all major
functions require a similar number of operations, but as Q
increases, CRT and iCRT become more dominant. Overall,
the total number of operations for HE Mul is proportional
to (logQ)3. When an application requires a large number
(e.g., billions) of HEMul operations, using a large value ofQ
amortizes the cost of the expensive bootstrapping. However,
using too large a Q value is costly because the maximum
number of messages (n) that can be multiplied together by a
HE Mul is N/2, where the complexity of a HE Mul is super-
linear, O((logQ)3) = O(N 3). The logQ value we mainly
target is 1,200, which is large enough to amortize the cost of
bootstrapping. In contrast, other HE accelerators [61], [64]
focused on much smaller Q values (e.g., [64] used a logQ
value of 180 without considering bootstrapping).

C. IMPACT OF q ON THE CHARACTERISTICS OF HE MUL
As described in Section III, rescaling, which decreases
logq by logp, is performed after each HE Mul to prevent
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FIGURE 11. Distribution on the number of operations across functions
and the relative number of operations for HE Mul on various logQ values.
The reference logQ is 1,200.

FIGURE 12. The size of m and the relative number of operations per
function according to logq.

the amount of message information in the ciphertext from
increasing exponentially. As HEMul is repeated, q decreases,
as do qLimbs and m. In region 1 of HE Mul, m decreases
linearly with logq as two logq2-bit BitInt numbers are mul-
tiplied per ciphertext coefficient. In contrast, in region 2,
m should be set to represent (logq + logQ2)-bit BigInt (to
multiply over the evaluation key polynomial). The trend for
PLimbs is identical to that of m. Figure 12 shows the amount
of computation for HE Mul according to logq in the AVX-
512 configuration described in Section VI. As m is propor-
tional to (logq+ logQ2) in region 2, the number of operations
for HE Mul when logq becomes 30 (the smallest number
where no additional HEMul is applicable) is still 24% of that
when logq is 1,200. Also, iCRT is dominant regardless of the
size of q.

D. ACCELERATING OTHER CKKS LIBRARIES
Besides HEAAN, there are several other libraries [3], [4],
[16], [36] that support a full-RNS variant of CKKS [18].
Full-RNS CKKS makes each coefficient of the polynomials
remain in an RNS domain during all HE operations. Com-
pared to non-RNS CKKS, full-RNS CKKS is typically faster
but less flexible because there exist rigid limitations when
choosing p and Q. In full-RNS CKKS, each prime number
composing an RNS representation of Q should be set such
that it is close to p to suppress approximation errors [18]. In
non-RNS CKKS, on the other hand, one can freely choose
p independent of Q. Moreover, these parameter limitations
make the multiplicative depth of full-RNS variants lower than
that of non-RNS schemes for a given security bit and error
bound.

We can apply the optimization techniques described in
Section V to these other CKKS libraries. Full-RNS variants
do not require CRT and iCRT, but the optimizations for NTT
and iNTT can be applied. Also, we can partially apply our
techniques in CRT to functions that change the number of
primes in the RNS domain (mod up and mod down). mod
up increases the number of primes for a given big integer,
whereas mod down decreases it with an additional division
operation [11], [18]. Both can take advantage of our opti-
mizations, as their core functions are similar to when CRT is
applied immediately after iCRT. FPGA-based HE acceler-
ators:Numerous studies [24], [28], [59], [61], [63], [64] have
attempted to accelerate HE operations using FPGA. [24],
[28], [59] accelerate LTV-based FHE schemes whereas [63],
[64] accelerate FV-based FHE schemes. However, LTV and
FV schemes are of limited practical use because they cannot
perform approximate computations. HEAX [61] uses FPGA
to accelerate Microsoft SEAL, which supports a full-RNS
variant of the CKKS scheme; however, HEAX considers only
small parameter sizes (logQ ≤ 438 and N ≤ 214), and the
full-RNS variant it targets is not as versatile as the original
HEAAN we accelerate in this paper due to the limitations
that exist when choosing the rescaling factors and prime
numbers.

E. GPU LIBRARIES FOR HE
[6], [9], [10], [25] propose to accelerate HE operations using
GPUs. Because they target schemes other than CKKS and
use different parameter sets, we can only compare individual
kernels and the algorithms adopted. References [10] and [9]
adopt Garner’s iCRT algorithm. Garner’s algorithm achieves
a speedup of 33.1% over cuHE’s iCRT on (N , logQ) =
(214, 744) [10]. However, the parallelism in iCRT is still
limited to N -degrees. Also, these methods do not adopt
ADC operations to reduce the number of modular reductions
in CRT.

For NTT and iNTT, [49] characterizes various NTT imple-
mentations, including the high-radix approach in this paper,
suggesting on-the-fly twiddle factor generation. Another
approach [10] is to exploit the Discrete Galois Trans-
form (DGT) rather than NTT, reducing the N -point datapath
to N/2-points with the use of Gaussian integers.

F. MULTI-GPU IMPLEMENTATION
A prior study [5] that implemented the HE operations of a
variant of BFV [35] on a multi-GPU cluster took a different
strategy while exploiting data parallelism. Instead of allocat-
ing a polynomial to a GPU, [5] represents each polynomial
as a 2D matrix and partitions it in a column- and row-wise
manner, distributing the polynomial over all GPUs.Whenever
needed, this method transposes the polynomial so that each
GPU holds either rows or columns of a polynomial. For
example, considering the HE Mul of HEAAN in Figure 2, a
transposition should occur between CRT and NTT and also
between iNTT and iCRT. Their approach can parallelize
a HE Mul to an arbitrary number of GPUs at the cost of
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communication and synchronization; all GPUs should com-
municate in an all-to-all manner per transposition. One can
combine their approach with ours, enjoying more parallelism
with a lower communication cost.

G. ROAD TO THE PRACTICAL USE OF HE
There are numerous machine-learning based applications that
target inference tasks using HE [15], [22], [30], [43], [47],
[52]. However, they are still too slow to be used practically;
for example, the state-of-the-art HE-enabled CNNmodel [52]
reports a latency of 96.4 seconds for a single inference with
the CIFAR-10 dataset. We believe that our implementations
can be applied to such machine learning tasks and reduce
the latencies to few seconds, which could be considered
real-time.

IX. CONCLUSION
We have demystified the key operations of HEAAN, a rep-
resentative and popular FHE scheme. After identifying that
multiplying encrypted data (ciphertext) is the most computa-
tionally demanding operation, we accelerated the major func-
tions of HEMul (CRT, NTT, iNTT, and iCRT) on CPUs and
GPUs. To accelerate the major functions on a CPU, we pop-
ulate multiple cores by means of multi-threading (inter-core
parallelism) and with AVX-512 instructions (intra-core par-
allelism). We accelerate HE Mul on a GPU by effectively
exploiting the massive thread-level parallelism. Moreover,
based on an in-depth analysis of the major functions for
HE Mul, we introduced a series of architecture-centric opti-
mization techniques, specifically loop reordering and matrix
transposition for iCRT, using the synergy between precom-
putation and the delayed modulo operations for CRT. Our
accelerated HEAAN on a single CPU and single GPU out-
performs the reference HEAAN on a CPU with 24 threads by
2.06× and 4.05×, respectively.
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