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ABSTRACT Multi-label classification aims to deal with the problem that an object may be associated with
one or more labels, which is a more difficult task due to the complex nature of multi-label data. The crucial
problem of multi-label classification is the more robust and higher-level feature representation learning,
which can reduce non-helpful feature attributes from the input space prior to training. In recent years, deep
learning methods based on autoencoders have achieved excellent performance in multi-label classification
for the advantages of powerful representations learning ability and fast convergence speed. However, most
existing autoencoder-based methods only rely on the single autoencoder model, which pose challenges for
multi-label feature representations learning and fail to measure similarities between data spaces. To address
this problem, in this paper, we propose a novel representation learning method with dual autoencoder for
multi-label classification. Compared to the existing autoencoder-based methods, our proposed method can
capture different characteristics and more abstract features from data by the serially connection of two
different types of autoencoders. More specifically, firstly, the algorithm of Reconstruction Independent
Component Analysis (RICA) in sparse autoencoder is trained on patches on all training and test dataset
for robust global feature representations learning. Secondly, with the output of RICA, stacked autoencoder
with manifold regularization (SAMR) is introduced to ameliorate the quality of multi-label features learning.
Comprehensive experiments on several real-world data sets demonstrate the effectiveness of our proposed
approach compared with several competing state-of-the-art methods.

INDEX TERMS Multi-label classification, dual autoencoder, RICA, manifold regularization, representation
learning.

I. INTRODUCTION
Recent years have witnessed many approaches to solve the
problem of that one object may associate with a set of labels,
which is also commonly framed as the multi-label classifica-
tion problem [1]. Different from binary class and multi-class
classification in single-label problem, the intrinsicmulti-label
nature of most real datasets could represent the world more
exactly [2]–[4]. In addition, multi-label learning has a wide
range of applications in news classification [5], image pro-
cessing [6] and other fields [7]. For example, a scenery image
in MS COCO data set [8] may contain car, person, sky, boat
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and so on, which can be regarded as a multi-label image. One
news article can be classified to several topics like politics and
sport due to it reports that one athlete is running for president.

The traditional multi-label classification methods, such as
problem transformation and algorithm adaptation methods,
either transform multi-label into single-label classification
or extend specific algorithm for multi-label data [9]. For
example, classifier chains methods [10], [11] built binary
classification in the chain based on the previous predictions
for the transformation from multi-label classification to a
chain of binary classification. Multi-Label k-Nearest Neigh-
bor (ML-kNN) method [12] introduced kNN algorithm for
multi-label classification, where maximum a posteriori prin-
ciple is utilized to predict label information for the instances.
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Considering the shortcomings in the neglect of label cor-
relations, many correlation-enabling methods attempted to
improve the generalization ability of system in recent
decades [13]. Tahir et al. [14] proposed to integrate stacked
Spectral Regression based Kernel Discriminant Analysis
(SRKDA) with ML-kNN, which can be utilized for dimen-
sionality reduction and multi-label classification simultane-
ously, both correlation and high dimensionality problems can
be tackled in this method. Alali and Kubat [15] proposed
to reduce error-propagation and prune unnecessary label
dependencies with classifier-stacking method, the stacking
structure is used in this method to fulfill controlled label
correlation exploitation by pruning the uncorrelated outputs.
However, the main problem of these methods is the learning
ability of feature representations for multi-label classifica-
tion, the raw input data that used in the learning system
directly may contain non-helpful features and deteriorate the
classification performance.

Due to the tremendous success in feature representa-
tion learning, there have already been some efforts on
devoting deep-based methods to multi-label classification.
Wang et al. [16] combined recurrent neural networks (RNNs)
with deep convolutional neural networks (CNNs) for
multi-label image classification, and a joint image-label
embedding is learned to model the label co-occurrence
dependency in an end-to-end way. Wang et al. [17] proposed
a label graph superimposing method based on graph convolu-
tion network (GCN) for multi-label recognition, the knowl-
edge graph is superimposed into statistical graph for label
correlation learning, and lateral connection is conducted for
label-feature correlation modeling. However, these meth-
ods always suffer from the lack of labeled data, which is
often expensive and laborsome in the real world. Recently,
the autoencoder based models have achieved sound perfor-
mance for the superiority of powerful representations learn-
ing ability and fast convergence speed [18]. Yeh et al. [19]
proposed canonical correlated autoencoder based on deep
neural networks for more desirable performance on
multi-label classification, and a joint feature and label embed-
ding is performed to better relate feature and label domain
data. Huang et al. [20] proposed a two-encoding layer
autoencoder to share knowledge with the second encoding
weight matrix, both representation learning and multi-label
learning is jointly optimized with the autoencoder model for
the improvement of multi-label classification performance.
However, these autoencoders-based methods just relied on
the single autoencoder model, which pose challenges for
multi-label feature representations learning and fail to mea-
sure similarities between data spaces.

To address these problems, we propose a novel Rep-
resentation Learning method with Dual Autoencoder for
multi-label classification (RLDA for short), in which we can
capture different characteristics and more abstract features
from data by the serially connection of two different types
of autoencoders. Specifically, firstly, the algorithm of Recon-
struction Independent Component Analysis (RICA) in sparse

autoencoder is trained on patches on all training and test
dataset for robust global features learning. Then, with the
output of RICA, a stacked autoencoder with manifold regu-
larization (SAMR for short) is applied to improve the quality
of multi-label feature representations. Finally, we can obtain
the new feature representations for multi-label classification
by serially connecting two different types of autoencoders.
Extensive experiments on several real-world data sets demon-
strate the effectiveness of our proposed RLDA compared with
other state-of-the-art methods. The main contributions of this
paper are summarized as follows:
• We propose a novel representation learning method
called RLDA, which exacts different characteristics and
more abstract features from data by serially connection
of two different types of autoencoders for multi-label
classification.

• A algorithm of RICA and the method of stacked autoen-
coder with manifold regularization (SAMR) are intro-
duced to learn more discriminative and abstract features,
which can discover latent knowledge of the raw input
data for multi-label learning.

• The comprehensive experiments over four real data sets
show that our method outperforms state-of-the-art mod-
els and evaluate the effectiveness of our method.

The remainder of this paper is organized as follows.
Some preliminary knowledge used in our proposed method
is reviewed in Section II and details of the proposed
RLDA method are provided in Section III. Experimental
results and analysis on four real world datasets are pre-
sented in Section IV, followed by the related work is intro-
duced in Section V. Finally, our conclusions are summarized
in Section VI.

II. PRELIMINARIES
A. AUTOENCODER
The autoencoder model [21] is an unsupervised feature rep-
resentation learning model, which aims to learn an approxi-
mate representation of the input by the encoder and decoder
layers. Autoencoder has already been one of the most suc-
cessful deep neural networks and actively adopted as a
multi-label classification model recently. Given the input as
{x1, x2 . . . , xi . . . , xn}, where xi ∈ <m, the autoencoder model
attempts to learn an approximate output hW ,b(x) ≈ x. Specif-
ically, the autoencoder model usually contains one encoder
and one decoder layer respectively. In encoder layer, the input
is encoded to one or more hidden layers through several
encoding processes, then the hidden layers are decoded to
the output as x̂. The encoder and decode layer in autoencoder
model that just includes one hidden layer can be represented
as (1) and (2):

ξ = f (W1x + b1) (1)

x̂ = g (W2ξ + b2) (2)

where W1 ∈ <
k×m and W2 ∈ <

m×k are the weight matrixes,
b1 ∈ <k×1 and b2 ∈ <m×1 are the bias vectors, ξ ∈ <k×1 is
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the output of hidden layer, f and g are the nonlinear activation
function of encode and decode layers respectively. For suc-
cinctness, the original input data are denoted as {xi}ni=1, thus
the reconstruction error can be expressed as

∑n
i=1

∥∥x̂i − xi∥∥2.
The crucial problem of the autoencoder model is to minimize
the reconstruction error by the parameters learning aboutW1,
W2, b1 and b2, which can show as (3):

min
W1,W2,b1,b2

n∑
i=1

∥∥x̂i − xi∥∥2 (3)

B. RECONSTRUCTION INDEPENDENT COMPONENT
ANALYSIS (RICA)
Reconstruction Independent Component Analysis (RICA)
model [22] aims to exact sparse representations of whitened
or non-whitened data from unlabeled data, which tries to learn
a set of linearly independent basis features to represent input
data accurately. Given the input as x, in order to learn the
output which is represented in the columns of a weight matrix
W as shown in (4):

J (W ) = ‖Wx‖1 (4)

The optimization of the RICA’s objective function is rep-
resented as (5):

min
W
λ ‖Wx‖1 +

1
2

∥∥∥W TWx − x
∥∥∥2
2

(5)

Compared to the above-mentioned objective function of
autoencoder, the reconstructive penalty is added for scaling
up to over-complete features, which is shown as the sec-
ond item in (5). Since the objective function of RICA has
no analytic solution, the gradient of reconstruction cost is
driven with the back-propagation idea for the optimization.
The gradient with respect to W T is transposed to the gra-
dient with respect to W , and the final gradient with respect
to W is shown as (6):

∇W J = ∇W J + (∇W T J )T

= (W )(2(W TWx−x))xT+2(Wx)(W TWx−x)T (6)

C. MANIFOLD REGULARIZATION
Manifold regularization aims to construct a graph connect-
ing similar observations for unsupervised or semi-supervised
learning, and label information propagates through the graph
from labeled nodes to unlabeled ones by finding the min-
imum energy configuration [23]. In our proposed method,
we incorporate manifold learning as a regularization into
autoencoder for enforcing neighbors located in the same local
structure on the representation space. Given the input as
{x1, x2 . . . , xi . . . , xj . . . , xn}, the adjacent matrix K can be
shown as (7):

K ij
=

{
1, xi ∈ NN (k, xj)orxj ∈ NN (k, xi)
0, Otherwise

(7)

where NN (k, xj) is the k nearest neighbors of xj and k is
the hyper-parameter. The distance between xi and xj can be

calculated by cosine distance. D is denoted as a diagonal
matrix where D = diag(

∑
j K

ij), and Laplacian matrix L is
denoted as L = D−K . The manifold regularization term can
be written as (8):∑

i,j
K ij ∥∥f (xi)− f (xj)∥∥2 = tr(FTLF) (8)

where tr denotes trace operator, f (xi) is the map function
of xi, F i denotes the ith row of F and F i = f (xi).

III. METHODOLOGY
In this section, firstly, some important notations used in this
paper are listed in TABLE 1. Then, the whole framework of
our proposed RLDA is presented in detail.

TABLE 1. Important notations used in this paper and descriptions.

A. OVERALL ARCHITECTURE
The proposed representation learning method with dual
autoencoder is a deep neural network which is able to
learn more robust and higher-level feature representations
for multi-label classification. As shown in Fig. 1, the
methods contains two different types of models as dual
autoencoder, each autoencoder has its own strengths for
extracting multiple characteristics of the input data. Specif-
ically, there are two stages in our proposed method: (1) the
algorithm of Reconstruction Independent Component Anal-
ysis (RICA) in sparse autoencoder is trained on patches
for global features learning; (2) based on the results of
stage (1), a stacked autoencoder with manifold regulariza-
tion (SAMR) is applied to improve the quality of multi-label
feature representations. After training, the softmax regres-
sion is used to predict the label set of each test instance
with the learned feature representations. In the following,
the details of two stages in our proposed RLDA will be
given.
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FIGURE 1. The whole framework of our proposed RLDA.

B. REPRESENTATION LEARNING VIA RECONSTRUCTION
INDEPENDENT COMPONENT ANALYSIS (RICA)
The first stage of our proposed method is the RICA model,
which learns the latent feature representation subspace from
the original input data. Given the input data as training dataset
Dr = {x

(r)
i , y

(r)
i }|

nr
i=1 and test dataset Ds = {x

(s)
i , y

(s)
i }|

ns
i=1,

where y(r)i , y
(s)
i ⊆ {1, 2 . . . , c} are sets of relevant labels

associated with input data x(r)i , x
(s)
i . The objective function

of RICA is defined as (9):

J =
∑
t∈{r,s}

λ

∥∥∥Wx(t)∥∥∥
1
+

1
m

∥∥∥W TWx(t) − x(t)
∥∥∥2
2

(9)

In our work, f (x) =
√
(Wx(t))2 + ε is used to implement

L1 regularization in (9) so that the reconstruction term can
be scaled, and ε = 0.1 is a small constant value to avoid the
item (Wx(t))2 + ε be numerically close to zero. Therefore,
the objective function can be defined as (10):

J =
∑
t∈{r,s}

n∑
i=1

(λ
(√

(Wx(t)i )2 + ε
)

+
1
2n

∥∥∥W TWx(t)i − x
(t)
i

∥∥∥2) (10)

The computational formula of the partial derivatives for L
with respect toW and W T is shown as (11):

∇W J =
1
n

∑
t∈{r,s}

(W (W TWx(t)i − x
(t)
i )

(
x(t)i
)T

+(WX )(W TWx(t)i − x
(t)
i )T )

+λ((Wx(t)i )2 + ε)−
1/2(Wx(t)i )

(
x(t)i
)T

(11)

Based on the above partial derivatives, we feed the output

feature x̂(t)i = W TWx(t)i as the input into the stacked autoen-
coder with manifold regularization.

C. REPRESENTATION LEARNING VIA STACKED
AUTOENCODER WITH MANIFOLD
REGULARIZATION (SAMR)
The stacked autoencoder with manifold regularization
(SAMR) has been used to improve the quality of multi-label

feature representations, and generalized eigendecomposition
is used to optimize the parameters of model and learn higher
level feature representations. The main intuition behind the
labels is to transform the multi-label task to multi-class task,
which converts (instance, labels) into a set of (instance, label)
where each (instance, label) contains just one label. The
training set Dr = {x

(r)
i ,Y

(r)
i }|

nr
i=1 can be converted as D′r =

{x(r)i , y
(r)
j |y

(r)
j ∈ Y

(r)
i }|

nr
i=1. The manifold regularization item

can be noted as f (x̂) = Mx̂, where M is the transformation
weight vectors. The loss function for manifold regularization
can be shown as (12):

Loss =
∑
t∈{r,s}

n∑
i=1

(Mx̂(t)i − y
(t)
i )2 + γ ‖M‖2 (12)

where γ is tuning parameter.
In addition, as mentioned in (8), local geometry preserving

term can be defined as
∑

i,j K
ij
∥∥∥Mx̂(t)i −Mx̂(t)j

∥∥∥2, in which

K ij records the similarity between x̂(t)i and x̂(t)j . Integrating
this term into (12), the optimization problem can be expressed
as (13):

argmin
M


(

1
nt

∑
t∈{r,s}

nt∑
i=1

(Mx̂(t)i − y
(t)
i )2 + γ ‖M‖2

)
+

1
2

∑
t∈{r,s}

∑
i,j K

ij
∥∥∥Mx̂(t)i −Mx̂(t)j

∥∥∥2

(13)

According to the tricks mentioned in (8), (13) can be
rewritten as (14):

argmin
M


(

1
nt

∑
t∈{r,s}

nt∑
i=1

(Mx̂(t)i − y
(t)
i )2 + γ ‖M‖2

)
+

1
2

∑
t∈{r,s}

(M (x̂(t))L(x̂(t))TMT )


(14)

where L is the Laplacian matrix.

D. PREDICTION
After the feature representations are learned with the connec-
tion of dual autoencoders, the softmax regression method is
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introduced to predict the multi-labels for each test instance.
More specifically, following the same strategy adopted
by other methods [20], the probability of one instance
belongings to every label is estimated firstly, then all the
probabilities of label are sorted in descending order, and
the difference between two adjacent label probabilities is
calculated. Finally, the labels are assigned based on the
maximum difference, the labels before the max difference
are considered to be the predicted labels for instances. The
whole process of our proposed RLDA model is summarized
in Algorithm 1.

Algorithm 1 Representation Learning With Dual
Autoencoder for Multi-Label Classification (RLDA)

Require: The training dataset Dr = {x
(r)
i , y

(r)
i }|

nr
i=1 and test

dataset Ds = {x
(s)
i , y

(s)
i }|

ns
i=1, the number of nodes in the

embedding layer k , paremeters λ and γ ;
Ensure: the predicted label set Y (s)

i for test instance x(s)i .
1: InitializeW randomly respectively.
2: The stage of RICA:
3: Compute the partial derivatives of all variables

based on (11);
4: Compute

∑
t∈{r,s}

x̂(t) =
∑

t∈{r,s}
W TWx(t);

5: The stage of stacked autoencoder with manifold
regularization:

6: ComputeM with (13) and (14);

7: Compute
∑

t∈{r,s}
x̃(t) = tanh

( ∑
t∈{r,s}

Mx̂(t)
)
;

8: Predict the label sets of test instances.

IV. EXPERIMENTS
In this section, we conduct extensive experiments to evaluate
the performance of our proposed method. In the following,
the details of datasets are presented firstly. Secondly the
compared methods and experiment settings are introduced
in detail. Then the classification results with observations of
our proposed RLDA and other competing methods are given.
Finally, the properties and parameter sensitivity of RLDA are
analyzed with certain dataset.

A. DATASETS
The datasets including enron, medical, Corel5k and
Corel16k001 are selected from Mulan [24], which is an open
Java library for multi-label learning.1 The selected datasets
can evaluate the proposed method in different cases including
text and image. The statistics of all the datasets are summa-
rized in TABLE 2, where domain denotes the domains of the
datasets, instances denote the number of instances, features
denote the feature dimension, and labels denote the number
of labels. For all the datasets, we use the default division of
training and test set as the original dataset.

1http://mulan.sourceforge.net/index.html

TABLE 2. Dataset overview.

B. COMPARED METHODS
We compare our proposed RLDAwith the following baseline
methods:
• Learning multi-label scene classification (Binary rele-
vance, short for BR) [25]. It fits multi-label data into n
independent binary classifiers for each label.

• A lazy learning approach to multi-label learning
(ML-KNN) [12]. It is based on the traditional k-nearest
neighbor method, and it introduces maximum a poste-
riori principle to determine the label set for the unseen
instance.

• Random k-Labelsets (RAKEL) [26]. It is based on ran-
dom label space projection, and a set of Label Powerset
classifiers is trained on an ensemble of k random label
subsets for multi-label classification.

• Stacked Denoising Autoencoders (SDA) [27]. In this
method, higher level feature extraction is firstly learned
by stacked denoising autoencoder for code layer. Then,
the features are combined with the labels to construct
new feature space. Finally, the method of Bayesian
Multinomial Regression (BMR) is adopted for classifi-
cation on the new feature space.

• Manifold regularized discriminative feature selection for
multi-label learning (MDFS) [28]. The manifold regu-
larization is introduced in this method to generate the
low-dimensional representations from the original input
data for the local and global label correlations exploita-
tion, then the feature selection is conducted for dis-
criminative feature representation learning by involving
`21-norm regularization.

• Supervised representation learning for multi-label clas-
sification (SERL) [20]. It introduces a two-encoding
layer autoencoder with supervised manner to learn
global feature representations for multi-label classifica-
tion, and the softmax regression is utilized to incorporate
label knowledge by being jointly optimized with autoen-
coder for improving the performance of this method.

C. EXPERIMENT SETTINGS
There are three hyper-parameters in our proposed method
including tuning parameter λ, γ and the number of nodes k
in the embedding layer, and we set λ = 0.05, γ = 1E − 03,
k = 100 for all datasets after cross-validations training.
LIBSVM with linear kernel is used as the base classifier
for all the compared methods except SDA. Moreover, for
ML-KNN, the K is set as 10. For RAKEL, we set the value
of ensemble and label subset k as 2c and 3, where c is the
number of labels. For SDA, the number of nodes k in the
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embedding layer is set to 100, which is consistent with our
proposed method. For MDFS, the influence of parameters β
and γ are set to 1 and 100 as conducted in their source
code 2 [28]. For SERL, the trading-off parameters α, β and
k are set as 15, 0.005, 100 respectively according to [20].

D. EXPERIMENTAL RESULTS
The ranking based evaluation metrics about RankingLoss,
Coverage, MacroAUC and the classification metrics about
Accuracy, F1-score and MacroF1 are adopted to compare
our RLDA with other methods in a more comprehensive
way. The ranking and classification results of experiments are
reported in TABLE 3-10, and the best results are marked in
bold. We have the following observations from experimental
results:
• Among all ranking based evaluation metrics, our RLDA
performs the best in enron dataset and achieves the best
performance on Coverage and MacroAUC in datasets
corel5k and corel16k01. Even on the metric of Rank-
ingLoss, RLDA obtains an competitive result in all the
four results.

• Among all classification evaluation metrics, our pro-
posed RLDA performs better than BR, it indicates
the multi-classification methods with autoencoder
outperform the standard multi classifiers method. Our
proposed RLDA can extract more robust feature repre-
sentations for multi-label classification. The BR method
aims to learn the classifiers for overlap class, which
may not be able to learn discriminative features and
deteriorate performance of multi-label classification.

• RLDA outperforms ML-KNN and RAKEL, which
shows the deep-based methods can learn more abstract
feature representations than the shallow architecture for
multi-label classification.

• Our proposed RLDA outperforms SDA, MDFS and
SERL, it indicates the serially connection of two dif-
ferent autoencoders which captures different features is
better than stacking a single autoencoder in multi-label
classification.

• Neural network based methods (e.g., SDA, MDFS and
SERL) deliver a relatively good result compared to prob-
lem transformation and algorithm adaptation methods
(e.g., BR, ML-KNN and RAKEL) in most cases, which
demonstrates the ability of feature representations learn-
ing of neural network in multi-label classification.

• Overall, in all datasets, our proposed RLDA performs
best in terms of Accuracy, F1-score and MacroF1 com-
pared to the state-of-the-art methods. The results vali-
date the effectiveness of our proposed method.

E. COMPARISON WITH SINGLE AUTOENCODER
To verify the effectiveness of our proposedmethod, especially
the serially connection of two different types of autoencoders,
we compare the RLDA with only RICA and only SAMR.

2https://github.com/jiazhang-ml/MDFS

TABLE 3. The ranking results on enron.

TABLE 4. The ranking results on medical.

TABLE 5. The ranking results on Corel15k.

TABLE 6. The ranking results on Corel16k001.

TABLE 7. The classification results on enron.

TABLE 8. The classification results on medical.

The results on medical and Corel15k are listed on TABLE 7.
We can see that the performance of proposed RLDA is
obviously better than only RICA and only SAMR, which
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TABLE 9. The classification results on Corel15k.

TABLE 10. The classification results on Corel16k001.

TABLE 11. The MacroF1 performance of RLDA, only RICA and only
stacked autoencoder with manifold regularization on medical and
Corel15k dataset (%).

demonstrate that the combing two different types of autoen-
coders can capture more powerful and abstract feature
representations than a single autoencoder in multi-label
classification.

F. PARAMETER SENSITIVITY
We investigate the influence of parameters in this section,
including λ, γ and k in the objective (11) and (14).
When we change one parameter, the rest one is fixed
in the experiment. λ is set to {1E-06,5E-06,1E-04,5E-
04,0.01,0.05,0.1,0.5,1.5,5}, γ is set to {1E-06,1E-05,
1E-04,1E-03,0.01,0.1,1,10} and k is set to {20,40,60,80,100,
120,140,160,180} respectively. All the results about
MacroF1 on enron and medical datasets are reported
in Figure 2. From Figure 2, we set λ = 0.05, γ = 1E − 03
and k = 100 to get good and stable results.

V. RELATED WORK
Multi-label classification has been extensively researched
and used in many applications such as text categoriza-
tion [29], music categorization [30] and semantic classifica-
tion of images [31]. The multi-label classification methods
can be mainly divided into two different groups: problem
transformation and algorithm adaptation methods [9].

Problem transformation methods solve the multi-label
learning problem by transforming it into other well-
established scenarios. For example, Binary Relevance [25]
and Classifier Chains [32] transformed the multi-label learn-
ing tasks into binary classification tasks. Calibrated Label
Ranking method [33] aimed to transform the multi-label

learning problem into the label ranking problem based on
pairwise comparison. Mencía et al. [34] proposed Quick
Weighted Multi-label Learning (QMWL) method, which
transformed a class ranking into a bipartite prediction
by introducing an artificial thresholding class with the
QWeighted voting for reducing computational costs. Random
k-labelsets method [35] learned an ensemble of multi-label
classifiers based on the dividing of k random label subsets,
which improved computational efficiency and predictive per-
formance compared to the traditional label powerset methods.

Algorithm adaptation methods adapt the existing single
label classification algorithms to multi-label data [9]. For
example, Rastin et al. [36] proposed a prototype weighting
method to adapt the distance measure based on the ML-kNN
method [12], the prototype weights were adjusted by gradi-
ent ascent method in order to maximize the objective func-
tion as macro-F1 measure. Kouchaki et al. [37] designed
the multi-label random forest (MLRF) models for treating
tuberculosis resistance classification and mutation ranking
in medical. Wu et al. [38] jointed Ranking support vec-
tor machine and Binary Relevance with robust Low-rank
learning (RBRL), which enjoyed the advantages and tackled
the disadvantages of Rank-SVM and BR. Xuan et al. [39]
developed a Bayesian nonparametric model for multi-label
learning, which can learn both low-dimensional labels and
instances embedding without the fixed of dimensions num-
ber. Zhang et al. [40] proposed a fully associative ensemble
learning method for hierarchical multi-label classification,
which built a multi-variable regression model between the
global and local predictions of all the nodes.

Recently, the representation learning methods have
achieved the encouraging results in multi-label classifica-
tion. For example, Huang et al. [41] proposed to learn
label-specific data representation for each class label in a
sparse stacking way, which exploited both second-order and
high-order label correlations for multi-label classification.
Zhang et al. [42] proposed a hierarchical and transpar-
ent representation learning method to express the semantic
information for accurate paper-reviewer recommendation
as multi-label classification. Ye et al. [43] introduced a
dynamic graph convolutional network to project raw input
into category-aware representations with semantic attention
module, and the final category representations are utilized
for multi-label image recognition. Gong et al. [44] proposed
a hierarchical graph transformer method for multi-label text
classification, a multi-layer transformer structure and the
hierarchical relationship of the labels are used for feature
representations learning in different level. On the other hand,
the autoencoder based methods have attracted much attention
for the superiority of powerful representations learning ability
and fast convergence speed. For example, Huang et al. [20]
designed the two encoding layers auto-encoder model for
multi-label learning, and the knowledge is shared by soft-
max regression for the performance improvement. Law and
Ghosh [45] introduced a stacked autoencoder for a dis-
criminating and reduced input representation learning of the
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FIGURE 2. Parameter Influence of MacroF1 on enron and medical dataset.

multi-label data. Cheng et al. [46] proposed a kernel extreme
learning machine autoencoder for the associations learning
between the features in the input space. Due to there has
no iterative process in the extreme learning machine autoen-
coder, this method can reduce the computational complexity
and improve the classification performance.

VI. CONCLUSION
In this paper, we propose a representation learning method
with dual autoencoder (RLDA), which learns richer feature
representations by the serially connection of two different
types of autoencoders for multi-label classification. In our
proposed method, the method of Reconstruction Indepen-
dent Component Analysis (RICA) is introduced in the first
stage for robust global feature representation learning. Fur-
thermore, the stacked autoencoder with manifold regulariza-
tion (SAMR) is applied in the second stage to extract more
powerful feature representations. Extensive experiments con-
ducted on four real-world datasets demonstrate the effective-
ness of our proposed method compared with other competing
methods.

This study points out the effectiveness of the proposed
RLDA on multi-label classification. However, how to deter-
mine the types, the numbers and the connection methods
of autoencoders is still a challenge. In our future work,
we will try to add other different types of autoencodes for
discovering more characteristics of data, and multiple types
of autoencoders will be connected serially and parallelly to
extract more abstract feature representations for multi-label
classification.
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