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ABSTRACT The paper aims at minimizing DC voltage oscillations in offshore multiterminal high-voltage
direct current (HVDC) grids based on modular multilevel converters (MMCs). The DC voltage stability is a
crucial factor in multiterminal HVDC networks since it is associated with the grid power balance. Further-
more, DC voltage oscillations can cause the propagation of significant disturbances to the interconnected
AC grids. This paper proposes an optimal control technique based on semidefinite programming to improve
the DC voltage stability margins under the worst-case perturbation scenario. A centralized optimal linear
feedback controller is introduced to achieve this goal while ensuring compliance with the control inputs’
and state variables’ constraints. Furthermore, the methodology is adapted to develop a decentralized optimal
linear feedback controller with naturally decoupled constraints on the control inputs and state variables. It is
shown that the proposed centralized and decentralized optimal linear controllers canminimize theDCvoltage
oscillations under the worst-case perturbation scenario in the presence or absence of the droop control gain.
The performance of these controllers is verified via eigenvalue stability analysis and time-domain simulations
of the MMC-based four-terminal HVDC test grid. Finally, a DC voltage oscillation index is introduced as a
potential decision-support criterion. Its applicability is exemplified by identifying, among several options,
the HVDC link that gives minimum DC voltage oscillations between independent point-to-point networks
while considering the wind intermittency effect.

INDEX TERMS DC voltage oscillations, modular multilevel converter, offshore multiterminal HVDC grid,
centralized and decentralized optimal linear feedback controller.

I. INTRODUCTION
The 100% renewable European smart grid cannot be imple-
mented without reliance on wind energy from the offshore
wind farms in the North Sea [1]. High-voltage direct cur-
rent (HVDC) cables are generally used to transfer power from
long-distance offshore wind farms to onshore grids at rela-
tively low costs and energy loss [2]. Nowadays, the preferred
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voltage source converters (VSC) for HVDC applications are
modular multilevel converters (MMC) [3]. They are highly
efficient and scalable and can produce high-quality voltage
and current waveforms with low total harmonic distortion [4].

According to European expansion planning scenarios,
the interconnection of the currently existing and newly
built offshore point-to-point HVDC grids in the North Sea
is inevitable [5], [6]. Implementation of the multitermi-
nal HVDC grid configuration demands control measures to
ensure sufficient grid stability margins since such grids were
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not initially designed to be multiterminal. Thus, improving
the DC voltage stability margins is critical to ensure the
network’s appropriate performance since DC voltage oscil-
lations can affect the power balance in multiterminal HVDC
grids [7]. Moreover, DC voltage oscillations can propagate to
connected AC networks due to droop control action [8], [9]
and lead to voltage instability and faults, ultimately resulting
in blackouts with significant costs [10].

Hence, the paper’s primary focus is to minimize the
DC voltage oscillations under the worst-case perturbation
scenario in multiterminal HVDC grids by an optimal linear
feedback controller. This optimal controller improves the
DC voltage stability margins to prevent potential critical
interactions among different converter stations thatmay occur
due to the interconnection of the point-to-point HVDC grids.

In recent years, most articles on the control of multi-
terminal HVDC grids apply a droop control strategy. For
instance, a strategy for designing DC voltage droop control
for multiterminal HVDC systems is presented in [11] while
considering the AC and DC grid dynamics. Moreover, a novel
adaptive droop control of multiterminal HVDC networks is
explained in [12] for frequency regulation and power-sharing.
However, the multiterminal HVDC grids analyzed in both
articles are based on the 2-level VSCs. Hence, the complexity
of the internal control dynamics in MMCs is ignored [3].
In [13], a fuzzy logic-based adaptive droop control in mul-
titerminal HVDC systems for wind power integration is
introduced. In this methodology, a compromise between the
DC voltage deviation and power-sharing is found for updating
the droop gain in an MMC-based HVDC grid. Although
MMCs are used, the circulating current’s second harmonic
is not suppressed through control or modulation, and its
potential effects on DC voltage stability and droop gain are
not investigated. Reference [14] depicts DC voltage droop
control for MMC-based multiterminal HVDC grids. In this
technique, the permissible droop gain combinations are not
found simultaneously, and are instead selected by successive
elimination of those combinations that do not comply with
the design constraints.

Within this context, the paper investigates in detail the
performance of the analytically derived optimal controller
inherently compliant with control inputs’ and state vari-
ables’ constraints, including eigenvalue stability analysis
and time-domain simulation. The latter is pivotal in provid-
ing physical insights on the action of both centralized and
decentralized realizations of the controller. In either case, the
controller, which is designed to minimize the DC volt-
age oscillations under the worst-case perturbation scenario,
is successfully applied to an MMC-based four-terminal
HVDC grid and proves to work both when modifying the
traditional droop control gain and when completely substi-
tuting it.

Addressing DC voltage stability under worst-case scenar-
ios without resorting to long time-domain simulations is of
high relevance, especially in planning HVDC expansions in
AC/DC hybrid networks. Although transmission expansion

planning (TEP) problems generally consider cost and loss
minimization as the primary objective [15]–[17], grid sta-
bility is a prerequisite for any expansion decision. Hence,
stability analysis results may prompt reconfiguration of the
grid topology or modification of the control parameters to
avoid possible contingencies. For instance, reference [18]
analyzes the DC voltage stability in AC/DC hybrid micro-
grids to raise awareness among operators and planners on
incorporating this stability study into the planning stage’s
contingency analysis. To date, few articles have considered
stability criteria in the expansion planning of the AC grids.
For example, reference [19] implements small-signal stability
improvement associated with poorly damped low-frequency
electromechanical oscillations in AC power systems’
TEP problems. In another work [20], a risk-based TEP
analysis implements the transient stability criteria for limiting
the synchronous generators’ angular swings. A methodology
is presented in [21], [22] to determine the optimal grid
expansion plan with minimum costs and losses by offering
the best AC/DC technology, location, time, and cable routing.
However, in this methodology, expansion decisions are made
without considering the DC voltage oscillations’ effects on
AC/DC hybrid grids’ cable routing.

Thus, an additional contribution of the paper is to introduce
a DC voltage oscillation index that can support grid planners
in deciding on the placement of new HVDC links.

It should be noted that the DC voltage oscillations’ min-
imization for the HVDC link placement in multiterminal
grids has been studied in our previous works as an initial
attempt [23], [24]. However, the HVDC network analyzed
was based on simple 2-level VSCs. In addition, the opti-
mal controller’s performance was neither evaluated via
small-signal eigenvalue stability analysis nor time-domain
simulations. We first investigated the challenges associated
with MMCs’ internal dynamics due to the circulating current
in [25] using a centralized optimal controller in a point-
to-point configuration. However, the possible MMC effect on
DC voltage oscillations in amultiterminal topologywas never
analyzed. Additionally, in this paper, after investigating the
effect of droop gains’ variation on the DC voltage stability
margins of a four-terminal HVDC grid, the performance of
a decentralized optimal controller is evaluated and bench-
marked against a centralized one via eigenvalue stability
analysis and time-domain simulations.

In summary, the paper’s contributions are twofold: First,
an optimal linear feedback controller is introduced to mini-
mize the DC voltage oscillations under the worst-case pertur-
bation scenario. This scenario is analytically identified under
the grid control inputs’ and state variables’ physical con-
straints without the need for long time-domain simulations.
The performance of a decentralized optimal controller that
can either modify or completely replace the droop control
is verified and compared with the centralized one through
small-signal eigenvalue stability analysis and time-domain
simulations of a four-terminal HVDC grid based on MMCs.
Besides, in contrast to the centralized problem formulation,
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the constraints on the control inputs and state variables
are naturally decoupled in the decentralized configuration
to ease compliance with the grid codes and standards.
Second, the DC voltage oscillation index as a decision sup-
port criterion is used to find the best HVDC link placement
to connect two independent MMC-based HVDC links into a
multiterminal grid while considering the wind intermittency
effect.

The rest of the paper is organized as follows: Section II
presents the optimal control problem for minimizing DC volt-
age oscillations under the worst-case perturbation scenario.
A tractable formulation of the problem based on semidefinite
programming (SDP) is given for the centralized and decen-
tralized optimal linear feedback controllers. Section III intro-
duces an MMC-based four-terminal offshore HVDC grid as
the reference test case. The grid’s state-space model is a
prerequisite for the optimal control problem formulation, and
it is developed and validated through time-domain simula-
tions. Small-signal eigenvalue stability analysis is performed
to study the system’s dynamics and stability margins for
the test grid in section III.C, which is then used to validate
the optimal controller performance. Finally, case studies and
time-domain simulation results, including the application of
the DC voltage oscillation index, are given in section IV,
followed by the conclusion in section V.

II. OPTIMAL CONTROL PROBLEM
The optimal control methodology finds the worst-case per-
turbation scenario and acts upon the system eigenvalues
to reduce the DC voltage oscillations via an optimal lin-
ear feedback controller. The proposed centralized optimal
controller is inspired by the approach presented in [26],
which evaluates the placement of HVDC links for AC grid
reinforcement by minimizing the generator frequency devi-
ations. We have adapted this approach to our objective to
reduce the DC voltage oscillations in MMC-HVDC
networks.

In the centralized configuration, any entry of the optimal
controller matrix can arbitrarily be assigned a value by the
optimization procedure. Besides, the set of possible pertur-
bations is subject to a single high-dimensional ellipsoidal
constraint. Afterward, a decentralized optimal controller is
introduced. In the decentralized configuration, the optimal
controller matrix is block-diagonal to match the grid sparsity
pattern. Hence, there is no need for communication between
converter stations, and only the local state information is
needed. Moreover, constraints on the control inputs and state
variables are naturally decoupled, which allows for more
flexibility and realism in the design. The preliminary formu-
lation of the decentralized methodology was reported in our
previous work [24]. However, the feasibility and applicability
of the controller had not yet been studied. Therefore, in this
paper, the optimal controller is realized inMMC-based multi-
terminal HVDC grids. Its performance is verified in detail via
small-signal eigenvalue stability analysis and time-domain
simulations.

A. PROBLEM STATEMENT
The optimal DC voltage oscillation index, Josci, is stated as a
min-max optimization problem:

Josci = min
K

max
x(0)∈X0

∫
∞

0
z(t)T z(t) dt (1)

s.t. ẋ(t) = Ax(t)+ Bu(t) (2)

z(t) = Cx(t) (3)

u(t) = Kx(t) (4)

where x, u, and z are defined as the grid state vector, control
input vector, and output vector, respectively.

In the case K is centralized, (1) is subject to:

x(0) ∈ X0 = {x ∈ Rn
: xTExx ≤ 1} (5)

u(t) ∈ U = {u ∈ Rm
: uTEuu ≤ 1} (6)

or in the case K is decentralized, (1) is subject to:

x(0) ∈ X0 = {xi ∈ Rni : ∀i ∈ Z[1,r] xTi E
i
xxi ≤ 1} (7)

u(t) ∈ U = {uj ∈ Rmj : ∀j ∈ Z[1,q] uTj E
j
uuj ≤ 1} (8)

The objective is to minimize the desired signals’ oscil-
lations, z, being the grid DC voltages. Parameters n and
m are the number of grid state variables and control inputs,
respectively. The control inputs are the reference parameters
of the grid converters’ control loops, further explained in
section III. Matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rn×n

are the grid state-space matrices. The matrix K ∈ Rm×n is
the grid optimal linear feedback controller, which minimizes
the DC voltage oscillations under the worst-case perturbation
scenario X0. Problem (1) is subject to constraints on x(0)
and u(t). Typically, the constraints have the form (5)-(6), and
the controller matrix K is allowed to be centralized. In this
case, the matrices Ex>0, and Eu>0, are symmetric positive
definite and define the ellipsoidal constraints on the state vari-
ables and control inputs. Namely, the constraint on the initial
states’ perturbations (5) confines the sum of the squares of
the disturbances on the state variables of the MMC terminals
and HVDC cables (e.g., MMC AC-side and DC-side cur-
rents, zero-sequence circulating currents, DC-side voltages,
zero-sequence energy sums, and the integral states associated
with the PI controllers). Similarly, (6) constrains the sum
of the squares of the control inputs, including references
for the DC-side voltages, active and reactive powers, and
zero-sequence energy sums. To improve the centralized prob-
lem formulation’s shortcomings, the decentralized optimal
controller K is proposed, which does not require commu-
nication between the different converter stations. Besides,
to enhance the constraints’ flexibility and their physical sen-
sibility, the possibility of decoupling of the initial states’ per-
turbations and control inputs’ constraints for every converter
station is implemented in the decentralized problem formu-
lation as given in (7)-(8). Accordingly, r and q are defined
as the number of the ellipsoidal constraints for the grid state
variables and control inputs, respectively. Thus,

∑r
i=1 ni=n,

and
∑q

j=1mj = m. The paper will treat both centralized and
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decentralized scenarios and verify their performance through
eigenvalue stability analysis and time-domain simulations.

B. PROBLEM FORMULATION
The proposed optimal control problem is non-convex in its
cost function and constraints, and it is not easy to directly
compute the optimal solution. As we show in the following
subsections, the problem can be approximated to a convex
SDP formulation using linearmatrix inequalities (LMIs) [27].

1) CENTRALIZED OPTIMAL LINEAR FEEDBACK CONTROLLER
In the centralized problem formulation, the optimal con-
troller K is found by solving (1)-(6). The architecture of
the centralized optimal linear feedback controller is shown
in Fig. 1a. The non-convex min-max optimization problem
can be converted to an SDP problem using the Lyapunov
stability interpretation and LMI theory, as shown in [26].
It is worth mentioning that [26] focuses on the generator
frequency deviations’ minimization in AC grids. In contrast,
this paper’s goal is to minimize the DC voltage oscillations
in HVDC grids. We have previously investigated the perfor-
mance of the adapted centralized optimal controller in an
MMC-based point-to-point configuration [25]. However, its
performance in multiterminal grids has never been studied.
Hence, the adapted centralized optimal controller formula-
tion is presented here as a benchmark and is verified via
small-signal eigenvalue stability analysis and time-domain
simulations of an MMC-based offshore four-terminal
HVDC grid.

The optimal DC voltage oscillation index under the
worst-case perturbation scenario is approximated as follows
such that Josci ≤ J̃osci:

1

J̃osci
= max

s>0,Q>0,Y
s (9)

s.t.
[
(AQ+ BY )+ (AQ+ BY )T QCT

CQ −I

]
≤ 0

(10)[
Q Y T

Y sE−1u

]
≥ 0 (11)

Q− sE−1x ≥ 0 (12)

where s > 0 is a scalar quantity whose inverse represents
the upper bound of the DC voltage oscillations. Specifically,
it can be seen that x(t)TPx(t) with P=Q−1 is a closed-loop
Lyapunov function and that the centralized optimal linear
feedback controller is recovered as K =YQ−1. Furthermore,
the corresponding worst-case perturbation scenario x0,worst
is retrieved as Ê−T v1, where Ê = VD1/2, V contains the
eigenvectors of Ex , D is diagonal with the eigenvalues of Ex ,
and v1 is the eigenvector of Ê−1Q−1Ê−T associated with its
largest eigenvalue.

The globally optimal cost J̃osci is therefore tightly approxi-
mated bymaximizing (9) subject to (10)-(12). Out of the three
inequality constraints, the first one (10) implements the Lya-
punov stability criteria. The second (11) and third (12) ones
are concerned with the confinement of the system control

FIGURE 1. Centralized/decentralized optimal linear feedback controllers’
architecture and implementation. Every converter station is composed of
an MMC and connected HVDC cables. State variables and control inputs
are marked in blue and red, respectively.

inputs and the state variables in ellipsoidal constraints encod-
ing their physical restrictions. Such an ellipsoidal constraint
limits the grid maximum voltages and currents within a range
by exploiting the Eu> 0, and Ex > 0 matrices to define their
maximum permissible variation.
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2) DECENTRALIZED OPTIMAL LINEAR FEEDBACK
CONTROLLER
In contrast to the centralized controller, the decentralized
optimal linear feedback controller matrix can have the
desired sparsity pattern that is block-diagonal, as shown
in Fig. 1b. By assuming a block-diagonal configuration of the
controller K , each block corresponds to a converter station,
and all inter-converter entries are zero. Hence, there is no
need for data communication between converter stations,
resulting in a more reliable solution at the potential cost of
lower performance. In the decentralized formulation, the con-
straints on the initial states’ perturbations and control inputs
for every converter station are decoupled, which is physi-
cally more practical. The SDP formulation of the decentral-
ized optimal control problem stated in (1)-(4), (7), and (8)
was preliminarily given in our previous work [24], and its
derivation is recalled in the following for completeness with
the final formulation result presented in (27)-(33). More-
over, the applicability and performance of the controller in
an MMC-based multiterminal HVDC grid had never been
investigated. Hence, this gap is filled in the following by
eigenvalue stability analysis and time-domain simulations.

Formulation of the worst-case oscillation: According to the
Lyapunov stability theory, if (A+BK ) is asymptotically stable,
then the quadratic integral of (1) can be written as:∫

∞

0
x(t)TCTCx(t) dt = x(0)TPx(0) (13)

whereP>0 is the symmetric positive definite unique solution
of the P(A+BK )+(A+BK )TP+CTC = 0.

Since E ix > 0, ∀i ∈ Z[1,r], then:

E ix = Ê ix Ê
iT
x , Ê ix = V i

xD
i
1
2
x (14)

where V i
x contains the eigenvectors of E

i
x and D

i
1
2
x holds the

square root of the E ix eigenvalues on its diagonal. Vector x̃i is
defined such that xi = (Ê ix)

−T x̃i.
Matrix P is needed to be block-diagonal with dimensions

ni×ni on its i-th block Pi in order to be able to generate an
optimal controller K with the desired block-diagonal sparsity
pattern and to decouple the initial disturbances into separate
ellipsoids. Therefore:

max
x(0)∈X0

x(0)TPx(0)

=

r∑
i=1

max
||x̃i||2≤1, ∀i∈Z[1,r]

x̃Ti (Ê
i
x)
−1Pi(Ê ix)

−T x̃i

=

r∑
i=1

λmax((Ê ix)
−1Pi(Ê ix)

−T ) (15)

Then, (15) can be substituted in (1) resulting in:

min
K

r∑
i=1

λmax((Ê ix)
−1Pi(Ê ix)

−T )

s.t. P(A+BK )+(A+BK )TP+CTC = 0 (16)

Next, si > 0, ∀i ∈ Z[1,r] can be defined such that:

λmax((Ê ix)
−1Pi(Ê ix)

−T ) ≤
1
si

(17)

Equation (17) is equivalent to:

Qi − si(E ix)
−1
≥ 0 (18)

where Qi ≥ 0, Qi = (Pi)−1, ∀i ∈ Z[1,r], and Q is defined to
be block-diagonal such that Q = blkdiag(Qi).
Therefore, by exploiting the Schur complement and defin-

ing the new variable Y = KQ, (16) can be formulated as
follows:

min
si,Qi≥0,Y

r∑
i=1

1
si

s.t. Qi − si(E ix)
−1
≥ 0, ∀i ∈ Z[1,r][

(AQ+ BY )+ (AQ+ BY )T QCT

CQ −I

]
≥ 0 (19)

Robustness to initial states’ perturbations: Consider-
ing (4), (7), and (8), the control inputs should comply with
uTj (t)E

j
uuj(t) ≤ 1, ∀j ∈ Z[1,q] at any time instant t ∈ R+0 ,

that uj(t) = Kjx(t), and K = blkcol(Kj). Namely, x(t)T

KT
j E

j
uKjx(t) ≤ 1, ∀j ∈ Z[1,q] should hold at any time instant

t ∈ R+0 . Since P can also be interpreted as level sets for the
state variables’ trajectories, once it satisfies x(t1)TPx(t1) ≤ k
for some k > 0 at time instant t1∈R+0 , it can also be valid for
any time instant t > t1. Hence:

x(0)TPx(0) ≤ max
x(0)∈X0

x(0)TPx(0) ≤
r∑
i=1

1
si

(20)

where (20) can also be given as x(0)T P∑r
i=1

1
si

x(0) ≤ 1.

Thus, the control input constraints can be written as:

KT
j E

j
uKj ≤

P∑r
i=1

1
si

, ∀j ∈ Z[1,q] (21)

where (21) is equivalent to Q− Y Tj E
j
u
∑r

i=1
1
si
Yj ≥ 0.

Therefore, by using the Schur complement, the former can
be formulated as below:[

Q Y Tj
Yj (E

j
u)−1(

∑r
i=1

1
si
)−1

]
≥ 0, ∀j ∈ Z[1,q] (22)

It should be noted that if r = 1, then (22) is a SDP
constraint, and the problem of (19), and (22) entails a convex
formulation by maximizing s instead of minimizing 1

s . How-
ever, if r > 1, then further elaboration is required to obtain a
convex problem formulation.

Convex problem formulation: The harmonic mean of
si > 0, ∀i ∈ Z[1,r] is defined as:

h(s) =
r∑r
i=1

1
si

(23)
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Then, a new decision variable w is defined such that
w ≤ h(s), and (23) accordingly becomes:

r∑
i=1

w2

si
≤ rw (24)

Next, a set of decision variables yi, ∀i ∈ Z[1,r] is intro-
duced to cast (24) as follows:

w2
≤ siyi,

r∑
i=1

yi = rw, ∀i ∈ Z[1,r] (25)

Thus, (25) can be written as the second-order cone pro-
gramming constraint:∥∥∥∥ 2w

si − yi

∥∥∥∥
2
≤ si + yi, ∀i ∈ Z[1,r] (26)

Therefore, a tractable SDP formulation of the decentralized
optimal control problem can be obtained as follows:

1

J̃osci
= max

si>0,Qi>0,Y ,w, yi
w (27)

s.t.
[
(AQ+BY )+(AQ+BY )T QCT

CQ −I

]
≤0

(28)[
Q Y Tj
Yj w

r (E
j
u)−1

]
≥ 0, ∀j ∈ Z[1,q] (29)

Qi − si(E ix)
−1
≥ 0, ∀i ∈ Z[1,r] (30)∥∥∥∥ 2w

si − yi

∥∥∥∥
2
≤ si + yi, ∀i ∈ Z[1,r] (31)

r∑
i=1

yi = rw, Q = blkdiag(Qi) (32)

Y =blkcol(Yi), Y is decentralized. (33)

Equations (29) and (30) are representative of the sepa-
rate ellipsoidal inequality constraints on the control inputs
and state variables, respectively. Namely, the decentralized
formulation can define different inequality constraints for
every converter station based on their maximum permissible
voltages and currents.

III. STATE-SPACE MODEL OF THE MMC-BASED
OFFSHORE MULTITERMINAL HVDC GRID
The four-terminal offshore HVDC grid shown in Fig. 2 is
based on the HVDC grids’ test system proposed in [28]
whose model parameters are reported in Table 1. We are
interested in studying the interconnection of two indepen-
dent point-to-point HVDC links between offshore wind
farms and onshore power grids (MMC1 to MMC3 and
MMC2 to MMC4). Hence, the test grid is adapted to
resemble a real case, i.e., with actual wind speed time
series and distances between the locations. The two
selected offshore locations in the North Sea are BorWin1
(Germany) and Johan-Sverdrup (Norway). BorWin1 is
already an HVDC-connected wind farm, while Johan-
Sverdrup is currently an HVDC-connected oil and

FIGURE 2. Offshore four-terminal HVDC grid topology. Dashed blue lines
are the potential HVDC link expansion routes.

TABLE 1. Offshore four-terminal HVDC grid parameters.

gas platform. However, Utsira High, where Johan-Sverdrup
is located, has been identified as a potential offshore wind
site in Norway [29]. The choice between the four potential
expansion routes (shown as dashed blue lines in Fig. 2) con-
siders their different stabilizing effects on the multiterminal
HVDC grid.

In the following subsections, the test grid steady-state
time-invariant (SSTI) state-space model is obtained and vali-
dated as a prerequisite for the small-signal eigenvalue stabil-
ity analysis. This analysis serves two purposes: First, to obtain
the A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rn×n matrices required
for the optimal control formulation defined in section II to
minimize the DC voltage oscillations of the four-terminal
HVDC grid under the worst-case perturbation scenario.
Second, to obtain a greater insight into the grid dynam-
ics and stability margins, dependent on the modeling and
control parameters. Together with time-domain simulations,
the eigenvalue analysis results are then used to corroborate
the performance of the optimal linear feedback controller.

A. STATE-SPACE REPRESENTATION OF THE MMC
The SSTI model of the MMC (shown in Fig. 3) is devel-
oped according to the simplified zero-sequence model with
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FIGURE 3. MMC topology and control. Delta reference values in red are
from the centralized/decentralized optimal linear feedback controller.

reduced order, which originates from the energy-based rep-
resentation of the converter with compensated modulation
(CM) [30]. In the energy-based formulation, the sum of
the upper and lower arm capacitor energy is defined as the
converter state variable along with the other states. Unlike
the uncompensated modulation, the CM-based implementa-
tion allows for compensation of the arm capacitor voltages’
oscillations in the converter without further control loops.
The simplified zero-sequence model with reduced order is an
attractive solution for large-scale power system stability stud-
ies. Its adequate fidelity is proven in [30]. In the simplified
model, the dq-components of the MMC arm capacitor energy
sum and circulating current are neglected due to their rela-
tively small impact under the assumed modulation strategy.
The MMC configuration and the applied control strategy are
depicted in Fig. 3, and Fig. 4, respectively. The reduced-order
nonlinear SSTI MMC equations are:

d
dt
iv,dq =

1
Leq

(v∗v,dq − vg,dq − Reqiv,dq − jωLeqiv,dq) (34)

d
dt
icc,z =

1
La

(
vdc
2
− v∗cc,z − Raicc,z) (35)

d
dt
vdc =

1

(Cdc +
Cc
2 )

(ic − 3icc,z) (36)

d
dt
w6,z ≈ −

1
2
(v∗v,d iv,d + v

∗
v,qiv,q)+ 2v∗cc,zicc,z (37)

FIGURE 4. MMC inner and outer control loops block diagram. Delta
reference values in red are from the centralized/decentralized optimal
linear feedback controller.

where vv,dq and iv,dq are the dq-component of the AC-side
voltage and current, vcc,z and icc,z are the zero-sequence cir-
culating voltage and current, vg,dq is the dq-component of the
equivalent grid-side voltage, vdc is the DC-side voltage, ic is
the equivalent HVDC cable current,w6,z is the zero-sequence
energy sum, Ra and La are the arm resistance and induc-
tance, Req and Leq are the equivalent grid-side and MMC
arm resistance and inductance, Cdc is the equivalent DC-side
capacitance, Cc is the equivalent HVDC cable capacitance,
and * denotes the reference values. The reference values,
derived from the MMC control loops’ equations, introduce
non-linearity in the above SSTI MMC equations.

The MMC SSTI control loops’ equations are derived
according to the control architecture shown in Fig. 3, and
Fig. 4. The control strategy is based on the commonly applied
cascaded control composed of inner and outer control loops
with PI controllers. The PI controllers are tuned via the mod-
ulus optimum and symmetrical optimum techniques [31],
where the control coefficients are presented in Table 1. The
converters located at the offshore wind farms are controlled
in the power mode with a zero droop coefficient. In contrast,
in multiterminal configurations, the onshore grid MMCs par-
ticipate in DC-side voltage control through the DC-droop
mode control. The optimal linear feedback controller revising
the grid control inputs can be applied as shown in Fig. 1c.

Therefore, the xmmc, ummc, and zmmc vectors for the
state-space representation of every MMC station become:

xmmc = [iv,d iv,q ξivd ξivq icc,z ξiccz
vdc ξPac ξQac w6,z ξw6z]T (38)

ummc = [v∗dc P
∗
ac Q

∗
ac w

∗
6z]

T (39)

zmmc = [vdc]T (40)

where the state variable ξ is associated with the PI con-
troller’s integral state at every control loop of the converter
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(shown in Fig. 4). It should be noted that the reference
DC voltage, v∗dc, as a control input of vector u, is only appli-
cable for the MMCs with the DC-droop mode control. The
number of converter state variables is nmmc = 11, and the
control inputs’ number for the MMCs in the DC-droop mode
control is mmmc=4, otherwise it is mmmc=3.

B. STATE-SPACE REPRESENTATION OF THE HVDC CABLE
The HVDC cable is modeled based on the frequency-
dependent cascaded pi-section model with parallel series
branches [32] as shown in Fig. 2. This model accurately
captures the HVDC cables’ damping characteristics in the
frequency domain. In addition, it is suitable for state-space
representation and small-signal eigenvalue stability analy-
sis. Accordingly, the SSTI HVDC cable equations with one
pi-section and three parallel series branches used in this paper
are:

d
dt
ic,i =

1
Lc,i

(vdc1 − vdc2 − Rc,iic,i) i = 1, 2, 3 (41)

where Rc,i and Lc,i are the equivalent HVDC cable resis-
tances and inductances, which can be found through vector
fitting [32] as given in Table 1. It is worth mentioning that
the effect of the equivalent HVDC cable shunt capacitance,
Cc, is considered in (36). Therefore, every HVDC cable
contains three current state variables (ncable=3) as follows:

xcable = [ic,1 ic,2 ic,3]T (42)

C. STATE-SPACE MODEL AND SMALL-SIGNAL
EIGENVALUE STABILITY ANALYSIS OF THE TEST GRID
The nonlinear SSTI state-space model of the MMC-based
four-terminal HVDC grid with the expansion link 1−4 (refer
to Fig. 2) can be stated on a general form based on [33]:

ẋ = f (x, u), z = g(x, u) (43)

with the overall x, u, and z vectors:

x = [xTmmc1 xTcable1−3 xTmmc3 xTcable1−4
xTmmc4 xTcable2−4 xTmmc2]

T (44)

u = [uTmmc1 uTmmc3 uTmmc4 uTmmc2]
T (45)

z = [zTmmc1 zTmmc3 zTmmc4 zTmmc2]
T (46)

where the indices 1, 2, 3, and 4 refer to the converter stations’
number, as seen in Fig. 2. Then, the total numbers of the grid
state variables and control inputs are n = 53, and m = 14,
respectively.

Next, time-domain simulation is required to validate the
resultant SSTI state-space (SS) model’s accuracy. In this
regard, a circuit-based (CB) model of the HVDC grid is
made using MATLAB/Simulink with the Simscape tool-
box. MMC is simulated via the arm averaged model
(AAM), where every converter arm is configured as a con-
trolled voltage source with an equivalent arm capacitance
(shown in Fig. 3) [30], [34]. The AAMmodeling is a reliable
and well-established method that considers all the converter’s

non-linearities and internal dynamics, ignoring the switching
operation and submodule (SM) capacitor voltage balancing
algorithm. For the sake of dynamic excitation of the grid,
a 10% step increase is applied to vdc4 at t = 0.5 s, and
then a 50% step reduction is introduced to Pac1 at t = 1 s.
The simulation results showing the dynamic response of the
CB and SS models for all four converter stations for vdc
and Pac waveforms are depicted in Fig. 5. The figure shows
that the two models match quite well, and hence, the SSTI
SS model can accurately capture the grid dynamics during
the transients.

FIGURE 5. Time-domain verification of the SSTI state-space (SS) model
and circuit-based (CB) model of the MMC-based four-terminal HVDC grid
with the expansion link 1-4.

Following this, the test grid’s small-signal dynamic model
is obtained. For this purpose, the steady-state operating
point is found by solving the equilibrium ẋ = 0 under
the grid nominal working condition where the wind farms
are operating at their full power capacity. Then, (43) is lin-
earized around the resultant operating point, which is labeled
as x0 [33]. The matrices A ∈ Rn×n and B ∈ Rn×m gained
from the linearized small-signal model can be incorporated
into the optimal control problem formulation (10) and (28),
while C ∈Rn×n is diagonal with the entries corresponding to
the z vector (46).

The eigenvalue stability analysis is performed to investi-
gate the system’s dynamic properties and stability margins
and corroborate the optimal controller performance. Subse-
quently, Table 2 lists the most dominant grid eigenvalues or
modes closest to the right half-plane with their respective
damping ratio, oscillatory frequency, and primary participat-
ing states with a value higher than 5% written in descending
order of magnitude. Participating states are defined as the
state variables contributing to their corresponding modes.
As can be seen from the table, the zero-sequence energy sums
and their related integral states, along with the integral states
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TABLE 2. The most dominant eigenvalues and their primary participating states of the MMC-based four-terminal HVDC grid with the expansion link 1-4.

of the zero-sequence circulating current, are involved in the
grid’s most dominant oscillatory modes, which are specific
to MMCs. This shows that analyses based on 2L-VSC [11],
[12], [23], [24] should be re-evaluated, as they are unable to
capture the most relevant MMC dynamics. The stability of
the associated state variables is ensured by proper tuning
of the converters’ control parameters. The oscillatory modes
of interest are the λ17,18 and λ14,15 because they are closest
to the right half-plane with the highest participation from the
vdc1,2,3,4 and ξPac3,4, which directly affect the vdc1,2,3,4 oscil-
lations. The states vdc1,2,3,4 and ξPac3,4 are related through
the converters’ droop function. The grid’s eigenvalue tra-
jectory for MMC3 and MMC4 droop coefficient variation
from 0.01 to 0.2 is demonstrated in Fig. 6. The droop coeffi-
cient increase has improved the λ14,15 stability margin while
λ17,18 has further moved towards the right half-plane, getting
closer to instability. On the other hand, both λ14,15 and λ17,18
imaginary parts are reduced, which means a lower oscillation
frequency. Therefore, it is evident that the droop function
can play a pivotal role in DC-side voltage stability. Due
to the trade-off between λ14,15 and λ17,18 when the droop
coefficient increases, it is important to use an optimization
strategy to readjust the droop function optimally.

Such a potential discordant effect of any droop coeffi-
cient variation on critical system eigenvalues could not be
observed in our previous study of the point-to-point config-
uration [25], where the droop coefficient increase resulted
in the progressive enhancement of the DC voltage stability
margins. This reinforces the criticality of droop optimization
in multiterminal applications. Hence, the optimal linear feed-
back controller is applied to the four-terminal HVDC grid
to efficiently retune the droop gains by relocating the λ14,15
and λ17,18 eigenvalues to improve the DC voltage stability
margins under the worst-case perturbation scenario.

IV. SIMULATION RESULTS
The centralized and decentralized optimal control
problems, (9)-(12), and (27)-(33), are solved using the

FIGURE 6. Eigenvalue trajectory for droop variation from 0.01 to 0.2.

YALMIP toolbox [35] of MATLAB in combination with
the MOSEK solver [36], and the time-domain simulations
in MATLAB/Simulink are presented in this section under
different case studies. In the first example, the centralized
and decentralized optimal linear feedback controllers’ per-
formance in minimizing the DC voltage oscillations under
the worst-case perturbation scenario is compared through
the time-domain simulations. First, the optimal controllers
modify the droop control gain, and their synergistic action
is assessed. Second, the droop is removed, and the optimal
controllers replace the droop control function. It will be
shown that the optimal controllers are capable of improving
the grid DC voltage stability margins in both cases.

In the second example, the optimal DC voltage oscillation
index’s applicability as a support decision criterion for the
placement of a new HVDC link under the wind intermittency
effect is presented. It will be shown that the index can provide
valuable information on HVDC cable placement.

A. OPTIMAL LINEAR FEEDBACK CONTROLLER
PERFORMANCE TEST
The four-terminal offshore HVDC grid with the expansion
link 1-4 under nominal operating conditions is considered
(Fig. 2). The grid state-space matrices A ∈ Rn×n, B ∈ Rn×m,
and C ∈Rn×n are attained based on the derivations given in
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FIGURE 7. MMCs’ waveforms after applying a 35% step increase to the MMC4 DC-side voltage at t = 7 s: (first row: a, b, c, & d) without optimal linear
feedback controller, (second row: e, f, g, & h) centralized optimal linear feedback controller with droop, (third row: i, j, k, & l) decentralized optimal linear
feedback controller with droop.

section III. Running the optimal control problem, the optimal
linear feedback controller K , the worst initial perturbation
scenario x0,worst , and the optimal DC voltage oscillation index
J̃osci can be obtained. The optimal controller K , which mini-
mizes theDC voltage oscillations index under theworst initial
perturbation scenario, can be implemented in time-domain
simulations as shown in Fig. 1, 3, and 4.

1) CASE STUDY I: THE OPTIMAL CONTROLLER
PERFORMANCE IN THE PRESENCE OF THE
GRID DROOP CONTROL GAIN
A 35% step increase is applied to MMC4 reference DC-side
voltage at t = 7 s. The 35% step increase of the v∗dc4 is
chosen in this test case since it is the closest scenario to
the worst initial perturbation scenario x0,worst . The entries
of the matrices Eu, and Ex are one in order to define equal
weight for all control inputs and state variables, except
for the integral states, which are given a smaller degree
of freedom. The grid waveforms for different scenarios
are depicted in Fig. 7. As can be seen in Fig. 7a, the
35% step increase of the v∗dc4 enhances the network DC-side
voltages by around 20% owing to the droop control action
(droop= 0.1). Then, the vdc waveforms begin to oscillate at
an increasing amplitude until the system becomes unstable,
as shown in Fig. 7a, 7b, 7c, and 7d. The second row of

the Fig. 7 shows how the addition of a centralized optimal
linear feedback controller can stabilize the system under
such a disturbance. Due to the centralized optimal controller
implementation, the system eigenvalues responsible for
vdc oscillations (λ1,2,3,4,14,15,17,18) have moved further away
from the right half-plane (–185.9± j 246.4, –208.3± j 326,
–264± j 970.9, and –267.3± j 1046.1), and their corre-
sponding damping ratios have also improved (0.6, 0.54, 0.26,
and 0.25, respectively). Furthermore, all entries of the found
worst-case x0,worst are zero except for the grid DC-side volt-
ages (vdc,1,2,3,4= 0.6, 0.1, 0.2, 0.8). The centralized optimal
linear feedback controller is a 14×53 matrix where the entries
with the highest value can be located between a control input
from one converter and a state variable in another converter.
These entries are associated with the ξPac1,2,3,4 and v∗dc3,4,
ξPac1,2,3,4 and w∗6z1,2,3,4, and ξPac1,2 and P∗ac1,2, which is
in alignment with the results obtained from the small-signal
eigenvalue stability analysis given in Table 2. Indeed, the cen-
tralized optimal controller is modifying the droop coefficient
to reduce the vdc oscillations under the worst-case perturba-
tion scenario.

The performance of the decentralized optimal linear feed-
back controller under the 35% step increase of the v∗dc4 is
depicted in the third row of Fig. 7. The E ju matrices are
defined such that the control inputs being confined in separate
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FIGURE 8. MMCs’ waveforms after applying a 15% step reduction to the MMC4 AC-side active power at t = 17: (first row: a, b, c, & d) centralized linear
feedback controller without droop, (second row: e, f, g, & h) decentralized linear feedback controller without droop.

ellipsoidal constraints as follows:

|1v∗dc,k | ≤ 1 pu√
1(P∗ac,k )

2 +1(Q∗ac,k )
2 ≤ 1 pu

|1w∗6z,k | ≤ 1 pu k = 1, 2, 3, 4

On the other hand, the E ix matrices are assigned values so
that the state variables can vary within a reasonable range
and be modified based on the desired offshore HVDC grid
codes and standards. A 0.15 pu limit is borrowed from the
Commission Regulation (EU) 2016/1447 network code [37]
on the required AC voltage ranges for the HVDC converter
to remain connected at the connection point to the network.
The DC voltages, together with other state variables’ limit,
are all set to 0.15 pu except for the state variables’ integral
parameters and the w6z, which is proportional to the square
of the sum of the arm capacitor voltages:

|1iv,k | =
√
1i2vd,k +1i

2
vq,k ≤ 0.15 pu

|1ξiv,k | =
√
1ξ2ivd,k +1ξ

2
ivq,k ≤ ε

|1icz,k | ≤ 0.15 pu |1ξicz,k | ≤ ε |1vdc,k | ≤ 0.15 pu√
1ξ2Pac,k +1ξ

2
Qac,k ≤ ε

|1w6z,k | ≤ 0.5 pu |1ξw6z,k | ≤ ε ε = 10−5√
1i2c1,kk +1i

2
c2,kk +1i

2
c3,kk ≤ 0.15 pu k = 1, 2, 3, 4

The dominant entries of the decentralized optimal con-
troller matrix in charge of DC voltage oscillations’ min-
imization are associated with the following pairs: v∗dc3,4
and ξivd3,4, v∗dc3,4 and ξPac3,4, P∗ac1,2,3,4 and ξivd1,2,3,4,
P∗ac1,2,3,4 and ξPac1,2,3,3,4, and w∗6z1,2,3,4 and ξPac1,2,3,3,4.
This result is in accordance with the block-diagonal config-
uration of the decentralized optimal controller matrix, where
all the inter-converter entries are zero. Accordingly, all the

vdc related eigenvalues are pushed further away from the right
half-plane (–238± j 237, –297± j 987, and –298± j 972)
and their corresponding damping ratios become 0.71, 0.29,
and 0.29, respectively. Furthermore, the worst initial pertur-
bation scenario under the decentralized optimal controller
implementation is obtained at the boundary of the state vari-
ables’ limit thanks to the state variables’ decoupled confine-
ment in separate ellipsoids.

As can be seen from Fig. 7, the centralized optimal con-
troller has stabilized the system by slightly reducing the grid
DC-side voltages and increasing some grid AC-side active
powers. As a result, the converters’ zero-sequence energy
sum have changed to keep the grid power balanced. In con-
trast, the decentralized optimal controller has kept the grid
DC-side voltages and AC-side active powers almost constant
while varying the converters’ zero-sequence energy sum and
diverting the variations to the arm capacitors to meet the
grid control inputs’ and the state variables’ constraints. It is
worth mentioning that the grid power-sharing is outside of
this paper’s scope, but it can be handled by the grid secondary
control.

2) CASE STUDY II: THE OPTIMAL CONTROLLER
PERFORMANCE IN THE ABSENCE OF THE GRID
DROOP CONTROL GAIN
The droop control gain of the grid onshore converters
MMC3 and MMC4 is set to zero so that the system
becomes unstable with an eigenvalue on the right half-plane
(λ = +0.34). To investigate whether the optimal controller
can handle the droop control task and balance the grid power,
a 15% step reduction is applied to P∗ac4 at t = 17 s. This
scenario estimates the found worst-case perturbation under
the centralized optimal controller implementation. The simu-
lation results are shown in Fig. 8. Both the centralized and
decentralized optimal controllers can substitute the droop
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control function under the steady-state condition and after
the dynamics and move the system eigenvalues away from
the right half-plane. The optimal controller matrix domi-
nant entries in both the centralized and decentralized opti-
mal controllers are associated with the ξPac1,2,3,4 (integral
state of the AC-side active powers) and w∗6z,1,2,3,4 (reference
zero-sequence energy sums), and ξPac1,2,3,4 (integral state of
the AC-side active powers) and P∗ac1,2,3,4 (reference AC-side
active powers) pairs, with all the inter-converter entries equal
to zero in the decentralized one. The two methods’ appar-
ent difference is the role of the converters’ zero-sequence
energy sum in the decentralized optimal controller. Namely,
the decentralized optimal controller keeps the grid DC-side
voltages and AC-side active powers relatively unchanged
after the worst initial perturbation scenario by varying the
zero-sequence energy sum within the constraints and divert-
ing the variations to the MMC arm capacitors. The rela-
tion between the MMC4 zero-sequence energy sum (shown
in Fig. 8g) and the sum of the upper arm capacitor voltages
is depicted in Fig. 9 as an example. It is assumed that the
converter arm capacitors have sufficient capacity to accept
such overvoltage under the worst-case perturbation scenario.
This can be achieved by either increasing the number of
MMC submodules or increasing the voltage rating of the
submodule capacitors.

In summary, both the centralized and decentralized opti-
mal linear feedback controllers can guarantee sufficient
DC voltage stability margins by relocating the λ14,15 and
λ17,18 eigenvalues in the droop controller’s absence under
the worst initial perturbation scenario. The droop controller
alone would not ensure such stability. However, through the
addition of the optimal controller in the droop control gain’s
presence, the synergy between them can be exploited to mini-
mize the DC voltage oscillations with larger stability margins.
Besides, the possibility of having the optimal controller work
in the presence of the droop control gain may pave the way
to its selective action, i.e., the possibility of being activated
when worst-case conditions occur.

B. OPTIMAL DC VOLTAGE OSCILLATION INDEX
APPLICATION
The optimal DC voltage oscillation index as a potential
decision criterion can be used to identify the route prone
to minimum DC voltage oscillations for connecting the
two independent offshore point-to-point HVDC grids while
considering the wind intermittency effect. The optimal
DC voltage oscillation index is dependent on the offshore
converters’ operating points, around which (43) is linearized.
These operating points are representative of different wind
power extractions and correspondingly varied wind speed
scenarios. The Reanalysis dataset is used as a basis to extract
average wind speed time series for the two offshore sites [38].
Further analysis is performed exploiting the histograms of
hourly wind speed and the normalized mean wind power
curves for the two offshore locations to quantify the total wind
power production of the subsequent four-terminal grid [24].

FIGURE 9. MMC4 zero-sequence energy sum and sum of the upper arm
capacitor voltages after applying a 15% step reduction to the
MMC4 AC-side active power at t = 17.

TABLE 3. Probability of simultaneous generation of normalized power at
Johan-Sverdrup and BorWin1 locations.

Table 3 shows the probability of simultaneous generation
of normalized power in four different ranges (0-0.25 pu,
0.25-0.5 pu, 0.5-0.75 pu, and 0.75-1 pu) at the two offshore
sites. Namely, the probability of 0.09 at the intersection
of 0.75-1 pu normalized power, for instance, can be inter-
preted as a 9% probability for the two wind farms to generate
electricity in the range of 0.75-1 pu simultaneously. Wind
farm operating points are designated to be the average of
each normalized power range shown in Table 3. Accordingly,
the oscillation indices are calculated for 16 different scenarios
for every added HVDC cable (1 – 2, 1 – 4, 2 – 3, and 3 – 4).
The oscillation indices at the nominal operating condition and
the averageDC voltage oscillation indices are given in Table 4
for the centralized and decentralized linear controllers with
the droop and the four HVDC cable options. The average DC
voltage oscillation indices are calculated as the sum of all the
products between the optimal DC voltage oscillation indices
and their corresponding event probability given in Table 3.
The optimal HVDC route with minimum J̃osci at every sce-
nario is marked in boldface.

It can be seen from Table 4 that the added HVDC
link 1 – 2 with the least length is the optimal solution in all
four different scenarios. The HVDC cable stability margin
is expected to increase with the cable length [39]. Hence,
the results suggest that the optimal controller’s effectiveness
in the DC voltage oscillations’ minimization increases at
lower stabilitymargin conditions. Namely, the lower the cable
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TABLE 4. Optimal DC voltage oscillation index at nominal condition
versus average optimal DC voltage oscillation index under the centralized
and decentralized optimal linear feedback controllers with droop.

length, the lower the optimal DC voltage oscillation index.
On the other hand, the J̃osci at nominal condition, and the
average J̃osci lead to the same optimal result. That is to say
that the wind intermittency does not affect the HVDC cable
placement withminimumDCvoltage oscillations in this case.
However, in real-life situations, converters and HVDC cables
from various suppliers can have different specifications and
parameters. Due to this variety, the average J̃osci may result in
a different optimal HVDC cable route than only considering
the nominal operating condition [24].

From another perspective, the optimal DC voltage oscil-
lation indices can be weighted together with other decision
criteria by grid expansion planners. For instance, in the decen-
tralized case, the second optimal solution (link 2-3) based
on the average J̃osci is quite close to the first one (link 1-2),
while looking at the J̃osci at nominal condition, the difference
is more noticeable. In fact, the second optimal solution is
almost as good as the first one that would not have emerged
from the nominal condition analysis. Such insight could also
be valuable for grid expansion planners while assessing all
design criteria together.

V. CONCLUSION
In this paper, the centralized and decentralized optimal linear
feedback controllers were presented to reduce DC voltage
oscillations under the worst-case perturbation scenario in an
offshore four-terminal HVDC grid. The grid configuration
was based on the MMC. It was observed that the distinct
MMC eigenvalues associated with the zero-sequence circu-
lating current and zero-sequence energy sum state variables
and their integral parameters were the closest to the instability
region. Therefore, the simplified analyses based on 2-level
VSCs in contrast with MMCs are not sufficient for the grid
state-space model and stability studies. The stability margins
of the MMC state variables can be improved by proper tuning
of the control parameters.

It is observed from the eigenvalue stability analysis that the
two eigenvalue pairs responsible for the DC voltage oscil-
lations are related to the grid DC-side voltage and the inte-
gral state of the AC-side active power, which are connected
through the droop control gain. The eigenvalue trajectory
study for droop variations in the four-terminal grid depicted a
trade-off between these two eigenvalue pairs. An eigenvalue
pair’s stability margins have improved, while the other pair

has become more prone to instability by further moving
towards the right half-plane. To this end, an optimization
strategy is beneficial to optimally readjust the droop gains to
improve the DC voltage stability margins.

The time-domain simulations showed that the centralized
and decentralized optimal linear feedback controllers could
improve the DC voltage stability margins under the worst
initial perturbation scenario when implemented either in the
presence or absence of the droop control gain. In the former
case, better performance is obtained because the synergies
between the optimal controller and the droop control function
can result in the minimization of the DC voltage oscillations
with larger stability margins. Moreover, unlike the droop
controller, the centralized and decentralized optimal linear
feedback controllers can inherently satisfy the control inputs’
and state variables’ constraints.

An apparent difference is noted from the centralized
and decentralized optimal controllers’ response to distur-
bances based on the time-domain simulations. The con-
verters’ zero-sequence energy sum’s control plays a pivotal
role in the performance of the decentralized optimal con-
troller. Namely, the controller maintains the grid DC-side
voltages and AC-side active powers relatively constant after
the worst-case scenario by diverting the perturbations to the
MMC arm capacitors resulting in the variation of the con-
verters’ zero-sequence energy sum. Hence, it may rely on
an increased number of the MMC sub-modules or a higher
voltage rating of the MMC sub-module capacitors.

As a further contribution, the optimal DC voltage oscilla-
tion index was applied as a potential decision support crite-
rion for the placement of a new HVDC cable between two
independent point-to-point offshore HVDC grids while con-
sidering the wind intermittency effect. The lowest oscillation
index was obtained for the HVDC cable with the lowest
length.

Finally, one potential extension of the proposed method
could be to investigate the minimization of DC voltage oscil-
lations together with the angular swings of the synchronous
generator in hybrid AC/DC networks to expand the range of
applicability of the methodology.
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