
Received June 25, 2021, accepted July 6, 2021, date of publication July 12, 2021, date of current version August 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3096430

Multichannel Optimization With Hybrid Spectral-
Entropy Markers for Gender Identification
Enhancement of Emotional-Based EEGs
NOOR KAMAL AL-QAZZAZ 1, MOHANNAD K. SABIR1,
SAWAL HAMID BIN MOHD ALI 2, (Member, IEEE),
SITI ANOM AHMAD 3,4, (Senior Member, IEEE),
AND KARL GRAMMER5
1Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad 47146, Iraq
2Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi,
Selangor 43600, Malaysia
3Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia
4Malaysian Research Institute of Ageing (MyAgeing), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
5Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria

Corresponding author: Noor Kamal Al-Qazzaz (noorbme@kecbu.uobaghdad.edu.iq)

This work was supported by the University Kebangsaan Malaysia and Ministry of Education Malaysia under Grant
FRGS/2018/TK04/UKM/02/2.

ABSTRACT Investigating gender differences based on emotional changes supports automatic interpretation
of human intentions and preferences. This allows emotion applications to respond better to requirements
and customize interactions based on affective responses. The electroencephalogram (EEG) is a tool that
potentially can be used to detect gender differences. Themain purpose of this paper is twofold. Firstly, it aims
to use both linear and nonlinear features of EEG signals to identify emotional influences on gender behavior.
Secondly, it aims to develop an automatic gender recognition model by employing optimization algorithms
to identify the most effective channels for gender identification from emotional-based EEG signals. The
EEGs of thirty healthy students from the University of Vienna were recorded while they were watched four
short video clips depicting the emotions of anger, happiness, sadness and neutral. In this study, the wavelet
transform (WT) de-noising technique, linear spectral mean frequency (meanF) and nonlinear multiscale
fuzzy entropy (MFE) features were used. The individual performance of these attributes was statistically
examined using analysis of variance (ANOVA) to represent the gender behavior in the brain-emotion in
females and males. Then, these two features were fused into a set of hybrid spectral-entropy attributes
(SEA). Consequently, optimization algorithms including binary gravitation search algorithm (BGSA) and
binary particle swarm optimization (BPSO), were employed to identify the optimal channels for gender
classification. Finally, the k-nearest neighbors (kNN) classification technique was used for automatic
gender identification of an emotional-based EEG dataset. The results show linear and nonlinear features
are remarkable neuromarkers for investigating gender-based differences in emotional states. Moreover,
the results show significant enhancement in the overall accuracy of classification achieved by using the
BGSA optimization algorithm with the proposed hybrid SEA set when compared to individual features.
Therefore, the proposed methods were effective in improving the process of automatic gender recognition
from the emotional-based EEG signals.

INDEX TERMS ANOVA, channel selection, electroencephalography, emotion, entropy, features, gender,
optimization.

I. INTRODUCTION
Investigating gender-based differences in emotions is essen-
tial to understanding the changes in behavior of individuals
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across their lifespan. Automatic interpretation of human emo-
tions, intentions and preferences helping in emotion applica-
tions to respond better to users’ requirements and customize
interactions based on affective responses [1], [2]. Gender
contrasts have been archived in intellectual cycles, for exam-
ple, memory and feeling. Subsequently, gender differences
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dependent on emotional processing has attracted particular
interest because of its possible application in understanding
human psychopathologies, such as depression and anxiety.
The responses of females and males to stress differ and this
difference may affect psychopathologies [3].

Psychologically, two emotional models are identified to
classify the emotional levels; these are the discrete model
and the dimensional model. The discrete model is com-
prise of multiple, distinct emotional states that identifies
basic feelings (anger, fear, disgust, surprise, happiness,
and sadness), and all different feelings are viewed as an
aspect of these essential emotions or a combination of them
[4], [5]. The dimensional model is a two-dimensional (2D)
cognitive-emotional state model that is used to broadly
utilized in mapping the emotion onto the valance-arousal
graph, as described in the Russell’s circumplex model of
emotion [6], [7].

Recently, researchers indicated that to provide the best
environment for recognition of emotion, they need to get
the combined effect of both visual and auditory stimuli to
elicit a specific emotional state [8]. Using short audio-visual
video clips to create conditions that elicit various feelings has
been found to be more effective than other modalities [9].
Therefore, to reveal personal characteristics that would be
valuable in recognizing individual gender accurately in daily
life, visual and auditory stimuli are considered as the two
common ways for human beings to elicit different emotional
states [3]. Thus, in this work, emotions were initiated by using
short audio-visual video clips.

So far, few studies have examined gender differences
based on emotional changes [10]–[12], and the greater part
of these studies report significant differences [8]. How-
ever, some limitations of the EEG-based emotion recogni-
tion model have been identified. For instance, the accuracy
of the model decreases as the number of emotions to be
classified increases. Another challenge that emerges while
acquiring the EEG signals from different emotional states,
is that emotions tend to propagate from one brain area to
another. Indeed, recording common information with better
convey of the stimulants will be a breakthrough of substance
significance.

To address the above problem, this paper proposes a novel
method to identify the optimal EEG channels for differenti-
ating gender-based emotions. Determining the most effective
EEG channels can help to remove task-independent from the
recorded signals, reducing the complexity of the system. This
achieves better classification performance and decreases the
computational loadwhile producing a robust and reliable gen-
der recognition model. Thus, in this research, optimization
algorithms were used to detect the effective EEG channels
automatically.

To do this, the emotional-based EEG dataset is initially fil-
tered using a conventional filter and wavelet (WT) de-noising
technique. Linear spectral mean frequency (meanF) and non-
linear multiscale fuzzy entropy (MFE) features were com-
puted [13], [14]. The individual performance of these features

was statistically examined using a three-way ANOVA. Then
the linear spectral meanF and nonlinear MFE features were
combined into a hybrid SEA feature set to illustrate the sim-
ple brain activities with sophisticated complex information.
BGSA and BPSO optimization algorithms were employed
to detect the optimal EEG channels. Finally, kNN classi-
fier was used to automatically identify the gender of an
emotional-based EEG dataset.

To the authors best of knowledge the contribution of a
gender-specific role in the brain-emotion relationship has
been addressed in this work. So, the main purpose of this
paper is twofold. First, it aims to propose gender recogni-
tion indices using linear meanF and nonlinearMFE markers
from EEG data of different emotional states acquired using
low-cost EEG devices. Second, proposed an automatic gen-
der recognition model using optimization algorithms for opti-
mal channel selections to empower the gender identification
process from emotional-based EEGs. This study is the first
to use BGSA and BPSO optimization algorithms to select
the channels that are most effective in enhancing the accu-
racy of classification the different genders’ emotional-based
EEGs. Additionally, the EEG elicitation protocol, which uses
audio-visual video clips as external stimuli have never been
used for information about feelings that may make gender
contrasts more pronounced.

II. RELATED WORK
Over the last decade, different tools that detect physiological
signals, such as electrocardiogram (ECG) and electroen-
cephalogram (EEG), can be used to recognize emotions
[15]–[17]. Minhad et al. have illustrated the emotional dif-
ferences from ECG signal with a classification accuracy
of 83.33% [18]. EEG is a neurophysiological tool used
to screen and distinguish brain activity. EEG is a gen-
erally accessible, cost-effective, and non-obtrusive appara-
tus that tracks data preparing with milliseconds exactness
and high temporal resolution [19]. EEG signals are help-
ful markers of various mental states; for example, seizure
discovery/expectation, motor imagery of stroke patients reha-
bilitation, mental task characterization, emotion recognition,
sleep state classification, analyzing the impact of med-
ication, attention deficit hyperactivity disorder (ADHD),
Alzheimer’s disease (AD), depression, and various emotional
information [20]–[25].

Indeed, the strong correlation between different emotional
states and EEG signals is most likely attributable to the
signals coming directly from the central nervous system
(CNS), thereby providing information about internal emo-
tional states [2], [11], [15], [26]–[28]. Recently, EEGs have
been used to assess human emotional states with excellent
time resolution [9]. Therefore, recognizing emotion supports
automatic interpretation of human intentions and preferences,
allowing human computer interface applications to respond
better to users’ requirements and customize interactions
according to affective responses.Moreover, EEG signals have
been described as a potential biomarker of gender differences
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from emotional-based EEG dataset with a classification accu-
racy of 92% [8], [11].

A. EEG FEATURES EXTRACTION
Investigating gender differences based on emotional changes
become essential to understand various human behavior in
our daily life [29]. Although, there is no common agreement
on the most suitable EEG features, researches have sug-
gested extracting features from time-domain [8], [30], [31],
frequency-domain [32], time-frequency domain using
wavelet transform [33]–[35] and the users of the statistical
features [10] as in Table 1.

However, EEG signals illustrate non-linear behaviour,
in this demand, entropy has been considered as a non-linear
parametric index that can be utilized to evaluate the vulner-
ability of a framework and unstable dynamic EEG signal.
Moreover, the entropy evaluators can quantify the complexity
of a time series degree and have been broadly applied to
the EEG signal to investigate the psychological mental states
and rest states lately [36]–[39]. For instance, Wang et al.
have used, including sample entropy (SampEn), approximate
entropy (ApEn), permutation entropy (PerEn) to quantify
the complexity of a time series [27]. Moreover, EEG-based
gender recognition acknowledgment by utilizing various
entropies has an expected application for clinical investi-
gates, referred to as social emotion, person identification,
treatment uptake, clinical efficacy and adverse reactions [26].
Thul et al. have adopted (PerEn) and Symbolic Transfer
entropy to analyze EEG signals for clinical assessments,
which suggests that the utilized EEG entropy analyses were
able to relate to patient groups with various disorders of
consciousness [40]. Add to that, fuzzy entropy (FuzEn) [41],
amplitude-aware permutation entropy (AAPE) which rela-
tively quantifies the complexity of a time series for EEG
analysis [13], [42]. Research shows that FuzEn alleviates
the problem of entropy mutation; however, these methods
analyze at a single scale, which loses useful information.
Thus, multiscale FuzEn (MFE) was put forward to explore
deeper information [43]. Therefore, MFE entropy features
were selected to be used as a diagnostic index that would be
able to discriminate gender using an emotional-based EEG
dataset.

Indeed, features extracted from single domain are mostly
simple and may lead to insufficient EEG information that
affecting the overarching performance of classification [44],
a robust feature set using hybrid feature methods provide
a solution for emotion recognition system aforementioned
problem [44]. Hence, in this study, the linear spectral meanF
and nonlinear MFE features were evaluated individually
and were combined into a hybrid spectral-entropy attributes
(SEA) feature set to illustrate the simple brain activities with
sophisticated complex information.

B. EEG FEATURES AND CHANNELS SELECTION
Detection of different human emotions from EEG signals is
usually a prone to the curse of dimensionality due to the

high dimensional featurematrix whichwill modulate the final
classification performance. Multi-channels may cause noise
due to motion artefacts, and/or dataset outliers resulting in
a poor classification accuracies. To solve this issue, chan-
nels selection methods have applied to decrease the dataset
dimensionality, reduce the computational complexity, reduce
the amount of overfitting that may arise due to the utilization
of unnecessary channels which leads to enhance classifica-
tion accuracy. Therefore, most particular channels selection
techniques are filtering and embedded methods [45]. The
filtering methods have been used to select and combine
discriminative channels and classify a set of emotions [46].
Moreover, researchers have used conventional canonical cor-
relation analysis algorithm to model the corresponding EEG
feature vectors to simultaneously cope with both automatic
channel selection and emotion recognition [45], [47].

Table 1 shows the state-of-the-art methods for EEG fea-
tures and channels selection. Studies [45], [46], [48]–[53]
attempted to estimate the best features using features
selection (FS) methods including sequential feedforward
selection (SFFS), Minimum Redundancy Maximum Rel-
evance (mRMR), genetic algorithm (GA), evolutionary
computation (EC) and sparse discriminative ensemble
learning (SDEL), Sparse Discriminative Ensemble Learn-
ing (SDEL) algorithm, sparse linear discriminant analysis
(LDA), (SBS), and principle component analysis (PCA)
whereas study [54] used binary adaptive differential evolution
bat algorithm (BADEBA) channels selection (ChS) method.

However, in different emotional states, brain areas asso-
ciated with emotional elicitations are not exactly the same,
which will result in the inability of traditional channel
selection methods to extract effective EEG features. Thus,
the problem of channels selection could be solved using
optimization algorithms. Several studies have been employed
metaheuristic algorithms for selecting efficient learning
operators through solving the optimization problems [55]
including the artificial bee colony (ABC) [56], flower polli-
nation algorithm (FPA) [57] and particle swarm optimization
(PSO) [58]. Huang et al. [59] proposed a new ant colony opti-
mization (ACO) for electromyography signals classification.
Venugopal et al. [60] applied the genetic algorithm (GA)
for measuring the muscle fatigue conditions. Moreover,
Purushothaman and Vikas [61] made use of particle swarm
optimization (PSO) and ACO to solve the feature selection
problem in finger movement recognition. Another study pro-
posed a binary grey wolf optimization (BGWO) in evaluating
the optimal feature subset [55]. Moreover, Roman et al. [62]
have used a hybrid controller to optimally tune by a Grey
Wolf Optimizer algorithm. Recently, the Cuckoo search (CS)
algorithm [63] has been used to diagnose the epilepsy based
on EEG dataset classification [64].

C. EEG EMOTION CLASSIFICATION
Emotion recognition supports automatic interpretation of
human intentions and preferences, allowing human computer
interface applications to better respond to users’ requirements
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TABLE 1. State-of-the-art: Methods of EEG features extractions,
features-channels selection and classification.

and customize interactions based on affective responses.
Table 1 illustrates the most popular machine learning algo-
rithms that have been used are Support Vector Machine
(SVM), k-Nearest Neighbor (kNN), Random Forest (RF)
and decision tree (DT) particularly in the study of the EEG
emotion classification [12]. These classification models all
directly use EEG set of features for classification without
considering the EEG signals’ internal temporal dynamic
information [17].

III. MATERIALS AND METHODS
This study is intended to investigate the gender differences
by estimating two methods which are linear meanF and
nonlinear MFE . These features were combined as a hybrid
spectral-entropy attributes (SEA) feature set to illustrate the
neural behavior and complexity changes over the brain
regions. Therefore, for achieving good classification per-
formances this study involves representing two optimiza-
tion algorithms from different metaheuristic categories using
BPSO and BGSA for optimal channel selection and gender
identification enhancement of emotional-based EEGs for the
four emotional states over the brain regions. The novel pro-
posed model is validated on multi-channels emotional-based
EEG datasets.

Table 2 shows the pseudocode of the proposed method
framework. The proposed methodology run through succes-
sive stages where the result of each stage is an input to the
consecutive one. Figure 1 illustrates the block diagram of the
proposed study.

A. EEG ACQUISITION AND RECORDING
The emotion elicitation procedure starts by examination,
every member went through an assessment to guarantee no
earlier history of neurological or mental issues and was then
given an educated assent structure (ICF) which they were

TABLE 2. The operation of the proposed methodology.

mentioned to sign before partaking in the investigation. Then,
the EEGs of thirty volunteer were recorded while they were
demonstrated three, short video-clips for anger, happiness
and sadness emotions Table 3. In addition, a video-clip for
neutral emotion have been used as a baseline. This procedure
was suggested by Rottenberg [68]. Every video clip has a
different length, but none is longer than four minutes. The
video clips have been presented to volunteers with a Virtual
Emotion Presenter (VEP) software developed at the Univer-
sity of Vienna. This software allows random presentation and
recording of additional data sources. The picture shows the
VEP in theAnthropology lab Figure 2.Moreover, the emotion
elicitation procedure includes self-statements questionnaire
(SAQ) to assess and grade their reactions to the clips, followed
by a break of 45 seconds before review the following video
clip (Figure 3). The film stimuli wewill use are recommended
and tested for emotion perception by Rottenberg [68].

After that, the EEG signals were recorded using Emotiv
EPOC EEG headset, inertial sensors, wireless connectivity
(Emotive Systems, Inc., San Francisco, CA) of 14-channel
(AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
AF4) plus two references, the common mode sense (CMS)
at the left mastoid and the determined right leg (DRL) at the
right mastoid. The Emotiv EPOC EEG utilizes wipe based
terminals which were found dependent on the 10–20 frame-
work, and recently employed in [69], [70]. The anode data
was sifted through a 0.5-70 Hz band-pass channel. A 128 Hz
examining recurrence was utilized with a goal of 0.51 mV.

B. PREPROCESSING STAGE
Most of the artifacts are lying in EEG waves and it may
overlap with different brain activities. The filtration process
gets a crucial role in EEG signal preprocessing. Therefore,
to successfully carry out the research objectives of this study,
the EEG dataset were preprocessed to remove artifacts using
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FIGURE 1. Block diagram of this study.

TABLE 3. Sociodemographic information of the subjects with SAQ scores,
(Age in years, mean ± standard deviation).

conventional filters and wavelet transform (WT) technique
which is discussed in details in the following section.

1) CONVENTIONAL FILTERING
To perform filtering, additional software filters (notch and
bandpass filters) have to be applied to the EEG signals. In this
study, a bandpass filter with a lower cutoff corresponding to
3 dB is 0.5 Hz and the upper cutoff frequency was selected
to be 64 Hz, these conventional filters were applied to limit
the frequencies of the EEG signals as in [8]. A notch band
stop filter was utilized to remove the AC power line inter-
ference noise (PLIN) and it was set to the cutoff frequency
of 50 Hz [8], [31].

2) WAVELET (WT) DE-NOISING TECHNIQUE
WT has the capacity in settling EEG into explicit time and
frequency components by giving a good time-resolution and
a poor frequency-resolution at high frequencies and a good
frequency-resolution and a poor time-resolution at low fre-
quencies. The discrete wavelet (DWT) can be processed by

getting the discrete estimation of the parameters a and b, as in
Equation 1. It can be performed by finding the correlation
between the EEG signal f (t) and the mother wavelet (MWT)
function, 9(t). In this study, symlet mother wavelet of order
9was chosen to be used by applyingDWT.MWT is shifted by
the location parameter b and contracted by frequency scaling
parameter a, as in Equation 2 [71]:

DWTm,n(f ) = a
−m
2

0

∫
f (t)ψ(a−m0 t − nb0)dt. (1)

a0 and b0 values are set to 2 and 1, respectively.

ψa,b(t) =
1
√
a
ψ(

t − b
a

), a ∈ R+, b ∈ R. (2)

C. FEATURES EXTRACTION STAGE
Investigating EEG signals to identify gender differences from
emotional-based background activity remains a crucial goal
for improving the process of gender recognition. Recently,
EEG markers play the important role in reveal information
from brain activity. Therefore, different attributes can be
quantified and derived from the EEG signal to identify gender
from different emotional states. Since the patterns of recorded
EEG signals were varied among the different case of study,
studies have been declared that the success of the results
was mainly depending on the quality of the extracted set
of features as the choice of the feature set has a stronger
influence on the classification accuracy than the choice of
classifier [72]. In this direction, this study is intended to
investigate the linear spectral meanF and nonlinear MFE
dynamical entropy attributes to characterize gender behavior
according to different emotional states over the brain regions.
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FIGURE 2. Setup of the experimental room with presentation TV and the recorders.

FIGURE 3. The experimental protocol of emotion.

1) MEAN FREQUENCY (meanF )
The changes in EEG were investigated by using meanF to
be an indicator of the general slowing of neural activity [73].

To compute the meanF , first, normalized the power spectral
density (PSD) obtained by Welch Method to the total power
to get normalized PSD (PSDnorm) so that PSD(i)∑

i PSD(i)
. Then,
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the meanF was then defined as in Equation 3.

meanF =
∑
i

f (i)PSDnorm(i). (3)

where, the index i denotes the frequency bin, f (i) the mean
frequency in Hz for each frequency bin, and PSDnorm(i) the
relative power in that frequency bin [14].

2) MULTISCALE FUZZY ENTROPY (MFE)
Due to the capability of the brain to perform sophisti-
cated cognitive tasks, in this study, the nonlinear MFE
was also used to analyze the recorded EEG signals. MFE
method is based on the used of FuzEn values on multi-
ple scales [8], the EEG time series is denoted as Y =

y(i) : 1 ≤ i ≤ N and the coarse-grained time series y(τ ) is
constructed as y1(τ ), y2(τ ), . . . , yN

τ
(τ ), and can be computed

based on Equation 4:

yi(τ ) =
1
τ

iτ∑
i=(j−1)+1

y(i), 1 ≤ j ≤
N
τ
. (4)

where N is the length of time series and τ is a positive
integer. The FuzEn of each coarse-grained time series can
be computed as in [74]. Then, MFE is a function of scale
factor τ , it can be computed by the following Equation 5:

MFE(Y , τ,m, n, r) = FE(y(τ ),m, n, r). (5)

where, τ is a defined scale factor, m is the embedding dimen-
sion, n is the power, and tolerance r for all of the approaches
were respectively chosen as τ = 1, m = 3, n = 2,
r = 0.25 × SD, and SD is the standard deviation of the
original X time series [74]. In this study, meanF and MFE
features would be derived from the EEG signals of 30 seconds
length (N=3840) samples, 3 windows of 10-second length
(1280 samples) were extracted from the original EEG time
series for every 14 channels. Subsequently, the linear meanF
and nonlinearMFE features were fused via the concatenation
process into a hybrid spectral-entropy attributes (SEA) to get
insight into the mechanism responses of neural behavior and
the complexity changes over the brain regions that help in
understanding the gender differences better. The hybrid SEA
set was utilized to represent the most prominent attributes
that enhance the gender classification from emotional-based
EEGs.

D. GENDER DIFFERENCES INVESTIGATION BY
STATISTICAL ANALYSIS
Statistical analyses were performed to describe the gen-
der differences based on the physiological meaning of the
extracted features. In this study, the hypothesis to charac-
terize gender based on their behavior from different emo-
tional states was considered. Linear spectral meanF and
nonlinear dynamic MFE were used based on the past inves-
tigations that demonstrated their usefulness in recognizing
the EEGs of various cognitive tasks subjects’ [13], [14].
Subsequently, to assess the meanF and MFE performance

influences in personal gender identification due to anger,
happiness, sadness and neutral emotional stimuli two sessions
of three-way ANOVA were employed. To perform ANOVA,
entropy features of the 14-channels from the EEG dataset of
the 30 healthy participants were, to begin with, assembled
into 4 account areas that relate to the scalp area of the cerebral
cortex, these are the frontal (AF3,F7,F3,FC5,F4,FC6,F8,
and AF4 channels), parietal (P7 and P8 channels), temporal
(T7 and T8 channels), and occipital (O1 and O2 channels).
IBMUSA’s SPSS program version 25 was adopted to attempt
statistical analysis. So, in each of the two sessions, the group
factors of gender (i.e. females and males), the brain regions
(i.e. frontal, temporal, parietal and occipital) and the four
emotional states (i.e. angry, sadness and happiness) were
set as the independent variables and the features including
(meanF andMFE) were set as the dependent variables. Sub-
sequently, Levene’s test for homoscedasticity was applied,
as well as the Kolmogorov-Smirnov assessments for the nor-
mality test. Duncan’s test was applied to provide the post-hoc
contrast, with p < 0.05 established as each statistical assess-
ments’ level of significance. Regionally averaged features
helped in considering the differences between females and
males over the scalp areas which can directly display their
behavioral responses to the emotional changes on the mind.

E. DETECTING OPTIMIZED EEG CHANNELS
To propose the most effective EEG channels that involve in
gender identification enhancement with better classification
performance from emotional-based EEGs, optimization algo-
rithms including BPSO and BGSA were used. This study is
the first to use BGSA and BPSO optimization algorithms to
select the most effective channels to enhance the classifica-
tion accuracy of genders from anger, happiness, sadness and
neutral emotional-based EEGs.

1) BINARY PARTICLE SWARM OPTIMIZATION (BPSO)
Binary particle swarm optimization (BPSO) is a binary ver-
sion of particle swarm optimization (PSO) that was created
by Kennedy and Eberhart in 1995 dependent on the behavior
of bird flocks called a swarm [58]. In this algorithm, each
solution is shown as a vector under the name of the parti-
cle (bird) and the population (swarm) which may have any
random number of initial solutions (particles). Each particle
begins with its initial position and velocity, then moves in the
solution space to achieve the optimum result. BPSO can be
computed by incorporate producing the starting position and
velocity of every generation in the populace to get the optimal
solution. The mathematical computation of BPSO algorithm
is as in below. Let any particle xi (solution) in d-dimensional
space is represented in Equation 6.

xi = xi1, xi2, xi3, . . . , xid . (6)

where, i = 1, 2, 3, . . . , d and d is the number of parti-
cles in the swarm. every particle keeps up its own velocity,
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as given in Equation 7.

vi = vi1, vi2, vi3, . . . , vid . (7)

Additionally, in this calculation, every particle keeps up its
own best position called pbest and the best solution among
all the particles called gbest . In every iteration or generation,
the particles move towards an optimal solution by updating
their velocity and position according to the formula given in
Equations 8 and 9.

vdi (t + 1) = ωvdi (t)+ c1r1(pbest
d
i (t)− x

d
i (t))

+ c2r2(gbestdi (t)− x
d
i (t)). (8)

xi(t + 1) = xi(t)+ vi(t + 1). (9)

where vi(d + 1) represents the velocity of ith particle at
d + 1 iteration. ω is the inertia weight, vi(d) represents the
velocity of ith particle at d iteration. pbesti, gbesti represents
the personal best of the particle and global best of the swarm
at t iteration respectively. i is the order of particle in the
population, d is the dimension of search space, and t is the
number of iterations. xi(t), xi(t + 1) are the previous and
present solutions respectively. c1 and c2 are two positive
real constants known as self-confidence factor and swarm
confidence factor respectively. r1 and r2 are any random
numbers generated in between (0,1). Note that the velocity
is bounded by the maximum velocity, vmax and minimum
velocity, vmin which were set at 6 and −6, respectively [64].
Then, the velocity is converted into probability value using
Equation 10, and the position of particle is updated as shown
in Equation 10.

S(vdi (t + 1)) =
1

1+ exp(−vdi (t + 1))
. (10)

xdi (t + 1) =

{
1 if rand < S(vdi (t + 1))
0 otherwise.

(11)

where rand is a random number uniformly distributed
between 0 and 1. In BPSO, pbest and gbest play an impor-
tant role in guiding the particle to move toward the global
optimum. Considering theminimization function was applied
in this paper. Iteratively, the pbest and gbest are updated as
follows:

pbesti(t+1)=

{
xi(t+1) if F(xi(t+1))<F(pbesti(t)
pbesti(t) otherwise.

(12)

gbesti(t+1)=

{
pbesti(t+1) if F(pbesti(t+1))<F(gbesti(t)
gbesti(t) otherwise.

(13)

where x is the solution, pbest is the personal best solution,
gbest is the global best solution for the entire population,
F(.) is the fitness function, and t is the number of iterations.
Notably, the larger inertia weight performs more efficient
global search and the smaller inertia weight performs efficient
local search [75]. Hence, this inertia weight can be considered
as an important parameter to tune the performance of PSO

TABLE 4. The Binary Particle Swarm Optimization (BPSO) pseudocode.

algorithm [75]. The pseudocode of the BPSO is shown if
Figure 4 [76].

2) BINARY GRAVITATION SEARCH ALGORITHM (BGSA)
BGSA algorithm has been used to reduce the amount of
information in terms of detecting the optimal channels and it
has been proposed by Rashedi et al. [77]. GSA is an effective
optimization algorithm that was designed based on New-
tonian laws of gravity and motion and it was introduced
for solving binary-valued problems in [77]. BGSA can be
computed by considering a system withmmasses. Each mass
has a position that is an answer to the problem. pdi represents
the position of the ith mass in the d th dimension.

Pi = (p1i , . . . , p
d
i , . . . , p

D
i ). (14)

In this system, the force acting on the ith mass from the jth

mass at time t is calculated as follows:

Fdij (t) =
G(t)×Mgj(t)
Rij(t)+ ε

(pdj (t)− p
d
i (t)). (15)

where,Mgj is the gravitational mass related to mass j, G(t) is
gravitational constant at time t , ε is a small constant, and Rij
is the Euclidean distance between two masses i and j.

Rij(t) =
∥∥Pi(t),Pj(t)∥∥2 . (16)

The total acting force on the ith mass in the dimension d
is a random weighted sum of the d th components of applied
forces from other masses:

Fdi (t) =
m∑

j=1,ji

rjFdij (t). (17)

Based on Newton’s second law, the acceleration of the
ith mass at time t in the th dimension is given as follows:

adi (t) =
Fdi (t)

Mii(t)
. (18)

The velocity of a mass in the next step is considered as
a fraction of its current velocity added to its acceleration.
Therefore, its position and velocity could be updated as
follows:

V d
i (t + 1) = ri × V d

i (t)+ a
d
i (t). (19)

pdi (t + 1) = pdi (t)+ V
d
i (t + 1). (20)
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where ri are random numbers with uniform distribution in the
interval [78]. The gravitational and inertial mass are evaluated
by the fitness fiti(t) function as follows:

Mgj =
(fiti(t)− worst(t))
(best(t)− worst(t))

. (21)

Mii = 1+Mgi. (22)

best = min
j∈1,2,...,m

fiti(t). (23)

worst = min
j∈1,2,...,m

fiti(t). (24)

In the binary environment, every dimension has a value
of 0 or 1. Moving in every dimension means that its value
changes from 0 to 1 or vice versa. BGSA updates the velocity
based on the Equation 19 and considers the new position to
be 1 or 0 with probability. In other words, moving velocity
is defined in terms of changes of probabilities that a bit will
be in one state or the other. Thus V d

i shows the probability of
changing the value of xdi from 0 to 1 or vice versa. Function
S(V d

i ) is defined to transform V d
i into a probability function.

Therefore, S(V d
i ) must be bounded between 0 and 1:

S(V d
i (t)) =

∣∣∣tanh(S(V d
i (t))

∣∣∣ . (25)

After calculating S(V d
i , masses will move according to the

following equation:

pdi (t + 1) =
{
pdi (t) rand < S(V d

i (t + 1))
pdi (t) rand ≥ S(V d

i (t + 1))

}
. (26)

In BGSA, G(t) is decreased linearly with time according
to the following equation:

G(t) = G0(1−
t
T
). (27)

where T is the total number of iterations (the total age of the
system). The BGSA pseudocode is shown in Figure 5 [78].

TABLE 5. The Binary gravitation search algorithm (BGSA) pseudocode.

3) K-NEAREST NEIGHBOR METHOD
The k-nearest neighbor (kNN) method is one of the most
popular nonparametric methods, the k- nearest neighbors are
a positive integer that is considered as a key factor in the clas-
sifier performance [32]. kNN classifier checks for the closest
training observations that are presented in the proposed fea-
tures matrix based on the minimum Euclidean distance [11].
The observation is assigned to the class that is most common

among its k- nearest neighbors and the nearest samples are
assumed to contribute more than the far samples [11]. In this
paper, to enhance the classification accuracies, the leave-
one-out cross-validation (LOOCV) method was performed to
choose the parameter k .

4) FITNESS FUNCTION
This study was searched for the most effective channels that
provide better gender identification performance evaluation
in terms of the fitness function (fiti). A good fitness value
yields higher classification accuracy with lower-dimensional
numbers in terms of EEG channels. Therefore, fiti is designed
and computed using Equation 28 [79]:

fiti = ω1 × accui + ω2 ×

[
1−

∑p
j=1 fj

p

]
. (28)

There are two predefined weight factors ω1 and ω2;
ω1 is the weight factor for the classification accuracy of
the 1-nearest neighbor (1-NN) determined by the LOOCV
method; accui is the 1-NN classification accuracy; ω2 is the
weight factor for the number of selected features and fj is the
value of feature mask. The weight factor of accuracy can be
adjusted to a high value to improve the final classification
accuracy. The object with high fitness value has a high prob-
ability of affecting the other objects’ positions of the next
iteration, so it should be set appropriately [80]. The accui is
obtained by Equation 29, in which corr represents the number
of correctly classified examples and incorr represents the
number of incorrectly classified examples [79]. kNNmethod
based on Euclidean distance calculations serves as a classifier
for evaluating classification accuracies.

accui =
corr

corr + incorr
× 100%. (29)

5) OPTIMIZATION ALGORITHMS SETUP
The BPSO and BGSA parameters were selected among the
values suggested in [81], [82]. Both optimization algorithms
were computed utilizing M = 30 particles until a fitness
value equal to 1 was achieved or until 100 iterations were
exceeded. For the real part, the inertia parameter W was a
random number varied from 0.9 to 0.2 linearly across 100 iter-
ations and had a constant value equal to 1 for the binary part.
The two exploration and exploitation constants c1 and c2 are
fixed variables which are determined by user and were set
to c1 = c2 = 2. r1 and r2 are two random variable in the
range of (0,1) which are updated each iteration. The search
space of the only real component was constrained to [−1, 1].
The maximum and minimum velocities were set to −0.1 and
0.1, respectively, for the real part, and−6 and 6, respectively,
for the binary part. The BPSO and BGSA particle’s initial
conditions were set for each binary component with randomly
initialized to either 0 or 1 with equal probability. BPSO
and BGSA, like other heuristic search algorithms works ran-
domly and produces different results in every run. Therefore,
to find the optimal channels that are selected in different
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runs of channel selection algorithm, the BGSA performed
for 50 independent runs in subject one. Then the numbers of
each selected channel was counted for all of the 14 channels
independently.

F. GENDER RECOGNITION BY CLASSIFICATION AND
PERFORMANCE EVALUATION
The development of an automatic system for gender identi-
fication based on emotional responses arouses considerable
interest due to their impact in medical diagnosis. In the classi-
fication stage, the accuracy of classifiers strongly relies upon
the quality of the extracted attributes [11]. Consequently,
in this section, a comparative study of using meanF , MFE
and hybrid SEA features before and after applying the BGSA
and BPSO optimization algorithms was run to check the
proposed system abilities in classifying the subjects’ gender
into (females and males) based on their response to anger,
happiness, sadness and neutral emotional states using kNN
classifier.
kNN classification technique was chosen due to their

dependence on the sizes of the training and test sets. kNN
classifier was trained to find the best value of k . The k
value was varied between 1 and 9 at intervals of 2 and it
was chosen empirically at k = 7. The Euclidean distance
has been computed as a similarity measure to classify each
trial. After that, ten-fold cross-validation was used to avoid
overfitting and bias in the classification analysis [12]. Finally,
the results of the classification stage to classify the subjects’
gender-based EEG dataset of 4 emotional states were demon-
strated and evaluated by using the average classification accu-
racies (AvClassifAcc). The average classification accuracy is
computed as a percentage as in Equations 30:

AvClassifAcc=
(
Number of correctly classified instances

total number of instances

)
× 100. (30)

IV. RESULTS
The gender differences from the emotional-based EEG sig-
nals were investigated using statistical analysis, firstly and
through the performance of optimization algorithms with
kNN classifier secondly. The results were illustrated in the
following sections.

A. RESULTS OF GENDER RECOGNITION BY STATISTICAL
ANALYSIS
Statistical analyses were performed to describe the gen-
der differences based on the physiological meaning of the
extracted features. In this study, the hypothesis to character-
ize gender based on their behavior from different emotional
states was considered. Linear spectral meanF and nonlinear
dynamic MFE were used based on the previous studies that
showed their usefulness in distinguishing the EEGs of dif-
ferent cognitive tasks subjects’. Therefore, to evaluate the
meanF andMFE performance influences in personal gender
identification due to anger, happiness, sadness and neutral

emotional stimuli two sessions of three-way ANOVA were
employed.

To identify females and males based on their emotional
behavior, the statistical qualifications of anger, sadness, hap-
piness and neutral emotions among the frontal, temporal,
parietal and occipital brain regions have been assigned indi-
vidually using meanF and MFE features. The significant
differences were established at p < 0.05 level of significance.
In the first session of ANOVA, three-way ANOVA was

applied on the meanF feature. From the first glance at
Table 6, it can be observed that all the emotions but
happiness were illustrated significant differences between
females and males (p < 0.05). The meanF marker
of anger, sadness and happiness for males were signifi-
cantly higher than the (meanFanger,sadness,happiness(Males) >
meanFanger,sadness,happiness(Females)), whereas

(meanFneutral(Females) > meanFneutral(Males)).

Moreover, Figure 4 shows gender discrimination based
on the brain regions’ point of view. The females’ investi-
gations show that the frontal lobes have the lowest effects,
whereas the parietal and temporal lobes particularly signif-
icantly had the highest effect from the neutral, anger and
sadness emotions. Notably, happiness has the highest effect in
the temporal lobes whereas sadness has the highest effect in
the occipital lobes with significance differences (p < 0.05).
Further investigations to Figure 4 shows that the frontal lobes
have the lowest effects, whereas the temporal, parietal and
occipital lobes significantly had the same effect for the neu-
tral emotional state in males. Notably, sadness, happiness
and neutral have the highest effect in the occipital lobes,
whereas anger has the highest effect in the temporal regions
(p < 0.05).

TABLE 6. The average values (Mean ± SD) of meanF for the female and
male over the scalp regions. Significant group differences are marked
with an asterisk.

Thus, in males, themeanF could serve as an index of anger
in the temporal regions (meanFangerTemporal(Males)) and as an
index of sadness, happiness and neutral in the occipital lobe
(meanF sadness,happiness,neutralOccipital (Males)). In females, meanF
could be as an index of neutral, anger and sadness in the
parietal brain regions (meanFneutral,anger,sadnessParietal (Females))
and an index of happiness in the temporal lobes
(meanhappinessTemporal (Females)). Given that anger and sadness emo-
tions are situated in the upper and lower-right quadrant of the
valence-arousal Circumplex model of emotions, respectively
and the neutral emotion is located in the lower-left quadrant
of the valence-arousal Circumplex model.

In the second session of ANOVA, three-way ANOVA
was applied on the MFE feature. From the first glance
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at Table 7, it can be observed that all the emotions
were significant differences between females and males
(p < 0.05). The MFE markers of anger, sadness and neu-
tral for males were higher than the MFE markers of the
same emotions for females (MFEanger,sadness,neutral(Males) >
MFEanger,sadness,neutral(Females)), whereas

(MFEhappiness(Females) > MFEhappiness(Males)).

Figure 5 shows the gender discrimination based on the
brain regions’ point of view, the females show that the frontal
lobes have the lowest effects, whereas the parietal and the
occipital lobes were significantly highest in anger, sadness
and happiness emotions (p < 0.05). Notably, the neutral has
the highest effect in the temporal lobes with almost the same
effect in the parietal and occipital regions. Further investiga-
tions to Figure 5 show that the males’ frontal lobes have the
lowest effects, whereas the parietal, occipital and temporal
lobes significantly had the highest effects in all emotions.
Notably, anger, neutral and happiness have the highest effect
in the parietal regions, the sadness has the highest effect in
the occipital region with significance differences (p < 0.05).
Thus, in males, the MFE could serve as an index

of anger, neutral and happiness in the parietal regions
(MFEanger,neutral,happinessParietal (Males)), and as an index of
sadness in the occipital region (MFEsadnessOccipital(Males)).
In females, the MFE could serve as an index of
anger, sadness and happiness in the parietal regions
(MFEanger,sadness,happinessParietal (Female)), whereas MFE in the
temporal regions could serve as an index of neutral
(MFEneutralTemporal(Female)). Given that anger and neutral emo-
tions are situated in the upper-right and lower-left quadrant
of the valence-arousal model respectively and the neu-
tral emotion is located in the lower-left quadrant of the
valence-arousal model.

TABLE 7. The average values (Mean ± SD) of MFE for the female and
male over the scalp regions. Significant group differences are marked
with an asterisk.

B. RESULTS OF DETECTING OPTIMIZED EEG CHANNELS
The proposed optimization algorithms were tended to choose
the most effective EEG channels over the stimulated brain
regions. Therefore, the comparative analysis of the BGSA
and BPSO algorithms were obtained to identify the most
effective channels for gender identification enhancement
from emotional-based EEG signals. Table 2 reports the opti-
mal channels from the implemented meanF , MFE entropy
and hybrid SEA features to the BGSA and PBSO optimization
algorithms.

From Table 8, it can be observed that almost all the brain
regions were participated to discriminate females and males

while the emotion elicitation. However, it could be noted
that there were different groups of channels that could be
considered as the most effective channels to discriminate
females and males from both BGSA and BPSO.

In thismanner, frommeanF marker, the results suggest that
the most effective channels that separated females and males
were covered mainly the frontal, parietal and occipital lobes
in left and right hemispheres in anger, whereas other groups
of channels were considered as the most effective channels
in the sadness emotional state. Moreover, for happiness and
neutral emotions, the most frequent channels to discriminate
females and males were almost achieved by specific channels
from the left and right brain lobes. Additionally, from MFE
marker, the results were mainly related to left frontal and
temporal lobes with right parietal and occipital lobes during
anger, left brain hemisphere during sadness, left and right
frontal and parietal with right temporal and left occipital
during happiness and the lateral regions of the brain during
neutral emotions.

According to the results, the number of selected chan-
nels is much lower than the original 14 channels. For
instance, by selecting 5 channels 64% of the channels were
ignored compared to the total 14 channels and that will
reduce the amount of unimportant information to be focused
on the most relevant brain regions that involve emotion
elicitations’.

Accordingly, for the hybrid SEA marker, the more consid-
erably active channels were mainly related to the left brain
hemisphere in anger and sadness, left frontal and temporal
with left and right parietal in happiness and the lateral regions
in neutral emotions. Consecutively, the intersection between
the most effective channels obtained from both BGSA and
BPSO algorithms was achieved to build up an EEG brain
mapping over the scalp view as in Figure 6.
Figures 7, 8 and 9 illustrate the convergence curves of

meanF , MFE and SEA features using BPSO and BGSA,
respectively for 30 independent runs. In these Figures, it can
be observed that the performance of BGSAwas outperformed
the BPSO for emotional-based EEG datasets to seek out the
optimal solution.

C. RESULTS OF GENDER RECOGNITION BY
CLASSIFICATION
The development of an automatic gender recognition model
from emotional-based EEG signals is essential in the pro-
cessing chain of this study. For achieving strong robustness
identifications with good classification performances this
article compares the classification performance results of the
meanF , MFE and hybrid SEA features obtained before and
after using BGSA and BPSO optimization algorithms on the
emotional response to anger, happiness, sadness and neutral
emotional states.

In this stage, the classification accuracies were strongly
depended on the quality of the extracted features.
Table 3 reports the performances of the kNN classifier
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FIGURE 4. The meanF marker comparative plot for female and male due to A: anger, B: sadness, C: happiness and D: neutral emotional states.

FIGURE 5. The MFE marker comparative plot for female and male due to A: anger, B: sadness, C: happiness and D: neutral emotional states.

to get insights into assessing the differences in personal
gender before and after using BGSA and BPSO optimization
algorithms.

The classification accuracies of the 14 EEG channels using
meanF , MFE and hybrid SEA feature sets were illustrated
lower performances compared to the accuracies after using
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FIGURE 6. The EMOTIV EPOC EEG configuration of 14 EEG channels, the blue filled circles are
the most effective channels obtained by hybrid SEA from both BGSA and BPSO optimization
algorithms.

optimization algorithms. However, it can be noticed that the
proposed SEA set can yield useful information that outper-
forms the other features by improving the gender classifi-
cation overall accuracies of the 14 EEG channels for all
emotions.

It is noteworthy that, the classification accuracies after
using the effective channels obtained by BGSA and BPSO
were improved, however, the most improvements were
obtained from the hybrid SEA set, for instance, the females
and males identification based on anger emotional state was
increased from 73.89% to 85.62% and 79.77% for BGSA and
BPSO, respectively.

In the same manner, the overall accuracy of gender identi-
fication based on sadness emotional state was increased from

70% to 85.44% and 83.95% for BGSA and BPSO, respec-
tively. Moreover, the accuracies of gender differences based
on happiness emotional state were increased from 76.67%
to 85.80% and 83.91% for BGSA and BPSO, respectively.
Furthermore, for the neutral emotional state, the overall
accuracy of females and males’ identification was increased
from 82.22% to 93.71% and 91.80% for BGSA and BPSO,
respectively.

On the other hand, Table 9 also shows the classifica-
tion accuracies enhancement obtained after using BGSA and
BPSO optimization algorithms. Indeed, the BGSA algorithm
enhanced the classification performances achieved by 12%
for anger and neutral, 15% for sadness and 9% for happiness
emotions after reducing the number of used channels.
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FIGURE 7. The convergence curves of meanF feature on emotional-based EEG dataset from both BGSA
and BPSO optimization algorithms.

FIGURE 8. The convergence curves of MFE feature on emotional-based EEG dataset from both
BGSA and BPSO optimization algorithms.

Table 11 provides the comparative analysis of the proposed
method with existing methodologies. Studies attempted to
estimate the best features using FS methods and ChS method.

However, these methods were obtained with reduction in
detection accuracy due to complicated computational calcu-
lations due to the redundant channels. This study presents
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FIGURE 9. The convergence curves of SEA hybrid feature on emotional-based EEG dataset from both
BGSA and BPSO optimization algorithms.

TABLE 8. Effective EEG channels for gender identification obtained by
BGSA and BPSO optimization algorithms.

an automatic gender recognition model using BGSA and
BPSO optimization algorithms for optimal channel selec-
tions to empower the gender identification process from
emotional-based EEGs. With the proposed method there is
a relatively reduction in the number of channels for the

gender detection process with a good classification accu-
racies. Moreover, these methods have been used to study
emotional-based EEGs, however gender recognition from
emotional-based EEG using BGSA and BPSO optimization
algorithms is the first to be considered in this study to select
the most effective channels that enhanced the classification
accuracy of genders from anger, happiness, sadness and
neutral emotional-based EEGs. Additionally, the previous
studies have used already existing public dataset datasets
(MAHNOB, DEAP) whereas in this study the EEG dataset
elicitation protocol and the EEG estimation system have
never been utilized for feeling information securing and that
may make gender contrasts more articulated.

Therefore, the best performance can be achieved by using
the hybrid SEA feature set with the BGSA optimization algo-
rithm which has the influence on gender recognition from the
EEG signals and helps identify the gender differences based
on different emotional states to provide prompt feedback
for clinical practices. The proposed model using the WT
de-noising technique, hybrid SEA set with BGSA optimiza-
tion algorithm achieves superior results than the use of all the
14 EEG channels with traditional meanF and MFE methods
with kNN classifier to characterize and identify gender from
emotional-based EEG signals.

V. DISCUSSION
The current study has illustrated the gender behavior from
the emotional-based EEG and their relation with the brain
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TABLE 9. Comparing the gender-based classification accuracies obtained
before and after using BGSA and BPSO optimization algorithms.

regions which is important in the cognitive sciences. More-
over, it has been able to successfully identify gender from
the emotional-based EEGs by adapting a fully-automated
algorithm to serve the purpose. This work proposed a novel
approach in gender detection through applying the WT
de-noising technique, hybrid SEA set, BGSA optimization
algorithm for optimal channels selection, and implementation
of kNN classifier as well. The improvement in the results was
achieved by identifying the most effective channels through
the optimization algorithms.

Table 10 represents the role of each brain lobe in gender
behavior detection from the emotional-based EEGs. It is
clear that parietal and temporal lobes have the most sig-
nificant impact to identify females during anger, sadness,
neutral and happiness, whereas to identify males, temporal,
occipital and parietal lobes were played an essential role in
anger, sadness, happiness and neutral and the results agree
with Morteza et al. [83]. In contrast to other brain regions,
the frontal lobe has an impact in both females and males
for all the mentioned emotions, it seems to be more promi-
nent for emotions associated with valence like anger, happi-
ness, neutral and sadness, respectively [83]. These differences
were mainly related to that the females and males recruited
almost dissimilar neuronal brain networking for process-
ing the anger, sadness, happiness and neutral audio-visual
stimuli [8].

Table 10 shows the effect of meanF and MFE features as
markers for investigating gender behavior based on anger,
sadness, happiness and neutral emotional state over the brain
lobes.

Therefore, almost all brain lobes are play crucial role
in differencing females and males from emotional-based
EEG. From the structure anatomical point of view, every
one of our discoveries is predictable with key elements of
the frontal, temporal, parietal, and occipital lobes of the
brain. The frontal lobe is considered as our emotional control
center [84], the temporal lobes which are related to emo-
tion perception [28], and all the mentioned emotional states
were identified by channels related to these two regions.
The parietal lobe is located immediately behind the frontal
lobe, and it is associated with handling data from the body’s
senses [8], the happiness and sadness emotional states were
distinguished by channels delighted from this region. The
occipital lobe contains most of the anatomical location of

the visual cortex [12], the happiness, sadness and neutral
emotions were recognized by channels from this area.

Besides, the proposed hybrid SEA with BGSA optimiza-
tion algorithm consistently produced better performance
results than the other feature extraction and selection meth-
ods. The utility of EEG as a clinical tool to assess func-
tional changes related to different emotional states (i.e. anger,
sadness, happiness and neutral) for different brain areas
(i.e. frontal, temporal, parietal and occipital scalp) is of great
interest.

However, several limitations also need to be considered
including first that the algorithm relied on the regularized
dimensionality reduction stage to reduce the number of fea-
tures rather than including the sample size was small and a
requirement to carry out further investigations with a larger
database in the future is needed. The feature sets have been
used in this study were compared, and some other mea-
sures such asWavelet entropy, dispersion entropy, multi-scale
entropy also have been widely used and should be studied
further for EEG-based gender recognition in our ongoing
researches. One problem with the proposed approach using
EEG signals is that these signals cannot be easily acquired
unobtrusively. In other words, subjects need to wear sensors
to acquire data. The invasiveness makes such signals difficult
to acquire and are not practical for real-time applications. For
this actual application, an offline analysis on EEG datasets
was performed and recorded from online experiments in this
study. However, since the offline and online classifications
have distinct characteristics, a further study in a real-time
online experimental environment should be conducted to con-
firm the present findings.

TABLE 10. Effective biomarkers for identifying gender-based on anger,
happiness, sadness and neutral emotional states over the brain region.

Despite these drawbacks, all our results are consistent
with those of other researchers, whose findings showed that
the EEG signals can detect the most corresponding differ-
ences between the females’ and males’ groups for anger,
sadness, happiness and neutral, this agrees with EEG bands
showed the gender differences [12], [28]. Therefore, the WT
de-noising technique, the proposed hybrid SEA with BGSA
optimization algorithm can yield useful information for
characterizing and identifying gender from emotional-based
EEGs.

For the future work, the proposed method will be
extend by applying the given markers for automatic gen-
der identification method experimentally. Moreover, another
recommended direction is to perform the real application of
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TABLE 11. Qualitative comparative analysis of the proposed method with the state-of-the-art.

automatic gender recognition model from emotional-based
EEGs.

To sum up, the conceptual link between meanF and MFE
features were statistically used to illustrate the mechanism
responses of neural behavior and the complexity changes
over the brain regions that help in understanding the gender
differences better. The novel automatic model was introduced
from theWT, hybrid SEAwith BGSA algorithms to character-
ize gender differences according to different emotional states
over the brain regions through providing an alternative way
to the existing channel selection techniques.

VI. CONCLUSION
Developing an automatic gender recognition model remains a
crucial goal for improving the process of automatically iden-
tifying gender differences in EEG-based emotional signals.
In this study, theWTde-noising technique has been used. Lin-
ear meanF and nonlinear MFE features have been extracted
to characterize gender behavior statistically. Data obtained
from different emotional states in different brain regions
were analyzed using three-way ANOVA. Then, these two
features have been combined into a hybrid SEA. Optimization
algorithms, including BGSA and BPSO, were employed to
identify the most effective channels for gender classifica-
tion. Finally, a kNN classifier was used to automatically
identify the gender of an emotional-based EEG dataset. The
results indicate thatmeanF andMFE features are remarkable
neuromarkers for investigating gender-based differences in
emotional states occurring in the brain. Moreover, the clas-
sification results showed that in comparison to individual
features, the proposed BGSA optimization algorithm with a
hybrid SEA set, significantly enhanced the overall accuracy of
classification. Therefore, the proposed methods were effec-
tive in improving the process of using emotional-based EEG
signals to automatically recognize gender.
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