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ABSTRACT All existing solutions to distributed consensus are organised around a Paxos-like structure
wherein processes contend for exclusive leadership in one phase, and then either use their dominant position
to propose a value in the next phase or elect an alternate leader. This approach may be characterised as
adversarial and phase-asymmetric, requiring distinct message schemas and process behaviours for each
phase. In over three decades of research, no algorithm has diverged from this basic model, alluding to it
perhaps being the only viable solution to consensus. This paper presents a new consensus algorithm named
Spire, characterised by a phase-symmetric, cooperative structure. Processes do not contend for leadership;
instead, they collude to iteratively establish a dominant value andmay do so concurrently without conflicting.
Each successive iteration is structured identically to the previous, employing the samemessages and invoking
the same behaviour. By these characteristics, Spire buckles the trend in protocol design, proving that at least
two disjoint cardinal solutions to consensus exist. The resulting phase symmetry halves the number of distinct
messages and behaviours, offering a clear intuition and an approachable foundation for learning consensus
and building practical systems.

INDEX TERMS Atomic broadcast, consensus, distributed algorithms, fault-tolerance, replication.

I. INTRODUCTION
The seminal works ‘‘The Part-Time Parliament’’ [1] and
‘‘Viewstamped Replication’’ [2], have exposed viable solu-
tions for achieving distributed consensus under asynchronous
network assumptions in ensemble sizes n = 2f + 1, where
f is the number of tolerated failures. Paxos, in particular,
has catalysed an era of research into consensus, resulting in
numerous adaptations of the original protocol, as well as other
protocols that serve a similar purpose.

Despite some stated differences, these protocols have a
remarkably great deal in common. Evidently, consensus with
2f + 1 processes and conflicting proposals requires two
phases to achieve in the best-case scenario. This is true of
all protocols considered here: Paxos [1] (and its known vari-
ations, including Mencius [7] and Ring Paxos [8]), View-
stamped Replication (VR) [2], [3], Chandra-Toueg (C-T) [4],
Zab [5] and Raft [6].

The two-phase limitation is intrinsic to the problem [9].
Given an n = 2f + 1 ensemble size and unprivileged pro-
cesses, any attempt at securing an agreement in one round of
messages is futile. (If one process is privileged, then it may
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achieve consensus in one round [1], [9].) Every quorum
must overlap by at least one process while allowing for f
failures. Suppose that some value v has been chosen in a
single round of messages with the support of f +1 processes,
while the remaining processes supported u. Intuitively, should
just one of the v-supporting processes fail, we are left with
ambiguity as to the chosen value. We cannot alter the quo-
rum size without either reducing f or foregoing the quorum
intersection property; therefore, our only remaining course of
action is to increase the number of messages.

Accepting two phases as the lower bound [9], we explore
other similarities. The most notable is the adversarial nature
of these protocols concerning process exclusion.

To eliminate the ambiguity resulting from process failures,
these protocols operate by first agreeing on some interme-
diate quantity, before ultimately agreeing on the final value.
This intermediate quantity is the identity of the dominant
proposer (leader). Once a leader is established in some phase,
processes in the subsequent phase seek to either assign the
value by the advantage acquired earlier (if they happen to
be the leader) or to ‘dethrone’ the leader and elect another
(typically themselves), in the hope to assign some value later.
The new leader is constrained in the values it may propose;
it must cede to a prior value if there is a chance that one

101702 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9398-1770
https://orcid.org/0000-0001-6246-6218


E. Koutanov: Spire: Cooperative, Phase-Symmetric Solution to Distributed Consensus

may have been chosen. Precisely how values are prioritised
is protocol specific.

We remark on another similarity: all protocols exhibit
an asymmetric phase structure, wherein phases alternate
and successive phases employ different message schemas
and invoke disparate behaviour in the cohorts. For exam-
ple, the Paxos phase 1a/1b message pair differs from the
phase 2a/2b pair [1]. Correspondingly, the proposer and
acceptor behaviours vary between the phases. Similarly,
VR view change messages differ from the replication mes-
sages, as does the behaviour of the processes [3]. Likewise,
Zab [5] and Raft [6] distinguish between leader election
and commit messages, and corresponding behaviours. And
while VR, Zab and Raft are multi-value protocols for atomic
broadcast and state machine replication, their reduction to
single-value consensus maintains this distinction.

Further insight suggests that the protocols’ asymmetry is
a consequence of their adversarial nature. Since proposers
compete in establishing dominance in one phase, then pro-
pose a value in the next, it is natural that the phase behaviours
and the corresponding message structures are distinct.

Indeed, existing protocols are remarkably similar in the
ways that count. Paxos and VR have been labelled as ‘‘the
same algorithm independently invented’’ and ‘‘equivalent’’
in [10], [11]. Liskov, in Viewstamped Replication Revis-
ited [3], notes that ‘‘VR was originally developed . . . at about
the same time as Paxos, but without knowledge of that work.’’
Likewise, Burrows [12] refers to them as the ‘‘same protocol’’
and asserts that ‘‘all working protocols . . . we have so far
encountered have Paxos at their core.’’

In comparing protocols, van Renesse et al. state that Paxos,
VR and Zab ‘‘seem to rely on many of the same prin-
ciples’’ [13]. They suggest that C-T is a refinement of
Paxos.

In comparing Paxos and Raft,Wang et al. label their differ-
ences as ‘‘superficial’’ [14] and suggest a refinementmapping
from Raft to Paxos—showing that they are materially equiv-
alent. van Renesse and Altinbüken [15] also remark on their
similarities, noting that Raft favours simplicity.

The claims in [10]–[15] are harmonious with our conclu-
sion that the similarities between the protocols are due to their
adversarial nature. There are only so many ways one can
isolate a dominant process in one phase to propose a value in
another. Anecdotally, Mike Burrows—a distinguished com-
puter scientist and the designer of the Chubby Lock Service at
Google—is quoted in [16] as having said: ‘‘In my experience,
all distributed algorithms are either: 1) Paxos, 2) Paxos with
extra cruft, or 3) broken.’’ Until only recently, we would have
agreed.

A. PARALLELS OUTSIDE OF CONSENSUS
As a brief detour, we remark on the protocols in the
atomic commitment domain, as they have been loosely
equated to distributed consensus and atomic commit in litera-
ture [27], [32]. Not all commitment protocols can be precisely
reduced to consensus, as they cover a different functional

scope and offer different guarantees, but nonetheless display
similar behaviours.

Two-Phase Commit (2PC) [25], [26] is the mainstay of
atomic commitment protocols that has received much atten-
tion and numerous optimisations [28]–[31]. The protocol is
asymmetrically structured, comprising voting and decision
phases. A single encumbered coordinator is permitted to
execute the protocol over a set of resource managers. 2PC
has no mechanism for replacing coordinators, leading to
the criticism of it blocking indefinitely if the coordinator is
unavailable. Notably, in a comparison to consensus-based
commitment, Lamport concludes 2PC to be a degenerate case
of Paxos Commit with one coordinator [27].

Three-Phase Commit (3PC) [32] has attempted to address
2PC’s main deficiency by adding a coordinator election step,
while preserving the asymmetric phase structure. Keidar and
Dolev have shown 3PC to block after carefully chosen net-
work partition andmerge steps [34] and devised E3PC, which
uses view-based exclusive coordinator election.

In Alvin [24], Turcu et al. outline a commitment protocol
comprising a concurrency control layer on top of partial
order broadcast, using rotating leaders over a sequence of
delivery slots, not dissimilar to Mencius [7]. Each slot has
an exclusive leader; its failure requires an election before a
value may be proposed in that slot, revealing Alvin’s adver-
sarial nature. Alvin is phase-asymmetric, operating over two
distinct phases—proposal and decision.

Atomic commitment protocols have perceptibly evolved
in the same vein as their consensus and atomic broadcast
counterparts, relying on process exclusivity and multiple
distinct phases to attain a commit/abort agreement over a
set of resource managers, and in some cases [24], on the
deterministic ordering of transactions in a log.

B. SUMMARY OF CONTRIBUTIONS
The main contribution of this paper is an f -fault tolerant con-
sensus protocol named Spire that exhibits cooperative value
selection within a symmetric phase structure. Rather than
fencing each other off, processes may collude to iteratively
establish a dominant value. There is an element of contention
remaining, as the selection of one value invariably leads
to the rejection of others. Nonetheless, multiple processes
may concurrently propose the same value without conflict-
ing. Each successive iteration is structured identically to the
previous, employing the same messages and invoking the
same behaviour. By these characteristics, Spire is a material
departure from the consensus protocol status quo.

Spire achieves two objectives. Firstly, it reveals a method
for solving consensus that is not predicated on process exclu-
sivity, being the first solution in over three decades to do so.
It offers an entirely different avenue for further exploration.
Considering the volume of academic and industry research
catalysed by Paxos and VR, we are hopeful that Spire may
play a modest role to a similar effect.

Secondly, Spire’s symmetric phase structure requires just
two algorithms: one for proposers and one for consenters,
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for all phases. This is at most half of what is required by
other protocols. Its symmetry may lighten the cognitive load
when learning the algorithm or implementing it, reducing
the likelihood of software defects. Take Paxos: it has been
labelled as difficult to understand [6], leading to much follow
up work to paint it in simpler terms [6], [15], [17], [18]. This
may be due to its asymmetry and a lack of a clear intuition
for why it works [6]. We are confident that Spire’s symmetry
will greatly aid its absorption.

The rest of the paper describes Spire in detail, with empha-
sis on the single-value algorithm. We present several exam-
ples and follow with a formal proof sketch of its correctness.
A TLA+ specification with bounded models for safety and
liveness checking is included in the supplementary mate-
rial, accompanied by a rigorous machine-verifiable proof of
safety, written in TLAPS. Spire is safe under asynchrony and
live under weak synchrony assumptions. To complement the
formal narrative, we offer a plain-English intuition of why the
protocol works.

While a multi-value consensus protocol is more useful
from a developer standpoint, we place less emphasis on its
elaboration. There are numerous ways such protocols may be
derived from single-value instances [1], [7], [9]. For com-
pleteness, we offer a reference protocol named Spanning
Privilege, complete with a TLA+ specification.

II. DESIGN
A. MODEL ASSUMPTIONS
We consider a distributed system comprising the set of pro-
poser processes P = {p1, p2, . . . , pn} and consenter pro-
cesses C = {c1, c2,. . . , cn}, which are prone to failures and
communicate asynchronously by message passing in a non-
Byzantine environment. |C| ≥ 2f + 1, where f is the upper
bound on the number of consenter failures. Proposers and
consenters may be collocated. To elaborate:

When operational, the network permits bidirectional com-
munication between any process in P and any process in C.
Network links may fail at any time and the network may
be partitioned arbitrarily. Messages may be lost, duplicated,
delayed for arbitrary periods, and delivered out of order;
however, they cannot be undetectably corrupted.

A process may halt or fail sporadically; however, when
operational, its behaviour conforms to the protocol.

Consenters have access to non-volatile storage, and per-
sisted data survive the failure of the attached process.

The protocol assumes a non-empty quorum system Q,
where every quorum Q in Q is a subset of C and intersects
with every quorum R in Q by at least one consenter. This is
referred to as the quorum intersection property. Formally, Q
⊆ ℘(C) and ∀Q1, Q2 ∈ Q : Q1 ∩ Q2 6= ∅.

B. PROTOCOL GUARANTEES
The formal guarantees offered by Spire are generally
accepted as necessary and sufficient for single-value

consensus [9] and are analogous to the other protocols
considered.

• Validity: The chosen command must have been offered
by at least one process.

• Agreement: Once v is chosen by some process, no pro-
cess may choose a value other than v.

• Termination(with high probability): A value will even-
tually be chosen, provided that n–f consenters and the
corresponding links are nonfaulty.

Vis-à-vis termination, the asynchronous model is augmented
with timeouts to account for the FLP result [19].

C. DEFINING CHARACTERISTICS
We briefly explore Spire’s defining characteristics before
elaborating on the protocol.

1) PHASE SYMMETRY
Spire requires two rounds of messages to reach a consensus in
the best case. There is no distinction in the message structure
nor the behaviour of successive rounds. A proposer does not
refer to its state in the previous round when sending messages
in the next. It is more instructive to think of Spire phases as
iterations—even if this distinction is purely nominal. The
sole difference between successive iterations is the exchanged
payload and the updated state of the consenters as a result.

2) COOPERATIVE AGREEMENT
Existing protocols use ballots (Paxos [1]), epochs (VR [3]
and Zab [5]) and terms (Raft [6]) for what is essentially
the same construct—a logical boundary between successive
attempts at isolating a dominant process from which a unique
value may be safely proposed, as well as a means of prop-
agating previous values. Existing protocols do not impose a
gap-free constraint on these ordinals, only that they are totally
ordered. Paxos additionally requires that ballot numbers are
unique—two proposers may not use the same ballot number
for different values [1], nor is a proposer allowed to recycle a
ballot number.

A Spire round cardinally differs from the aforementioned
ballot/epoch/term ordinals. Rounds are not used to establish
the identity of the dominant proposer; in fact, Spire has
no concept of proposer dominance. Proposers are entirely
ephemeral, with no stable identity or persistent state. Pro-
posers operate on an equal footing at all times. They converge
on a dominant value, which is the main point of contention
within the protocol. Multiple proposers may back the same
value; that value may be concurrently nominated by multiple
proposers in the same round.

Spire rounds are totally ordered but not unique—multiple
proposers may use and recycle the same round numbers.
Rounds are gap-free by an invariant of the protocol. A value
may not be offered in a round that is more than one round
ahead of the highest round accepted by any quorum of
consenters.
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D. THE BASIC PROTOCOL
1) MESSAGE STRUCTURE
Proposers in P exchange messages with consenters in C.
A message from a proposer is called an offer:

〈Offer round, val, primed〉

where round is a natural number inclusive of zero, val is the
proposed value in round, and primed is a Boolean—TRUE
iff (if and only if) val was dominant in the previous round.
A value might represent a system-wide configuration or a
command that is replicated within a state machine.

A response from a consenter to the soliciting proposer is
called an answer:

〈Answer cons, lastRound, lastVal, lastPrimed〉

where cons identifies the responder, lastRound is the high-
est round number that cons accepted, lastVal is the value
accepted in lastRound, and lastPrimed is TRUE iff the value
accepted in lastRoundwas primed. That is, lastRound, lastVal
and lastPrimedmirror the round, val and primed attributes of
the highest round offer accepted by cons.

2) PROPOSER BEHAVIOUR
The proposer algorithm, depicted in pseudocode, comprises
two parts: the initialisation routine (rule 0 in Alg. 1) and the
response handler (rules 1 − 4 in Alg. 1):

Algorithm 1 Proposer Behaviour
1: upon initialisation:

// rule 0: offer an arbitrary unprimed value on startup
2: let vn = CandidateValue()
3: Send(〈Offer 0, vn, FALSE〉)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4: upon receiving a set of answers from a complete quorum:
5: let A = ReceiveQuorumAnswers()
6: if AllIdenticalRounds(A) then
7: if AllPrimed(A) then

// rule 1: uniform answers that are all primed
8: terminate with PickValue(A) as the chosen value
9: else if AllIdenticalValues(A) then

// rule 2: uniform answers that are not all primed
10: Send(〈Offer PickRound(A)+ 1, PickValue(A), TRUE〉)
11: else

// rule 3: same-round answers with non-identical values
12: Send(〈Offer PickRound(A) + 1, SuccessorValue(A),

FALSE〉)
13: end if
14: else

// rule 4: mixed-round answers
15: Send(〈Offer MaxLastRound(A), SuccessorValue(A),

FALSE〉)
16: end if

We define the following operators (in TLA+ syntax):
Send(m) sends message m to an arbitrary quorum of con-

senters. A different quorum may be chosen upon successive
invocations of Send(m).

AllIdenticalRounds(A) is TRUE iff all answers in A are of
the same round:

AllIdenticalRounds(A) ,

¬∃m1,m2 ∈ A : m1.lastRound 6= m2.lastRound (1)

AllIdenticalValues(A) is TRUE iff all answers in A have
the same value:

AllIdenticalValues(A) ,

¬∃m1,m2 ∈ A : m1.lastVal 6= m2.lastVal (2)

AllPrimed(A) is TRUE iff all answers in A are primed:

AllPrimed(A) , ∀m ∈ A : m.lastPrimed (3)

PickRound(A) returns an arbitrary round number among
the lastRound attributes in A. PickRound(A) is only used
where Alg. 1 determines thatAllIdenticalRounds(A) is TRUE,
hence there is only one round number to pick from. I.e., it is
always used deterministically.
PickValue(A) returns an arbitrary value among the last-

Value attributes from the answers in A. PickValue(A) is used
deterministically everywhere except in SuccessorValue(A).
MaxLastRound(A) returns the highest round number

among the lastRound attributes from the answers in A:

MaxLastRound(A) ,

LET SetMax(S) , CHOOSE t ∈ S : ∀s ∈ S : t ≥ s

IN SetMax({m.lastRound : m ∈ A}) (4)

SuccessorValue(A) starts by filtering a subset of answers
in Awhose lastRound=MaxLastRound(A). Let this result be
highestRoundAnswers. If a primed answer is located among
highestRoundAnswers, that answer’s lastVal is returned. Oth-
erwise, SuccessorValue returns an arbitrary lastVal among the
answers in highestRoundAnswers.

SuccessorValue(A) ,

LET highestRound , MaxLastRound(A)

highestRoundAnswers ,

{m ∈ A : m.lastRound = highestRound}

highestRoundPrimedAnswers ,

{m ∈ highestRoundAnswers : m.lastPrimed}

IN IF highestRoundPrimedAnswers 6= {}THEN

PickValue(highestRoundPrimedAnswers)

ELSE

PickValue(highestRoundAnswers) (5)

A proposer presumably acts on behalf of a client that
wishes to commit an arbitrary value. In turn, the client may
issue its instruction over a network, or it may be collocated
with the proposer. Precisely how the proposer arrives at a
candidate value in CandidateValue() is immaterial to the
specification. For a proposed pn, the candidate value is vn.

A proposer pn starts by proposing vn in round 0, sending
〈Offer 0, vn, FALSE〉 to an arbitrary quorum in Q.
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A proposer only considers answers from a complete
quorum of consenters. We refer to this as the set of quorum-
answers, depicted by variable A in Alg. 1. By the weak syn-
chrony assumption, if the proposer fails to gather a complete
set of quorum-answers within some period, it may resend its
earlier offer or simply start again at rule 0. As a practical
consideration, Send(m) may broadcast offers to multiple quo-
rums simultaneously, in the anticipation that some consenters
may fail to respond in time. This increases the likelihood of
gathering a complete quorum of answers at the expense of
additional network traffic.

As messages may arrive late or out of order, the set of
quorum-answers may not correspond to the most recent offer:
the answers could reflect an earlier offer. As such, a proposer
considers the answers independently of its offer.

We use the term uniform answers to denote a set
of quorum-answers A such that AllIdenticalRounds(A)∧
AllIdenticalValues(A).
The meaning of the term primed is contextual. In the case

of an offer, it matches 〈Offer _, _, TRUE〉. In the case of
an answer: 〈Answer _, _, _, TRUE〉. For brevity, we use the
notation g′ to signify that some value g is primed.

3) CONSENTER BEHAVIOUR
A consenter satisfies two obligations affecting safety:

• S1: Accept at most one offer in any round.
• S2: Persist the most recent answer before replying.

A naive implementation might satisfy S1 by persisting a
bitmap that tracks, for each round, whether an offer was
accepted. This is suboptimal, as the size of the bitmap is vari-
able and theoretically unbounded. An optimal implementa-
tion only accepts an offer if its round number r is greater than
lastRound persisted by S2. By strict monotonic assignment
lastRound← r , no previous offer could have been accepted
in round s, where s ≥ r , and precludes future offers from
being accepted in round q, where q ≤ r .

Consenters must also satisfy certain liveness properties to
ensure eventual termination:

• L1: Always accept an offer in a round, unless an offer
has been accepted in the same or higher round.

• L2: Always respond to an offer with the last recorded
answer, irrespective of whether the offer has been
accepted or not.

Note: Accepting an offer can be equated to voting, as it is
commonly referred to in literature. We may use the term vote
interchangeably with acceptance of offers.

As a consequence of the obligations above, the consenter
behaviour reduces to the following:
In Alg. 2, –1 is a special round number assigned to

lastRound if no previous answer was persisted. Since
off.lastRound is a natural number inclusive of zero, every
uninitialised consenter will respond to the first offer. Prag-
matically, initialising variables with−1 simplifies the imple-
mentation when using signed integers. None is a special
symbol that denotes the absence of a value, equivalent to a

Algorithm 2 Consenter Behaviour
1: upon receiving an offer:
2: let lastRound = persisted last accepted round of cn,

initialised to –1 if nothing was persisted
3: let lastVal = persisted last accepted value of cn,

initialised to None
4: let lastPrimed = persisted last primed status of cn,

initialised to FALSE
5: let off = ReceiveOffer()
6: if off.lastRound > lastRound then

// only accept offers in higher rounds
7: lastRound← off.lastRound
8: lastVal← off.lastVal
9: lastPrimed← off.lastPrimed
10: Persist(lastRound, lastVal, lastPrimed)
11: end if
12: Reply(〈Answer cn, lastRound, lastVal, lastPrimed〉)

null reference in a prospective implementation. In practice,
however, lastVal and lastPrimed may be initialised to any
value, as they will be overwritten by the first offer, but we
felt the use of None was more instructive.

E. EXAMPLES
It is easy to get lost in the dry formalism, yet it is nec-
essary to state the protocol unambiguously and without
imposing undue restrictions upon the implementer. We now
present some examples. Assume 5 consenters {c1, . . . , c5},
up to 3 proposers {p1, p2, p3} and up to 3 distinct values
{a, b, c}. We visualise consenter states by arranging their
answer history in a matrix, where the row corresponds to the
consenter and the column to the round number. We refer to
rules 0 to 4 of Alg. 1 and obligations S1, S2, L1 and L2.

1) EXAMPLE 1: CLEAN RUN WITH NO FAILURES
Proposer p1 offers a in round 0 to the quorum {c1, c2, c3}
by rule 0. p2 offers b to {c3, c4, c5}. p1 secures a majority
of votes, beating p2 to c3. Later, c3 rejects p2’s offer by
obligation S1. The consenter states after round 0 are shown
in Fig. 1 (b).

FIGURE 1. Example 1: round 0 message exchanges.
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Although c3 voted for a in round 0, it responds to p2 by
obligation L2: it echoes the earlier answer persisted from
p1 by obligation S2. p1 receives a complete set of quorum-
answers, observes that the answers are uniform and sends
〈Offer a, 1, TRUE〉 by rule 2 to {c1, c2, c3} in Fig. 2 (a).
p2 observes a non-uniform set of answers comprising val-
ues {a, b}, and offers an arbitrary successor value among
{a, b} by rule 3. In Fig. 2 (a), p2 sends 〈Offer b, 1, FALSE〉 to
{c3, c4, c5}.

FIGURE 2. Example 1: round 1 message exchanges.

Once again, p1 beats p2. Upon receiving a complete set
of quorum-answers, p1 observes that the answers are both
uniform and fully primed, satisfying rule 1: a is deemed
chosen, and the protocol terminates for p1. See Fig. 2 (b).
p2’s set of quorum-answers contains non-identical val-

ues in the same round, satisfying rule 3. p2 selects a suc-
cessor value from the set {a′, b}. By the definition of
SuccessorValue(A), preference is given to the primed subset.
Therefore, p2 must carry a into the next round. It sends
〈Offer 2, a, FALSE〉 to {c3, c4, c5} in Fig. 3.

FIGURE 3. Example 1: consenter states after round 2.

c3, c4 and c5 accept a in round 2 and respond. Upon receiv-
ing the quorum-answers, p2 observes a uniform response and
sends 〈Offer 3, a, TRUE〉 by rule 2. See Fig. 4.

FIGURE 4. Example 1: consenter states after round 3.

c3, c4 and c5 accept a′ in round 3. The set of
quorum-answers is both uniform and fully primed. The proto-
col terminates for p2 by rule 1. Both p1 and p2 have converged
on a.

2) EXAMPLE 2: A VOTING RACE
This is a minor variation of Example 1. Rather than allowing
p1 to secure a vote for a′ in round 1, we let p2 beat p1 in its
race to obtain the majority of votes. See Fig. 5.

FIGURE 5. Example 2: consenter states after round 1.

At this point, assuming no failures, two things will happen:
• p1 will offer a in round 2 by rule 3 and the definition of
SuccessorValue(A). See Fig. 6 (a).

• p2 will offer b′ in round 2, by rule 2. See Fig. 6 (b).
Either p1 or p2 will secure a majority in round 2. In the
former, p1 follows with a′ and, provided p1 again secures a
majority,1 the protocol terminates after round 3 for p1 with a
as the chosen value. In the latter, the protocol terminates after
round 2 for p2 with b.

FIGURE 6. Example 2: some of the possible outcomes after round 2.

Observe how both scenarios play out. p1 and p2 interact
with different quorums; even though the protocol terminates
for one of them, the other carries on—unaware that a value
has already been chosen. Due to the quorum intersection
property, the lagging proposer observes and prioritises the
primed value offered by its peer, carrying it to the next round,
until it eventually receives a fully primed response.

3) EXAMPLE 3: PROPOSER FAILURE
We now observe what happens when proposers fail amidst
sending an offer. We start with p1 and p2, mimicking Exam-
ple 1. Consider Fig. 7.
Here, p1 halts after round 1, while p2 falls short of com-

pleting round 1—having sent some messages, but not others.

1Voting races may recur indefinitely; thus, the algorithm is not guaranteed
to terminate in a bounded number of rounds.
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FIGURE 7. Example 3: consenter states after round 1.

Later, a new proposer, p3, decides to initiate the protocol
with value c. It starts by sending 〈Offer 0, c, FALSE〉 by
rule 0. Assume that p3 selects the quorum {c3, c4, c5}. It will
receive responses {a′, b} in round 1 from {c3, c4}, and b
in round 0 from c5. Due to its quorum selection, it fails to
observe that a has already been chosen in round 1.

A mixed-round set of quorum-answers triggers rule 4.
By the definition of SuccessorValue(A), round 1 is the highest
and the successor must be among {a′, b}. Primed values
take precedence, hence the successor value is a. By rule 4,
the successor round will be the highest among the received
answers—round 1. p3 will hence send 〈Offer 1, a, FALSE〉.

FIGURE 8. Example 3: consenter states after round 3.

Round 2 is completed by rule 3. (See Fig. 8.) Selecting the
primed answer in the same-round case is imperative: if there
is even a remote chance that v was chosen in round r , then v
must be propagated to r + 1. The protocol terminates for p3
by the conclusion of round 3, where a′ is offered by rule 2.
On Consenter Failures: We could have presented exam-

ples with consenter failures; however, they are largely super-
fluous as the failure of a consenter c is equivalent to a
selection of a quorum that excludes c. Example 3 demon-
strates what happens when p3 sends an offer to a quorum
that excludes c1 and c2—it fails to observe the chosen value
initially, but eventually converges on that value all the same.

F. PROPOSER RECOVERY
In all admissible behaviours beyond round 0, proposers
form their subsequent offers purely from the set of answers
received from some quorum of consenters, with no regard to
the offer that solicited those answers.We casually refer to this
trait as proposer amnesia. It relieves the proposer from hav-
ing to maintain state and simplifies recovery. In this regard,
the proposer algorithm is entirely unimodal—it does not dis-
tinguish between routine operation and post-failure recovery.
A proposer always starts with a round-0 offer (rule 0). Having
received a set of answers from some quorum of consenters,

it either learns the chosen value or resumes the protocol by
offering a successor value.

The answers might not represent the most recent consenter
states, asmessagesmay be delivered out of order by themodel
assumptions. If so, a proposer will vacuously follow with a
lapsed round number, resulting in the rejection of the offer by
some consenters. Those consenters will relay the most recent
answer by obligation L2. If the proposer fails to receive the
set of quorum-answers in time (as messages may be delayed),
it restarts at rule 0. Eventually, the proposer will discover the
most recent quorum-answers and either terminate or resume
the protocol.

G. LEARNING THE CHOSEN VALUE
A proposer can learn the chosen value without requiring a
new message type. It may offer an arbitrary value or a no-op
if it does not have a suitable value to propose. In practice,
offering a value merely to learn the existence of a potentially
chosen value may not be desirable, as it may compel the
consenters into accepting the value by obligation L1.
Where discovering a value should not incur a state change,

we propose a simple Query message:

〈Query nonce〉

where nonce is some globally unique identifier used for
request-response pair correlation.

Sent to a quorum of consenters, a Query solicits a Query-
Answer response. This is an extension of Answer that
permits –1 and None in its lastRound and lastVal attributes,
respectively, and mirrors the initiator’s nonce attribute:

〈Query-Answer cons, lastRound, lastVal,

lastPrimed, nonce〉

Upon receiving a set of query-answers, the proposer will
verify that the nonces match—signifying that the response is
to its last query and not some earlier query that may have been
delayed. Thereafter—

• If the responses are uniform and primed for a complete
quorum, it will learn the chosen value by rule 1 of Alg. 1;
or

• Else, if the responses contain a primed value, it will
resume the protocol, inducing value selection; or

• Else, it may safely conclude that no value has been
chosen up to this point.

III. AN INTUITIVE PROOF
Before presenting a formal proof sketch of correctness,
we offer a plain-English account, revealing the intuition
behind Spire. This is done in the spirit of making consensus
more approachable—a theme popularised by Raft [6].

The intuition is tied to the quorum intersection property,
the singularity of votes (obligation S1) and the propagation
of primed values (by the definition of SuccessorValues).
Assume v is primed in r , as shown in Fig. 9.
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FIGURE 9. Consenter states after round r .

Because consenters may only vote once in any given
round by obligation S1, we know that there can be at most
one dominant value accepted in r–1, being v; therefore, every
primed value offered in r is v. Because quorums overlap,
the acceptance of a primed value by some quorum in round r
must spill onto all other quorums in r . By carrying v into r+1
in unprimed form (rule 3 of Alg. 1), we honour a hypothetical
prior agreement in r . But how can we tell if an agreement
really took place?

The answer is:we cannot. Even if one consenter is unreach-
able, the resulting ambiguity may prohibit a conclusive
answer. However, we can be sure that if a value was chosen
in r , then it was v. So, we act conservatively. If no agreement
took place, then another proposer might pick a different
quorum void of a primed answer, and other values might be
carried into r + 1. E.g., u and w in Fig. 10.

FIGURE 10. Value v was not chosen in round r .

However, if the agreement did take place, then every set of
quorum-answers in r will contain at least one primed value:
v; ergo, only v will make it to r + 1. See Fig. 11.

FIGURE 11. Value v was chosen in round r .

For agreement to hold, we need to be sure that the chosen
value will persist indefinitely. It is not enough to say that only
v will be carried to r + 1; we need a stronger claim that if a
value is chosen again in some future round t , where t ≥ r ,
then that value is v. For t = r , only v may be chosen in t by
the quorum intersection property. For t = r+1, we have just
shown that only v may be offered in t; thus, only v may be
chosen in t . For t > r + 1, by Alg. 1, the values offered in

every non-zero round s are confined to the values answered
in s−1, which, in turn, must have been offered in s − 1 (by
Alg. 2). Thus, if only v was offered in r + 1, then every offer
in all subsequent rounds (r + 2, r + 3, . . . , t) contains v.2 If
a value is chosen again in t , then it must be v.

IV. SKETCHED PROOF OF CORRECTNESS
The structure of the following proof sketch has been adapted
from the TLAPS machine-verifiable proof of safety. (See
Supplementary Material.)
Lemma 1: If a primed answer exists in r containing a value

v, then every primed answer in r contains v.
Proof: If v is primed in r , then v was the dominant

answer in r − 1. By S1 (consenter votes at most once per
round) and the quorum intersection property, there may be at
most one dominant answer in r−1. Thus, any primed offer in
r must carry v by rule 2 of Alg. 1. An answer in r may only be
in response to some offer in r (by Alg. 2), thus every primed
answer in r must carry v. �
Lemma 2: If a value v was chosen in r, then for all sets

of quorum-answers in r, at least one answer in each set must
contain v primed.

Proof: The choice of v in r implies a quorum of con-
senters in r voting for v primed. By the quorum intersection
property, every set of quorum-answers in r must overlap with
every other set in r by at least one answer. �
Lemma 3: If a value v was chosen in r, then only v may be

offered in r + 1.
Proof:Given a set of quorum-answers A in r and earlier,

the only offers in r + 1 occur by rules 2 and 3 of Alg. 1.
In rule 2, AllIdenticalRounds(A) ∧ AllIdenticalValues(A)

holds. By Lemma 2, at least one answer must contain
v primed, and by AllIdenticalValues(A) it follows that
PickValue(A) is v.
In rule 3, AllIdenticalRounds(A) holds. By Lemma 2,

at least one answermust contain v primed. By Lemma 1, every
primed answermust contain v. By SuccessorValue(A), primed
values take precedence; therefore, SuccessorValue(A) is v. �
Lemma 4: If a value v was offered in a non-zero round r,

then v was also offered in r–1.
Proof: By Alg. 1, an offer in r may only carry a value

that is either 〈1〉 sourced from an answer in r−1 or 〈2〉 from
an answer in r .

For 〈1〉, where an offer in r carries v from an answer in r–1,
v was offered in r–1 (by Alg. 2).

For 〈2〉, the proof is by finite set induction. The base case:
when there are no prior answers in r , rule 4 is disabled and
the first offer in r must pick a value from an answer in r−1.
The inductive step: a new offer in r must pick a value from
an answer in r−1, or from an answer in r , which carries from
r−1. Therefore, all offers in r carry a value from an answer
in r−1. And by Alg. 2, an answer in r−1 corresponds to an
offer in r−1. �

2The formal proof relies on induction to show that only v may be carried
and subsequently chosen.
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Lemma 5: If a value v was chosen in r, then v was offered
in r.

Proof: A chosen value v in r is conveyed by a set of
primed quorum-answers in r (rule 1 of Alg. 1). An answer in
r corresponds to an offer in r by Alg. 2; therefore, v is chosen
from an offer in r . �
Theorem 1 (Agreement): If a value v was chosen in

round r, then no value other than v may be chosen in any
round s, where s ≥ r.

Proof: For the case s = r , the choice of v in r implies
that every set of quorum-answers in r has at least one primed
answer with v by Lemma 2. Every chosen value in r is v
by SuccessorValue(A). For s > r , it suffices to show that
〈1〉 only v may be offered in r + 1, 〈2〉 a value offered in a
non-zero round g was offered in g−1, and 〈3〉 a value chosen
in g was offered in g. The leap from r + 1 to s is by induc-
tion over naturals, with 〈1〉 as the base case and 〈2〉 as the
inductive step. Obligations 〈1〉, 〈2〉 and 〈3〉 are discharged by
Lemmas 3, 4 and 5, respectively. �

V. PRACTICAL CONSIDERATIONS
A. EVENTUAL TERMINATION
The basic protocol does not guarantee termination in a
bounded number of rounds. Before a value v is proposed in a
primed round, the proposer(s) of vmust gather support from a
quorum of consenters in a previous round. It is easy to imag-
ine a scenario where concurrent proposers offer conflicting
values, resulting in a string of split votes, as alluded to by
Example 2. Furthermore, the likelihood of a round concluding
in a quorum of uniform votes diminishes with the number of
distinct values and consenters. This is not dissimilar to the
so-called ‘duelling proposers’ phenomenon in Paxos [35] and
tied elections in Zab [5] and Raft [6].

To avoid a protracted string of rounds that result in split
votes, some nondeterminism must be injected into the proto-
col using a random oracle. Specifically, a failure to acquire a
quorum vote should be followed by a random delay before
pitching the next offer. This is analogous to the measures
proposed in [35], [5] and [6]. Furthermore, while a lower
bound on the number of message delays has been shown [9],
no corresponding upper bound exists, owing to the FLP
result [9], [20]. Augmented with random backoff, Spire even-
tually terminates, provided sufficient consenters and network
links are nonfaulty.

To accelerate convergence, we later propose a separate
optimisation (see Section V.E), wherein values may be
deterministically ranked, rather than picked arbitrarily in
SuccessorValue(A).

Note that although contention materially affects single-
value consensus, its impact can be largely amortised over
multiple values. All multi-value algorithms considered here,
including Multi-Spire (see Section VI), address this through
some variant of privileged commit, eliminating contention
in the steady-state where proposers and network links are
nonfaulty for a majority of the time.

B. LEARNER ROLE
The subject of learners has been conveniently sidestepped
thus far, as it is largely immaterial to the specification.
A proposer may broadcast the result discovered by rule 1 of
Alg. 1 to an arbitrary group of learners. Alternatively, con-
senters may broadcast copies of their answers to the learners
which will apply the same logic as a proposer to determine
the chosen value—in effect, acting as passive proposers.
Learners may be independent processes or collocated with
proposers or consenters. Provided the chosen value is deter-
mined consistently by the predicate AllIdenticalRounds(A)∧
AllPrimed(A), precisely when and where this takes place is
left to the implementer.

C. ROUND-ZERO PRIVILEGE
It has long been known that a protocol may be reduced to a
single phase in the case where at most one proposer holds
a privileged status [1], [9]. For example, a distinguished
proposer in Multi-Paxos may start with a phase 2a message
for some pre-agreed ballot b if no other proposer can issue a
phase 2a message with ballot a, where a < b.
Submitting a primed offer in round r indicates the presence

of a dominant value in r−1. The latter ensures that at most
one value may be primed in r . Ordinarily, because there is no
round –1, proposers are forbidden from submitting a primed
offer in round 0.

Assume a contrived, but otherwise valid, protocol variant
that includes among its assumptions some constant value z
that was dominant in an imaginary round –1. Any proposer
may safely offer z′ in round 0, terminating the protocol in a
single round in the absence of conflicting unprimed offers.

In practice, it is often more useful to propose an arbitrary
value in round 0. Assume that at most one proposer, p∗,
is privileged, and every proposer knows whether or not they
are privileged (but not necessarily the identity of p∗) then p∗

may safely propose an arbitrary primed value in round 0 and
terminate the protocol in a single round.

There is a caveat: at most one distinct primed value may
be proposed in round 0. If a primed value z was offered in
round 0, every primed value offered in round 0 must be z.
We refer to this invariant as the singularity of privilege.

D. ORDERED VALUES
In SuccessorValue(A), where highestRoundPrimedAnswers=
{}, an arbitrary value from highestRoundAnswerswas offered
in rules 3 and 4. This introduces a degree of nondeterminism,
implying that a group of proposers observing an identical set
of quorum-answers may submit a different offer, reducing the
likelihood of a uniform quorum vote.

In the spirit of cooperative agreement, we can do better.
Rather than picking values arbitrarily, proposers are config-
ured with some pairwise ordering relation over the domain of
values; for example, lexicographical order if values are byte
arrays. When offering the next value, proposers consistently
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pick the highest (or lowest) value among highestRoundAn-
swers, thereby expediting convergence.

E. PRIMED CARRY
By rule 4 of Alg. 1, a proposer may safely set primed to TRUE
in its following offer if the successor value came from high-
estRoundPrimedAnswers. We know this to be safe because
the successor round is given by MaxLastRound(A), which
is identical to highestRound used to build highestRound-
PrimedAnswers. Since at most one distinct value may be
primed in a given round (by Lemma 1), then propagating the
primed status in highestRound does not introduce a conflict
of primes.

This accelerates convergence: if p1 fails amidst offering
v′ in r , a surviving proposer p2 propagates v′ in r , thus
increasing the likelihood of the protocol terminating in r .

F. COMPARISON WITH PAXOS
Paxos [1] is perhaps the most studied and widely deployed of
distributed consensus algorithms [6], [15], [17], [18], often
cited as the archetype upon which many of the other algo-
rithms are based [10]–[15]. Paxos and Spire share identical
system assumptions and satisfy the same safety and liveness
criteria.

Paxos scopes a set of proposers that may submit potentially
conflicting values to a set of acceptors. Proposers are a priori
assigned an unbounded series of unique ballot numbers that
are totally ordered. Proposers do not share ballot numbers.

The basic algorithm operates in two distinct phases. In the
first, a proposer p sends a phase 1a (prepare) message to a
quorum of acceptors, containing a ballot number n that is
higher than any previous ballot used by p.
An acceptor positively replies to a phase 1a message with

a phase 1b (promise) message if n is higher than any pre-
viously received ballot number. Furthermore, if a value was
accepted in an earlier ballot, the acceptor’s reply includes
that ballot number and the value accepted in that ballot.
Otherwise, if n is lower than a previous ballot, the acceptor
is free to either ignore p’s phase 1a message, or to send
back a NACK. In responding positively, however, an acceptor
promises to reject all future ballots lower than n. To make
its promise durable, an acceptor persists it to stable storage
before responding.

Upon receiving a positive phase 1b response from a quo-
rum of acceptors, p follows with a phase 2a (propose) mes-
sage. If any of the phase 1 responders had previously accepted
a value, pmust propagate the accepted value with the highest
ballot number among the responses; otherwise, p is free to
propose its own value in phase 2.

An acceptor positively replies to a phase 2a message with
a phase 2b (accepted) message if it has not already promised
in a higher numbered ballot and, in doing so, accepts the
proposed value. It also stably persists the accepted value and
the corresponding ballot number before replying, overwriting
any previously accepted value. Otherwise, the acceptor can
ignore the message or reply with a NACK.

Intuitively, Paxos works by installing one of the proposers
as an exclusive leader3 in phase 1, using ballot numbers as
a means of ranking competing proposers. By ‘voting’ for
a proposer, an acceptor fences proposers with lower ballot
numbers. Once a quorum of acceptors has voted in a bal-
lot, the emerging leader gains a temporary advantage over
its peers—only it can propose a value in phase 2. Note,
messages are structured differently across phases, as are the
corresponding proposer and acceptor behaviours; this being
the reason that we characterise Paxos as phase-asymmetric.
A lower balloted proposer may beat the leader to phase 2,

only to be blocked; that proposer can subsequently repeat
phase 1a with an even higher ballot number, possibly taking
over leadership. It is easy to see how proposers might contend
over leadership instead of making progress; however, once a
leader gains support from a quorum in phase 2, its proposed
value is chosen. At most one leader can succeed in phase 2;
therefore, at most one value may be chosen. It is precisely this
behaviour, wherein a single proposer ultimately decides on a
value, that we label as adversarial in our characterisation of
Paxos and its derivatives.

Phase 1 serves a dual purpose, however. In addition to
installing a leader, it propagates an earlier value that may have
been chosen by the actions of a previous leader—a circum-
stance that the new leader may not be aware of. Perhaps the
leaders chose different quorums; nonetheless, due to quorum
intersection, the chosen value will persist in every admissible
quorum. This ensures that if a leader is ousted, the incom-
ing leader continues from where its predecessor left off—
conservatively reaffirming a value that may have previously
been chosen. This guarantees the survival of chosen values
and directly supports the agreement property.

The two alternate protocol families (Paxos-like vs Spire-
like4) have distinct characteristics that may make one more
suitable than the other in certain applications. The rest of
this section serves as a comparative guide to assist in optimal
protocol selection.

1) NON-CONFLICTING CONCURRENT PROPOSALS
When multiple processes propose values in quick succes-
sion, they may enter a parasitic cycle, whereby one process
‘undoes’ the effect of the other in order to make progress
and terminate the protocol. In Paxos, this condition is known
as duelling proposers [35]. Similarly, Zab [5] and Raft [6]
are susceptible to tied elections. Spire exhibits an equivalent
behaviour, described as a voting race in Example 2 (Fig. 6).
This is a fundamental limitation of consensus [9] that can be
parried with random backoff to induce nondeterminism and
alleviate contention.

Protocols like Paxos that rely on process exclusivity may
exhibit this behaviour irrespective of the choice of input

3The provision for leader exclusivity here differs from the weaker distin-
guished proposer role that may be used to ensure progress [18].

4Paxonian vs Spirillian, perhaps.
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values. Even if two proposers offer identical values, they may
still conflict in the course of establishing a dominant process.

A distinct advantage of the cooperative model is that a vot-
ing race cannot occur among concurrent proposers that offer
identical values. In Spire, two proposers with identical values
do not interfere, terminating the protocol in two rounds. Spire
does not treat this as a special case; it is de facto catered for
by rules 1 and 2 of Alg. 1.

The benefits of efficiently committing non-conflicting
values become apparent when working with a priori con-
stant values that convey a special meaning within some
higher-level protocol, typically in state machine replication,
atomic broadcast and other multi-value consensus systems.

One common scenario—Lamport’s so-called
‘α method’ [36] of reconfiguring a distributed state machine
described by a sequence of consensus-based commands—
employs a special no-op command to fast-track configura-
tion changes. This method is routinely applied to Multi-
Paxos [1], [15] and is equally applicable to (Multi-)Spire
due to its generality (Section VI). In a different scenario,
Mao et al. present a throughput-optimised, load-balanced
variant of Multi-Paxos—Mencius—that uses special skip
commands to allow slow servers to keep up with their faster
counterparts [7]. While Mencius has been implemented over
Paxos, its design is largely agnostic of the underlying con-
sensus protocol. Our own Spanning Privilege multi-value
consensus (Section VI) uses no-op commands to expediently
terminate uncommitted slots.

Cooperative consensus is not just less chatty in the pres-
ence of non-conflicting concurrent proposals, it also reduces
commit latency by terminating the protocol in the optimal
number of rounds (2).

2) VERBOSITY OF MESSAGE EXCHANGES
Spire’s symmetric round structure implies that all rounds
carry values in both directions. By comparison, Paxos mes-
sages only carry a value in phase 1b and phase 2a mes-
sages [1], [18]; furthermore, phase 1b will omit a value
if none had been accepted. When values grow sufficiently
large, to the point where they dominate the message payload
(e.g., large binary objects), Paxos is between two and four
times as efficient as unoptimised Spire for network utilisa-
tion. Even when both protocols commit in privileged mode,
Paxos is twice as efficient for very large messages because a
phase 2b message does not echo the accepted value.
We now present an optimisation that addresses this short-

coming with some increase in design complexity and a minor
change to message schemas.

Surrogate identifiers: For this modification, consider a
proposer p, its candidate value v, consenter c and its last
accepted value w. Proposer processes are uniquely identified
in the system. Values are uniquely tagged on proposers with
‘surrogate’ identifiers. That is, two proposers may assign
different surrogate identifiers to the same value, but any
given proposer consistently maps from a value to its own
surrogate identifier. The Offer schema is amended to include

the proposer’s process identifier and v’s surrogate identifier
sp,v (both as optional attributes), and the existing val attribute
is made optional. The Answer schema is amended to include
an optional sp,w surrogate identifier and the lastVal attribute
is made optional.

An offer from p to c includes both v and sp,v if p never
received an answer from c containing sp,v; otherwise, p sends
only sp,v to c. For an accepted value w, c keeps a persistent
ternary mapping of w onto the associated 〈p, sp,w〉 tuples,
as each proposer tracks a different surrogate identifier for w.

An answer to p must contain w if c lacks a mapping from
w onto 〈p, _〉; otherwise, c replies with the resolved sp,w.

The proposer identifier and local surrogate identifiers
can be transient; if the proposer restarts, it can assume a
new unique identity. Unoptimised participants may coexist
with surrogate-optimised ones, provided they support the
expanded message schema. (For compatibility, we treat the
new attributes as optional.)

This optimisation reduces the transmission of complete
values in a typical two-round message exchange by up to a
factor of four, or two when used with round-zero privilege.
In a routine, uncontended scenario (no voting races or fail-
ures), only the first message transports the complete value;
all subsequent messages refer to its surrogate identifier.

Surrogate identifiers are not entirely free—requiring addi-
tional storage space on the consenters. Also, Paxos accords
the option of using multicast or broadcast network primitives
to send phase 1a and 2amessages to either a specific quorum
or the entire ensemble, respectively. With surrogates, Spire
selectively sends either [v and sp,v] or just sp,v depending on
the communication history with individual consenters; Spire
can multicast, but not broadcast offers in this case. Where the
use of network broadcast is preferred, Paxos may be a better
fit for large values.

VI. MULTI-SPIRE
When presenting a consensus algorithm, it is customary to
address the replicated state machine scenario [1], [2], [5],
[6]—a stable agreement over multiple values, forming a
totally ordered log of commands.

The projection of a single-value protocol to a replicated log
first appeared in Multi-Paxos [1]. This approach is equally
viable in Spire using the round-zero privilege optimisation—
amortising the cost of the initial phase over the extent of
the log. The distinguished proposer (leader) may also piggy-
back learn messages of prior values on successive offers—
reducing the average complexity of learning a single log entry
to one message exchange.

The main drawback of this approach is outlined in [21]:
the loss of the leader results in a period of downtime until
the next election is induced. All protocols based on exclusive
leaders are susceptible to this. The system’s responsiveness
is influenced by the timeout setting of the internal failure
detector—a delicate balance between incorrectly suspecting
a functioning leader and failing to suspect a malfunctioning
leader. When a proposer suspects that a leader has failed, its
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only options are to 1) wait for the leader to respond, 2) wait
for another leader to take over, or 3) induce leader election.
In any case, progress will stall, leading to an accumulation
of backlogged commands—impacting the performance of the
system for some time after a leader is reinstated.

In projecting Spire to a multi-value log, it was tempting
to imitate Multi-Paxos with its trademark distinguished pro-
poser. Opting for an exclusive leader would have retained
the drawbacks described above. We wanted to build on the
non-exclusive nature of Spire.

Instead, we propose a reference Multi-Spire design named
Spanning Privilege (SP). The name refers to the mechanism
by which a proposer may overload an instance of single-value
consensus to commit a command (i.e., get a command cho-
sen), acquire or extend its round-0 privilege, and impart its
status onto its peers. A privileged status acquired by p is
non-binding to its peers: they may forward their commands
to p but are not obligated to do so. Failure of p may lead to
degraded performance but does not cause a blackout.

A. SP-1
We first present a simple, exclusive leader-based protocol
named SP-1, which will be progressively generalised.

SP-1 treats a log as an unbounded contiguous sequence
of single-value consensus instances, bound to slots, starting
at slot 1. Proposers are given a stable identity, and may
act as disseminators of chosen values as well as learners—
broadcasting the chosen value via a 〈Learn s, v〉 message,
where s is the slot number and v is the value chosen in s. Pro-
posers and consenters may be collocated. Proposers maintain
the following variables:

• θ : A locally unique value that varies with each process
initialisation. θ may be a strictly monotonic timestamp,
a UUID, or a persisted value that is incremented and
saved when the process starts.

• lastProposed: The last slot number in which the process
proposed a value.

• lastChosen: The last slot in which the chosen value was
marked with the proposer’s identity and θ .

The value offered by p to a slot s is the triplet 〈mp,s, ρp, θp〉,
where mp,s is p’s command destined for s, ρp is its stable
identity and θp is its current θ .

Committing a value containing ρ and θ is calledmarking.
By marking s, p implicitly obtains the round-zero privilege
in s + 1. By the underlying agreement property, at most
one value may be accepted in s, implying that at most one
proposer may acquire privilege over s + 1. Likewise, if p
commits a value in s+1 (by privilege or without), its privilege
will be extended to s + 2. As long as p marks values in
successive slots, its privilege will be continuously extended
until its marking streak is preempted by another proposer.
Other proposers learn the committed values and eventually
discover the identity of the privileged proposer.

Fig. 12 illustrates the contents of a hypothetical log.
Slot 1 is occupied by the command x ← 3, submitted by

FIGURE 12. Sample committed values in SP-1.

p1 with θ = 1. This grants p1 privileges in slot 2. Later,
p1 commits y← 4 in slot 2, extending its privilege to slot 3.
(The commands of the form _←_ are arbitrary examples,
opaque to the protocol.)

At some point, p2 suspects a failure of p1 and preempts it by
committing x ← 2 in slot 4, while simultaneously asserting
its privilege in slot 5. Eventually, p1 restarts and increments
its θ , and later preempts p2 in slot 6 with z← 3.

When a proposer q wishes to commit some command
on behalf of its client, it may forward that command to a
privileged proposer p that it may be aware of. A new mes-
sage is devised for this purpose: 〈Forward m, nonce〉. The
response is either a 〈Forward-ACK nonce〉 or a 〈Forward-
NACK nonce〉, where m is the command payload and nonce
is a request-response correlator. Proposers favour forwarding
when possible, as serialising commands through a single
proposer eliminates contention for slots and capitalises on the
round-0 optimisation.

When p receives a Forward message from q, it must first
verify its own status. As the privileged proposer is discovered
by learning, it is conceivable that qmight call upon a proposer
that has been preempted. p only uses its privilege in lastPro-
posed + 1 when lastProposed = lastChosen, halting until
this condition is met. In practice, p will not halt indefinitely,
replying with a Forward-NACK after a timeout or if p detects
that it has been preempted. Otherwise, p commits in last-
Proposed + 1 and replies with a Forward-ACK. If proposers
and consenters are collocated, p may also piggyback Learn
messages on successive offers.
p may be out of reach, slow to respond, or respond with

a NACK. q may either 1) retry with the current proposer,
2) look for another proposer, or 3) attempt to commit the value
directly and acquire the privileged status. Assuming options
(1) and (2) have been exhausted, we proceed to (3).

To commit a value with an accompanied transfer of privi-
lege, q first selects an uncommitted slot, which should ideally
follow the last committed slot in the log. q can conservatively
discover an uncommitted slot by a) looking at its copy of
the log, b) asking its peers for the highest slot number they
are aware of, or c) querying the consenters for the highest
slot number that is occupied. In (c), an occupied slot on a
consenter does not imply that a value has been chosen in that
slot, so q resumes the protocol at that slot.

Once a (possibly) vacant slot is established, q will propose
a value in that slot. At this point, q is non-privileged; there-
fore, it must start with an unprimed offer. This does not imply
that q succeeds: another proposer may beat q to it, perhaps
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even the original proposer p that marked the previous slot.
At any rate, q will learn the outcome and accept the new
proposer.

SP-1 combines the notions of privilege transition and value
selection into an atomic step. Moreover, there is no need to
explicitly broadcast the identity of the new privileged pro-
poser to its peers; it is disseminated through the conventional
learning of values by proposers.

1) THE PURPOSE OF θ
Drawing from the example in Fig. 12, consider the following
scenario. Having committed x ← 3 in slot 1, p1 proposes
y← 4 in slot 2 and crashes immediately afterwards. Slot 2 is
left in a pending state, with a primed round-0 offer from a sole
proposer. Having restarted, p1 again contends for privilege,
and conservatively picks 1 as the next vacant slot. It proposes
the command x ← 3 and succeeds, by the stable agreement
retained from the previous execution.

In the absence of a distinct θ , p1’s committed value
in slot 1 is indistinguishable from its pre-crash proposal,
as both the command and the identity ρp are unchanged.
p1 re-acquires its status in slot 1, having no recollection of its
pre-crash proposal. This time, p1 proposes some other value,
z← 7, in slot 2. Two distinct primed values end up occupying
the same round in slot 2, violating the singularity of privilege
invariant of Spire.

Armed with a unique θ , p1 would have realised that its
apparent success in slot 1 referred to a previous execution and
would have abstained from the privilege in slot 2.

B. GENERALISATION TO MULTI-MODAL COMMIT
The main problem with protocols based on exclusive lead-
ers is the interruption experienced during leadership transi-
tions [21], requiring a compromise in failure detection. One
either errs on the side of stability, opting for conservative
timeouts, or on the side of responsiveness with more aggres-
sive failure detection. The issue is exacerbated in WANs,
with increased variability of link latencies. A system may
be functioning correctly (with all processes and network
links operational) while exhibiting poor performance, due to
resource saturation under high load. Inducing leader election
under these conditions does not remedy the situation; it com-
pounds the problem by prolonging the outage and growing the
command backlog. This phenomenon is commonly known as
congestive collapse in networking literature [22].
Unfortunately, SP-1 relies on the leader for progress. Ide-

ally, any proposer q should be able to expediently com-
mit a value without preempting the encumbered privileged
proposer p. Perhaps q is working to a soft deadline, and
cannot wait for privilege transition, nor has it waited long
enough to suspect p as failed with sufficient probability.
A non-preemptive commit is achieved by q marking a mes-
sage with p’s ρ − θ pair, thereby extending p’s current
privilege while simultaneously getting q’s own command
committed. Processes may apply varying timeouts: a longer
overarching timeout for inducing privilege transitions, and

several shorter timeouts for probabilistically meeting specific
deadlines. This is the multi-modal variant: SP-M.
Compare SP-M with exclusive leadership models, such

as Multi-Paxos [1], VR [2], Zab [5] and Raft [6]: although
acquiring privileged status is comparable to a leadership
change, the privileged proposer here is non-exclusive. Any
proposer may commit directly to the log, forgoing the benefit
of uncontended commits, but avoiding a disruptive perturba-
tion of the ensemble. A multi-modal consensus protocol dis-
penses with the notion of an exclusive leader while preserving
the key benefits.When the system is stable, the use of a privi-
leged proposer is widely beneficial. As the system exhibits
instability—ranging from minor performance degradations
to complete process failures—surviving processes may still
commit values directly, albeit at a reduced rate due to the
increased contention of non-serialised proposals. Depending
on the severity or duration of the problem, processes may,
at their discretion, initiate a leadership transition.

C. GENERALISATION TO SLIDING-WINDOW PRIVILEGE
A notable drawback of SP-1 is that it allows for at most
one in-flight proposal. Namely, a proposer cannot exercise its
privilege in a slot until it learns that it has successfully marked
the previous slot. Thus, the commit rate cannot exceed the
inverse of the round-trip time.

We now propose another generalisation: SP-0. Rather than
acquiring the commit privilege over one slot at a time, a pro-
poser is implicitly allocated a contiguous extent of 0 slots.
It may concurrently submit proposals over those slots without
waiting for confirmations, provided it does not wander further
than 0 slots ahead of its lastChosen offset. Its privilege is
extended as it learns that its prior marked offers were chosen,
in a manner that is comparable to the sliding window flow
control protocol [23].

SP-0 requires several amendments to the base protocol.
The image of the triplet 〈m, ρ, θ〉 is extended so that ρ and θ
allow a ∅ (null) value. The attributes ρ and θ must be jointly
null; i.e., ρ = ∅ ⇔ θ = ∅. A proposal with non-∅ ρ and
θ is called marked, as before; conversely, a proposal where
ρ = ∅ ∧ θ = ∅ is called unmarked.

FIGURE 13. Sample committed values in SP with 0 = 3.

The sliding-window behaviour is illustrated in Fig. 13,
with 0 = 3. As per the example in Fig. 12, slot 1 is marked
by p1. This time, however, the privilege is granted over the
range 2..4. It is then extended to slots 3..5, 4..6, and so on.

Suppose p2 suspects a failure of p1 by slot 4. It may directly
offer its command in slot 4 but p2 cannot simply preempt p1
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as its privilege endures through to slot 6. Instead, p2 offers
null ρ and θ in slots 4..5; slot 6, being the earliest point at
which privilege transfer may take place.

Behaviour 1. For p to exercise its privilege in s, at least
one marked slot in the range (s− 0)..(s−1) (truncated at slot
1) must contain p’s ρ and current θ .
Behaviour 2. For q to preempt an encumbered privileged

proposer p (presumably) parked at s, some proposer (possibly
q) must commit a contiguous range of unmarked slots in
(s+ 1)..(s+ 0− 1). Slot s+ 0 may be marked—either with
q’s own ρ-θ pair, or some other proposer’s, as per the SP-M
generalisation. If s+0 is unmarked, then pwill be preempted
without assigning a successor.

To elaborate, q may only mark s + 0 if it is certain that
the slots in the range s + 1 to s + 0 − 1 are unmarked,
which is trivially ascertained by learning the committed
outcomes of those slots. By the agreement property, once
a slot is committed it can never be altered; therefore, the
transition protocol maintains a gap of 0 − 1 unmarked slots
between any successive pair of distinctly marked slots. Once
q secures slot s+ 0, it acquires privilege over the slots in the
range s + 0 + 1 to s + 20. No two proposers may exercise
round-0 privileges in the same slot due to the separation
accorded by the transition protocol.

When 0 > 1, gaps may form in the log. When a pro-
poser offers multiple values concurrently for different slots,
a slot with a higher number can be committed before a
lower-numbered slot. The proposer may also fail, leaving the
lower-numbered slot in an uncommitted state.

Behaviour 3. Before delivering the command in slot s,
learners must await commands in all prior slots 1..(s–1), and
deliver those commands before s.

This is accomplished by allowing a grace period before
terminating the protocol for any pending slots. Termination
occurs by offering a special no-op value in an uncommit-
ted slot, which may be initiated by any proposer. Concur-
rent no-op slot termination by multiple proposers is cheap:
Spire’s cooperative nature leads to rapid convergence when
the offered values do not differ.

It should be apparent that SP-1 is a special case of
SP-0, with 0 = 1 and no unmarked values. When 0 = 1 the
log is also gap-free, provided proposers conservatively select
the next vacant slot and resume at a slot they suspect may be
uncommitted before moving on to the next slot.

D. GENERALISATION TO ANY SINGLE-VALUE ALGORITHM
The final generalisation of SP is perhaps the most straightfor-
ward, but also the most telling. We have, thus far, worked on
the assumption that the privilege acquired by p in s over slots
s + 1 to s + 0 applies to the round-0 optimisation of Spire,
and that each discrete consensus instance executes the Spire
protocol. This too can be generalised.

SP is neither coupled to the underlying single-value pro-
tocol nor requires a uniform single-value protocol across
the entire log. Conceivably, one might implement SP over
several dissimilar single-value protocols. Conveniently, the

concept of slot-privilege is protocol-agnostic: Lamport’s
Lower Bound on Asynchronous Consensus [9] recognises a
special case wherein a value may be stably learned in one
message delay provided that it is submitted by one proposer.
We now know of at least two protocols that support this
optimisation. Likewise, there may be other protocols similar
to SP orMulti-Paxos that compose over arbitrary single-value
consensus instances.

This result highlights an important observation: the specifi-
cation of a single-value protocol and its projection to a repli-
cated log represent two distinct problems. It is objectively
easier to reason about the two problems in isolation, extend
and optimise them individually and prove their correctness
discretely.

Compare the modular approach of SP to a monolithic
design. For the latter [2], [5], [6], one has to prove correctness
for a greater number of admissible states and behaviours. Any
prospective optimisations or refinements may invalidate prior
reasoning and require a new proof of the complete algorithm.
From a pedagogical viewpoint, the entire specification needs
to be conveyed, subjecting the audience to increased cognitive
load.

E. PROOF SKETCH
Lamport famously narrated in [1] that ‘‘consistency and
progress properties of the parliamentary protocol follow
immediately from the corresponding properties of the Synod
protocol from which it was derived,’’ and that ‘‘the Paxons
never bothered writing a precise description of the parlia-
mentary protocol because it was so easily derived from the
Synod protocol.’’

In this section, we sketch a proof of SP’s correctness. Note
that of the propositions below, only Lemma 6 (used by Theo-
rem 4) is remotely interesting. The others essentially convey
the properties of the underlying single-value protocol. A case
in point: a proof this compact would have been unattainable,
were SP of a monolithic design. Needless to say, our own
experience is congruous with that of the ancient Paxons.
Theorem 2 (Agreement): If a process delivers a command

m in slot s, then all processes eventually deliver m in s.
Proof: A priori, all processes observe the log as an

identical sequence of addressable slots. For any s, all pro-
cesses consistently observe the value v of s by the properties
of the underlying single-value protocol. m is a constituent
of v, being in the triplet v = 〈m, _, _〉. By the agreement
property of the underlying protocol (Theorem 1 for Spire),
if v is chosen in s, then every process eventually observes v,
and by extension, m in s. �
Theorem 3 (Total order): If two processes p and q both

deliver commandsm and n, then p deliversm before n, if and
only if q delivers m before n.

Proof: By Theorem 2, all processes observe identical
commands for the same slot. By Behaviour 3, no process
delivers a command in any slot until it has delivered all
commands in prior slots. Therefore, if a process delivers m
before n, then every process delivers m before n. �
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Lemma 6: For any contiguous span S of length 0, for all
marked slots in S, the ρ − θ pairs are identical.

Proof: Take S to occupy the range s..(s + 0 − 1).
Consider the two cases where a slot may be marked: by 〈1〉 a
non-privileged proposer q, or 〈2〉 a privileged proposer p.
For 〈1〉, we examine Behaviour 2, stating that for some

slot s marked by p, for q to preempt p, it must commit a
contiguous sequence of slots in the range (s + 1)..(s + 0),
such that slots (s+ 1)..(s+ 0−1) are unmarked and s+ 0 is
markedwith ρq and θq. s is adjacent to (s+ 1)..(s+0−1), and
their concatenation yields a contiguous span G of length 0.
If s is marked, thenG has exactly one marked slot; otherwise,
G is unmarked in its entirety. Next, (s + 1)..(s + 0 − 1) and
s + 0 are adjacent; their concatenation is a contiguous span
H of length 0 containing at most one marked slot.

For 〈2〉, by rewriting the indices of the range s..
(s + 0–1), it suffices to show that p will not offer a marked
value in slot t unless the offered ρ − θ pair matches all
marked pairs in (t − 0)..(t − 1) (truncated at 1). However,
Behaviour 1 only states that p will not offer a marked value
in t until it has asserted that (t − 0)..(t − 1) has at least one
slot marked with ρp and θp. We make the leap from at least
one marked slot to all marked slots by induction. The base
case: p has just acquired privileged status and every marked
slot in (t − 0)..(t − 1) contains ρp and θp by Behaviour 2.
The inductive step: for a span (g − 0)..(g − 1) in which the
invariant holds, offering a marked value in g with some ρ− θ
pair sourced from (g − 0)..(g − 1) trivially preserves the
invariant. �
Theorem 4 (Singularity of Privilege): If a value v is

offered in s by a process exercising its slot privilege, no value
other than v may be privilege-offered in s.

Proof: By Behaviour 1, for p to exercise its privilege
in s, at least one marked slot in the range S = (s−0)..(s− 1)
(truncated at slot 1) must contain ρp and θp. For p to be the
sole privileged proposer in s, all marked slots in S must be
identical. The length of S is 0 without truncation, or at most
0 otherwise. By Lemma 6, all marked slots in any contiguous
span of length 0 are identical. �

F. MEMBERSHIP CHANGES
One practical consideration of a multi-value consensus pro-
tocol is the live amendment of the ensemble configuration—
altering the number of consenters. We do not contribute spe-
cific approaches to group membership in this paper, as these
are orthogonal to the consensus protocol. The α approach
of [1], [18], [36] is compatible with SP and will suffice.

VII. CONCLUSION
This paper demonstrates that the characteristic similarities
among existing consensus protocols are largely attributable
to the incidentals of their design, rather than to a fundamental
constraint inherent to the problem space. This claim has been
substantiated via a counterexample: a single-value consensus
protocol that exercises cooperative agreement across a phase-
symmetric round structure.

We suggest that by halving the number of distinct messages
and behaviours, Spire makes consensus more approachable
to the broader audience; it may serve as an alternate foun-
dation for teaching consensus to beginners. The reduction
in behaviours and message schemas may also simplify the
process of implementation and testing.

Spire’s singular characteristics offer a genuinely uncharted
territory for future research and exploration. This paper has
barely scratched the surface of phase symmetry and coop-
erative agreement. There are significant opportunities for
further elaboration of the protocol—not only by proposing
novel variants but also by selectively adapting or retrofitting
optimisations used in existing protocols.

We closed with a high-level protocol for composing a
sequence of arbitrary single-value consensus instances into
a replicated log. The resulting modularity allowed us to
devise and reason about the two protocols independently.
We are confident that this technique will further aid the
comprehension of distributed consensus and streamline its
implementations.

REFERENCES
[1] L. Lamport, ‘‘The part-time parliament,’’ ACM Trans. Comput. Syst.,

vol. 16, no. 2, pp. 133–169, 1998.
[2] B. Oki and B. Liskov, ‘‘Viewstamped replication: A new primary copy

method to support highly-available distributed systems,’’ in Proc. 7th
Annu. ACM Symp. Princ. Distr. Comp., 1988, pp. 8–17.

[3] B. Liskov and C. James, ‘‘Viewstamped replication revisited,’’ MIT,
Cambridge, MA, USA, Tech. Rep. MIT-CSAIL-TR-2012-021, 2012.

[4] T. D. Chandra and S. Toueg, ‘‘Unreliable failure detectors for reliable
distributed systems,’’ J. ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996.

[5] F. P. Junqueira, B. C. Reed, and M. Serafini, ‘‘Zab: High-performance
broadcast for primary-backup systems,’’ in Proc. IEEE/IFIP 41st Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2011, pp. 245–256.

[6] D. Ongaro and J. Ousterhout, ‘‘In search of an understandable consensus
algorithm,’’ in Proc. USENIX Annu. Tech. Conf., 2014, pp. 305–319.

[7] Y. Mao, F. P. Junqueira, and K. Marzullo, ‘‘Mencius: Building efficient
replicated state machines for WANs,’’ in Proc. 8th USENIX Conf. Oper.
Syst. Design Implement., 2008, pp. 369–384.

[8] P. Jalili Marandi, M. Primi, N. Schiper, and F. Pedone, ‘‘Ring paxos:
A high-throughput atomic broadcast protocol,’’ in Proc. IEEE/IFIP Int.
Conf. Dependable Syst. Netw. (DSN), Jun. 2010, pp. 527–536.

[9] L. Lamport, ‘‘Lower bounds for asynchronous consensus,’’Microsoft Res.,
Redmond, WA, USA, Tech. Rep. MSR-TR-2004-72, 2004.

[10] B. W. Lampson, ‘‘How to build a highly available system using consen-
sus,’’ in Proc. 10th Int. Workshop Distr. Algorithms, 1996, pp. 1–17.

[11] C. Cachin, ‘‘Yet another visit to Paxos,’’ IBM Res., Zurich, Switzerland,
Tech. Rep. RZ3754, 2009.

[12] M. Burrows, ‘‘The chubby lock service for loosely-coupled distributed
systems,’’ in Proc. 7th Symp. Oper. Syst. Design Implement., 2006,
pp. 335–350.

[13] R. van Renesse, N. Schiper, and F. B. Schneider, ‘‘Vive la différence: Paxos
vs. viewstamped replication vs. zab,’’ IEEE Trans. Dependable Secure
Comput., vol. 12, no. 4, pp. 472–484, Aug. 2015.

[14] Z. Wang, C. Zhao, S. Mu, H. Chen, and J. Li, ‘‘On the parallels between
paxos and raft, and how to port optimizations,’’ Proc. 2019 ACM Symp.
Princ. Distr. Comput., 2019, pp. 445–454.

[15] R. van Renesse and D. Altinbéken, ‘‘Paxos made moderately complex,’’
ACM Comput. Surv., vol. 42, no. 3, pp. 1–36, 2015.

[16] H. Howard, ‘‘ARC: Analysis of raft consensus,’’ Univ. Cambridge Comput.
Lab., Cambridge, U.K., Tech. Rep. UCAM-CL-TR-857, 2014.

[17] R. De Prisco, B. W. Lampson, and N. A. Lynch, ‘‘Revisiting the Paxos
algorithm,’’ in Proc. 11th Int. Workshop Distrib. Algorithms, 1997,
pp. 111–125.

[18] L. Lamport, ‘‘Paxos made simple,’’ ACM SIGACT News, vol. 32, no. 4,
pp. 18–25, Dec. 2001.

101716 VOLUME 9, 2021



E. Koutanov: Spire: Cooperative, Phase-Symmetric Solution to Distributed Consensus

[19] C. Dwork, N. Lynch, and L. Stockmeyer, ‘‘Consensus in the presence of
partial synchrony,’’ J. ACM, vol. 35, no. 2, pp. 288–323, 1988.

[20] M. J. Fischer, N. A. Lynch, and M. S. Paterson, ‘‘Impossibility of dis-
tributed consensus with one faulty process,’’ J. ACM, vol. 32, no. 2,
pp. 374–382, 1985.

[21] I. Moraru, D. Andersen, and M. Kaminsky, ‘‘There is more consensus
in egalitarian parliaments,’’ in Proc. 24th ACM Symp. Oper. Syst. Princ.,
Nov. 2013, pp. 358–372.

[22] J. Nagle, ‘‘Congestion control in IP/TCP Internetworks,’’ Network Work-
ing Group, USA, Tech. Rep. RFC-896, 1984. [Online]. Available:
https://tools.ietf.org/html/rfc896

[23] V. Cerf andR.Kahn, ‘‘A protocol for packet network intercommunication,’’
IEEE Trans. Commun., vol. COM-22, no. 5, pp. 637–648, May 1974.

[24] A. Turcu, S. Peluso, R. Palmieri, and B. Ravindran, ‘‘Be general and
don’t give up consistency in geo-replicated transactional systems,’’ inProc.
OPODIS, 2014, pp. 33–48.

[25] B. Lampson and H. Sturgis, ‘‘Crash recovery in a distributed data storage
system. Technical report,’’ Comput. Sci. Lab., Xerox Palo Alto Research
Centre, Palo Alto, CA, USA, Tech. Rep., 1976.

[26] J. N. Gray, ‘‘Notes on database operating systems,’’ inOperating Systems—
An Advanced Course (Lecture Notes in Computer Science), vol. 60,
M. J. Flynn, Eds. London, U.K.: Springer, 1978, pp. 393–481.

[27] J. Gray and L. Lamport, ‘‘Consensus on transaction commit,’’ ACM Trans.
Database Syst., vol. 31, no. 1, pp. 133–160, Mar. 2006.

[28] N. Nouali, H. Drias, and A. Doucet, ‘‘A mobility-aware two-phase commit
protocol,’’ Int. Arab J. Inf. Technol., vol. 3, no. 1, pp. 1–8, 2006.

[29] J. N. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques. Burlington, MA, USA: Morgan Kaufman, 1993.

[30] L. Liu, D. Agrawal, and A. El Abbadi, ‘‘The performance of two-
phase commit protocols in the presence of site failures,’’ Dept. Comput.
Sci., Univ. California, Los Angeles, CA, USA, Tech. Rep. TRCS94-09,
Apr. 1994.

[31] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Reading, MA, USA: Addison-Wesley,
1987.

[32] D. Skeen, ‘‘A quorum-based commit protocol,’’ Cornell Univ., New York,
NY, USA, Tech. Rep. 82-483, 1982.

[33] S. Maiyya, F. Nawab, D. Agrawal, and A. E. Abbadi, ‘‘Unifying consensus
and atomic commitment for effective cloud data management,’’ Proc.
VLDB Endowment, vol. 12, no. 5, pp. 611–623, Jan. 2019.

[34] I. Keidar and D. Dolev, ‘‘Increasing the resilience of distributed and repli-
cated database systems,’’ J. Comput. Syst. Sci., vol. 57, no. 3, pp. 309–324,
Dec. 1998.
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