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ABSTRACT In this paper, we propose a new voltage stabilizing controller for a DCmicrogrid. Themicrogrid
under consideration is composed of Distributed Generation Units (DGUs), power lines, and local loads. The
parameters of DGUs and power lines are assumed to be unknown but belong to known bounded sets and the
loads, which are modeled by constant current loads, are assumed to be unknown. The proposed controller
adopts the disturbance observer based controller which is known to be robust against parameter uncertainties
and external disturbances. One benefit of this controller is to make the real uncertain closed-loop system
behave like a nominal model, and in this work this nominal model is a desired dynamics relating the voltage
reference and output voltages of DGUs. A rigorous stability proof is provided and the results are validated
through numerical simulations.

INDEX TERMS DC microgrids, voltage control, robust control.

I. INTRODUCTION
In recent years, the rapid development of renewable energy
sources such as photovoltaics, wind power systems, etc. has
increased the interest on microgrids among not only power
systems society but also control community. A microgrid
is a small-scale power generation system composed of Dis-
tributed Generation Units (DGUs), power lines, loads, etc.
It can operate as a part of the main grid or as an inde-
pendent power generation source in emergency situations.
For details, see the recent reviews [1]–[3] and references
therein. Although most of the research is concentrated on
AC microgrids, research works on DC microgrids are also
expanding because of the advances in the renewable DC
sources, DC loads, and energy storage systems (ESS) [4]–[6].

A well-known solution for the DC microgrid control is a
hierarchical control structure that is composed of primary,
secondary, and tertiary control [7], [8]. The tertiary control
manages the power flow among the main grid and DC micro-
grids. The secondary control performs a load sharing that all
DGUs efficiently share their load demands while assisting
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the primary control. The primary control preforms voltage
stabilization (or voltage regulation) so that the output voltage
of each DGU is regulated at its reference.

In the conventional hierarchical control [7], a common
solution for the primary control is the droop control method,
where each DGU imposes a virtual impedance called droop
gain. The output voltage reference is reduced linearly when
the output current increases and the reduction rate is related
to the droop gain. The voltage stabilization as well as the
load sharing is done by adjusting this gain. Although the
droop control is widely employed as a decentralized con-
trol method, it has limitations, voltage deviation and current
sharing inaccuracy, which are mainly due to the voltage
drop caused by the power line impedance [9], [10]. In order
to overcome these drawbacks, several solutions have been
proposed in [10]–[12]. In [10], proportional–integral (PI)
controllers using averaged current and averaged voltage have
been introduced to improve the performance of droop control,
where the averages are computed through a fully connected
low-bandwidth communication. In [11], [12], the authors
proposed a robust DC voltage observer employing a dynamic
consensus algorithm. The observer corrects the local voltage
set points using information from the neighboring DGUs, and
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a current regulator is used to improve the current sharing
accuracy by comparing the local current with its neighbors.

Recently, alternative decentralized control strategies that
are free of droop control have been proposed [13]–[17].
In [13], [14], a primary controller that employs the decen-
tralized multivariable PI controller has been introduced,
where the local control gains are computed using Linear
Matrix Inequalities (LMIs). Since only limited information
is required for the controller, i.e., information on its own
DGU and the power lines connected to it [13] or the DGU
only [14], the controller is capable of Plug-and-Play (PnP)
operation. A consensus-based secondary controller is pre-
sented in [15] where a DC microgrid with ZIP (constant
impedance, constant current, and constant power) loads is
considered. The proposed controller sits atop a primary con-
trol that does voltage stabilization, and uses information
exchanged over a communication network to perform load
sharing. In [16], [17], the authors proposed an integrated
controller that achieves voltage stabilization and load sharing
at the same time. A consensus-based control scheme is pro-
posed to deal with unknown current loads in [16]. In [17],
a distributed coordinate tracking algorithm with a virtual
leader has been proposed to achieve the two objectives. In this
paper, we propose a new voltage stabilization controller
which adopts the disturbance observer (DOB) [18]–[20]. The
microgrid under consideration is assumed to have uncertain-
ties in the parameters of DGUs and the resistive-inductive
(RL) power lines, and be subject to unknown constant cur-
rent loads. Main contributions of this paper are summarized
below.

1) The proposed control requires the local voltage mea-
surement only. Notably, it achieves the voltage stabiliza-
tion without using the local current, which is required
in [13]–[15].

2) The proposed controller enhances the robustness against
the model uncertainties of DGUs and power lines, and the
size of unknown loads. In addition, the robust stability
of closed-loop system is rigorously analyzed considering
parameter uncertainties. This is in contrast to [13], [14],
which do not consider parameter uncertainties explicitly.

3) The performance regarding the voltage convergence can
be assignable by choosing the desired dynamics of DGU.
This is one of main benefits that the disturbance observer
based controller provides. It is noted that it is not required
to redesign the controller when the desired convergence per-
formance is modified; the controller remains the same and
one can just change the desired nominal model while in most
cases including [15] the controller should be redesigned.

The remainder of this paper is organized as follows. The
problem is formulated in Section II. In Section III, we explain
the proposed controller scheme and analyze the stability of
the whole closed-loop system. In Section IV, simulation
results are presented to verify the proposed controller. Finally,
Section V concludes the paper.
Notation: Ik denotes the identity matrix of dimension k .

0k ∈ Rk represents a column vector with all components

being 0. 1k ∈ Rk represents a column vector with all
components being 1. diag{d1, . . . , dn} denotes the n × n
diagonal matrix whose (k, k)-th component is given by dk .
A polynomial P(s) = sn + an−1sn−1 + · · · + a0 is called a
Hurwitz polynomial if each root of P(s) has a negative real
part. For a matrix A ∈ Rn×m, Ai denotes the i-th row vector
of A.

II. PROBLEM SETUP
We consider a DC microgrid that contains n Distributed
Generation Units (DGUs) which are connected throughmRL
power lines. The electrical scheme of DGU i and power line
k is represented in Fig.1. DGU i is composed of a DC voltage
source, a Buck converter, a RLC filter, and a local DC load
which is connected to the Point of Common Coupling (PCC).
We assume that the local DC load is an unknown constant
current load (I iL).

FIGURE 1. Electrical scheme of DGU i and power line k for a DC
microgrid.

We consider an undirected graph G = {N , E} where
N = {1, . . . , n} is the node set associated to the set of DGUs
and E = {1, . . . ,m} is the edge set associated to the set of
power lines interconnecting DGUs. To each edge, say edge
k ∈ E , we assign a direction of current through the power
line. Then, we can define the incident matrix B ∈ Rn×m

associated to the graph G whose component Bik is defined as
+1 if the current through the power line k enters DGU i, −1
if the current comes from DGU i, and 0 otherwise. With the
incidence matrix B and the matrix Rl = diag{R1l , . . . ,R

m
l },

we define the Laplacian matrix L = BR−1l B> ∈ Rn×n which
encodes the admittance among DGUs and it is readily seen
that L is a symmetric positive semi-definite matrix.

Now we consider the dynamics of DGU i and power line k .
Let I i, V i, ui, and I iL be the output current, the output voltage,
the control input, and the unknown constant current load of
DGU i. The current through power line k is denoted by I kl .
Define Il =

[
I1l · · · I

m
l

]>
∈ Rm. Then, the dynamics of

DGU i is given by

L i İ i = −RiI i − V i
+ ui

C iV̇ i
= I i + BiIl − I iL (1)

where i denotes DGU’s id, and the parameters Ri, L i, and
C i are the resistance, inductance, and capacitance of DGU i,
respectively.

Define V =
[
V 1
· · · V n

]>
∈ Rn. Then, the dynamics of

power line k is given by

Lkl İ
k
l = −R

k
l I
k
l − (B>)kV (2)
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where k denotes power line’s id, and the parameters Lkl
and Rkl are the inductance and resistance of power line k ,
respectively.

We assume that Lkl is sufficiently small so that the
dynamics (2) is reduced to the quasi-stationary line (QSL)
model [13] given by

I kl = −
1

Rkl
(B>)kV . (3)

Applying (3), the dynamics of DGU i becomes

L i İ i = −RiI i − V i
+ ui

C iV̇ i
= I i − LiV − I iL . (4)

We would like to allow that heterogeneous DGUs can join
the DCmicrogrid and avoid using exact parameters of DGUs.
Moreover, only partial information on the whole circuit net-
work L will be used to derive the proposed controller. This is
intended to gain robustness against parameter uncertainty and
network topology. Precisely, we make the following assump-
tion on the measurement, parameters of DGU, and the circuit
network.
Assumption 1: ForDGU i, the state variableV i is available

for feedback and the bounds of the parameters such that Ri ∈
[Rmin,Rmax], L i ∈ [Lmin,Lmax], and C i

∈ [Cmin,Cmax] are
known. And the bounds of the eigenvalues of the matrix L
are also known such that 0 ≤ L ≤ σmaxIn.
The objective of this paper is to design a robust voltage sta-

bilization controller such that all voltages of DGUs converge
to its reference value, i.e.,

lim
t→∞

V i(t) = Vref, i = 1, . . . , n (5)

and all signals in the closed-loop system are bounded.

III. ROBUST VOLTAGE STABILIZATION CONTROLLER
A. STRUCTURE OF LOCAL CONTROLLER
In order to derive a robust controller, we first rewrite the
dynamics (4) of DGU i with the state variable x i1 = V i and
x i2 = V̇ i, namely

ẋ i1 = x i2
ẋ i2 = −φ

i
1x

i
1 − φ

i
2x

i
2 + g

i
1u
i
+ d iext

d iext = −φ
i
3Lix1 − φ

i
4Lix2 − g

i
2I
i
L (6)

where φi1 =
1

C iLi , φ
i
2 =

Ri

Li , φ
i
3 =

Ri

C iLi , φ
i
4 =

1
C i , g

i
1 =

1
C iLi ,

gi2 =
Ri

C iLi , x1 =
[
x11 · · · x

n
1

]>
∈ Rn, and the vector x2 ∈ Rn

is similarly defined. It is noted that φi1, . . . , φ
i
4, g

i
1, and g

i
2 are

unknown constants. The term d iext is composed of the terms
that explain the interaction between DGU i and other DGUs
joining the microgrid, and the current load. Since d iext is not
known, we can regard it as an external disturbance.

In addition to the external disturbance, we also have model
uncertainty (φi1, φ

i
2, g

i
1) that comes from unknown parameters

Ri, L i, and C i. If we define nominal (or desired) values of
φi1, φ

i
2, and g

i
1, denoted by φ̄1, φ̄2, and ḡ1, then the dynamics

of x i2 can be expressed as

ẋ i2 = −φ̄1 x
i
1 − φ̄2 x

i
2 + ḡ1u

i
+ d imdl + d

i
ext (7)

where d imdl = (φ̄1 − φi1)x
i
1 + (φ̄2 − φi2)x

i
2 + (gi1 − ḡ1)u

i.
If we can compensate the external disturbance d iext and the

model uncertainty d imdl successfully so that the dynamics of
DGU i becomes a desired one described by

˙̄x1 = x̄2
˙̄x2 = −φ̄1x̄1 − φ̄2x̄2 + ḡ1ur , (8)

then we have limt→∞(x̄1(t), x̄2(t)) = (Vref, 0) provided that
the system is stable and ur = (φ̄1/ḡ1)Vref. In what follows,
we let ur = (φ̄1/ḡ1)Vref. It is noted that x̄1 and x̄2 are used
instead of x1 and x2 in order to emphasize that the dynamics
(8) is the desired dynamics that we want to make DGU i
behave like.

In fact, we can achieve the objective described above by
employing the disturbance observer based controller [19],
[20], of which the basic idea can be explained as follows.
Firstly the system (6) is expressed as

yi(s) = Pi(s)(ui(s)+ d i(s)) (9)

where ui(s), d i(s), and yi(s) are Laplace transformed signals
of ui(t), d iext(t)/g

i
1, and x

i
1(t), respectively, and P

i(s) is the
transfer function of the DGU i, i.e., Pi(s) = gi1/(s

2
+ φi2 s+

φi1). Similarly, let Pnom(s) be the transfer function of the
nominal system (8) so that ȳ(s) = Pnom(s)ur (s), where ȳ(s)
and ur (s) are Laplace transformed signals of x̄1(t) and ur (t),
respectively, and Pnom(s) = ḡ1/(s2 + φ̄2 s+ φ̄1).
Now, we rewrite the system (9) as

yi(s) = Pnom(s)(ui(s)+ di(s)) (10)

where di(s) = P−1nom(s)Pi(s)(ui(s) + d i(s)) − ui(s).
If the unknown term di(s) can be estimated successfully, then
the control input given by ui(s) = ur (s)− di(s) will make the
uncertain system (9) become yi(s) = Pnom(s)ur (s), i.e., the
objective is achieved.

One way to estimate di(s) is to find an estimate of ui(s) +
di(s) and subtract a filtered signal of ui(s) from it. Precisely,
let uip(s) = ui(s) + di(s). Then, from (10), one has uip(s) =
P−1nom(s)yi(s). Since P−1nom(s) is not proper, we introduce a
filter Q(s) to compose ûip(s) = P−1nom(s)Q(s)yi(s), which is
an estimate of uip(s). We choose

Q(s) =
α0

(τ s)2 + α1(τ s)+ α0
(11)

where α1, α0, and τ are design parameters to be determined
later, and construct an estimate of di(s), denoted by d̂i(s), as

d̂i(s) = ûip(s)− Q(s)u
i(s)

= P−1nom(s)Q(s)yi(s)− Q(s)ui(s). (12)

It is noted that Q(s)ui(s) rather than ui(s) is used in (12).
In fact, this is to make the input ui(s) well defined. Suppose
ui(s) is used, i.e., d̂i(s) = ûip(s)− u

i(s). Recalling that ui(s) =
ur (s) − d̂i(s), one has ui(s) = ur (s) − ûip(s) + ui(s), which
implies that ui(s) is not defined.
The estimate of di(t) is typically implemented by using two

identical filters Q(s) [19]. In this paper, we employ a reduced
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implementation developed in [20]. From the structure of the
involved transfer functions, it follows that

d̂i(s) =
α0
τ 2
(s2 + φ̄2 s+ φ̄1)

ḡ1(s2 +
α1
τ
s+ α0)

τ 2
)
yi(s)−

α0
τ 2

s2 + α1
τ
s+ α0

τ 2

ui(s)

=
(φ̄2 −

α1
τ
)s+ (φ̄1 −

α0
τ 2
)

s2 + α1
τ
s+ α0

τ 2

α0

τ 2

1
ḡ1
yi(s)

−
1

s2 + α1
τ
s+ α0

τ 2

α0

τ 2
ui(s)+

α0

τ 2

1
ḡ1
yi(s),

from which we obtain a state space realization of the con-
troller (regarding ui and 1

ḡ1
yi = 1

ḡ1
x i1 as inputs and treating

the last signal as the direct transmission term)

q̇i = Aqτqi +
α0

τ 2
Bqτ

 ui
1
ḡ1
x i1


d̂i = −qi1 +

α0

τ 2

1
ḡ1
x i1

ui = ur − d̂i (13)

where the matrices Aqτ and Bqτ are given by

Aqτ =

−α1τ 1

−
α0

τ 2
0

, Bqτ =

0 −φ̄2 +
α1

τ

1 −φ̄1 +
α0

τ 2

.
Fig. 2 shows the controller (13) which serves as the robust

voltage stabilizer for DGU i. The design parameters α0, α1
and τ are determined to ensure the stability of the closed-loop
system and it will be addressed in the next subsection. It is
noted that the main benefit of using this reduced implemen-
tation is that the stability analysis is substantially simplified
compared to the case with the conventional implementation.

FIGURE 2. Proposed robust voltage stabilization controller.

B. STABILITY ANALYSIS OF THE CLOSED-LOOP DC
MICROGRID
In order to investigate the stability of the closed-loop system
involving the controller (13), for i = 1, . . . , n, we define the
following variables.

ηi1 = gi1

(
qi1 −

α0

τ 2ḡ1
x i1

)
ηi2 = τ η̇

i
1 = gi1τ

(
q̇i1 −

α0

τ 2ḡ1
x i2

)
. (14)

It is noted that ηi1 is nothing but −d̂i multiplied by gi1.
Hence, the control input of DGU i is written as

ui = (1/gi1)η
i
1 + (φ̄1/ḡ1)Vref. (15)

We also define variables that describe the difference
between the states of DGU i and their nominal counterparts.

eix,1= x
i
1 − x̄1, eix,2=x

i
2 − x̄2

ex,1=
[
e1x,1 · · · enx,1

]>
, ex,2=

[
e1x,2 · · · enx,2

]>
.

Lemma 1: Let φ̃i1 = φ
i
1 − φ̄1 and φ̃

i
2 = φ

i
2 − φ̄2. With the

new coordinates ηi1, η
i
2, e

i
x,1, and e

i
x,2, the dynamics of DGU

i is written as
ėix,1 = eix,2
ėix,2 = −φ

i
1e
i
x,1 − φ

i
2e
i
x,2 − φ

i
3Liex,1 − φ

i
4Liex,2

+ ηi1 + (gi1φ̄1/ḡ1 − φ̄1)Vref − g
i
2I
i
L − φ̃

i
1x̄1 − φ̃

i
2x̄2

τ η̇i1 = η
i
2

τ η̇i2 = −α0
gi1
ḡ1

(
− φ̃i1e

i
x,1 − φ̃

i
2e
i
x,2 − φ

i
3Liex,1 − φ

i
4Liex,2

+ ηi1 + (gi1φ̄1/ḡ1 − φ̄1)Vref − g
i
2I
i
L − φ̃

i
1x̄1 − φ̃

i
2x̄2
)

−α1η
i
2.

Proof: From the definition of eix,1 and e
i
x,2, the dynamics

of eix,1 follows trivially. Recalling (15) and applying the
relations x i1 = eix,1 + x̄1, x

i
2 = eix,2 + x̄2, x1 = ex,1 + 1nx̄1,

x2 = ex,2 + 1nx̄2, and Li1n = 0, one can derive

ėix,2 = −φ
i
1x

i
1 − φ

i
2x

i
2 − φ

i
3Lix1 − φ

i
4Lix2

+ gi1 u
i
1 − g

i
2I
i
L + φ̄1x̄1 + φ̄2x̄2 − φ̄1Vref

= −φi1e
i
x,1 − φ

i
2e
i
x,2 − φ

i
3Liex,1 − φ

i
4Liex,2

+ ηi1 + (gi1φ̄1/ḡ1 − φ̄1)Vref − g
i
2I
i
L − φ̃

i
1x̄1 − φ̃

i
2x̄2.

Now we derive the dynamics of ηi1 and η
i
2. By definition of

ηi1 and η
i
2, we have

τ η̇i1 = η
i
2

τ η̇i2 = gi1τ
2
(
q̈i1 −

α0

τ 2

1
ḡ1
ẋ i2

)
.

In order to express the term q̈i1 in terms of new coordinates,
we compute by using (13) and (14)

q̇i1 = −
α1

τ

1

gi1
ηi1 + q

i
2 −

α0

τ 2

φ̄2

ḡ1
x i1

q̇i2 =
α0

τ 2

φ̄1

ḡ1
Vref −

α0

τ 2

φ̄1

ḡ1
x i1, (16)

from which it follows that

q̈i1 = −
α1

τ

1

gi1
η̇i1 + q̇

i
2 −

α0

τ 2

φ̄2

ḡ1
ẋ i1

= −
α1

τ 2gi1
ηi2 −

α0

τ 2ḡ1
(φ̄1x i1 + φ̄2x

i
2 − φ̄1 Vref).

Hence, the dynamics of ηi2 can be derived as

τ η̇i2 = −α0
gi1
ḡ1

(φ̄1x i1 + φ̄2x
i
2 + ẋ

i
2 − φ̄1 Vref)− α1η

i
2

= −α0
gi1
ḡ1

(
− φ̃i1x

i
1 − φ̃

i
2x

i
2 − φ

i
3Lix1 − φ

i
4Lix2

+ gi1u
i
− gi2I

i
L − φ̄1 Vref

)
− α1η

i
2.
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Finally, applying the same relations as in the proof for ėix,2,
it is not difficult to derive the result for η̇i2, which completes
the proof. �
Since limt→∞(x̄1(t), x̄2(t)) = (Vref, 0), we consider ex̄,1 =

x̄1 − Vref and ex̄,2 = x̄2 − 0. Then, the dynamics of the
desired model and the closed-loop system of DGU i can be
expressed by

ėx̄,1 = ex̄,2
ėx̄,2 = −φ̄1ex̄,1 − φ̄2ex̄,2
ėix,1 = eix,2
ėix,2 = −φ

i
1e
i
x,1 − φ

i
2e
i
x,2 − φ

i
3Liex,1 − φ

i
4Liex,2

+ ηi1+(g
i
1φ̄1/ḡ1−φ

i
1)Vref−g

i
2I
i
L − φ̃

i
1ex̄,1−φ̃

i
2ex̄,2

τ η̇i1 = η
i
2

τ η̇i2 = −α0
gi1
ḡ1

(
− φ̃i1e

i
x,1 − φ̃

i
2e
i
x,2 − φ

i
3Liex,1 − φ

i
4Liex,2

+ ηi1+(g
i
1φ̄1/ḡ1−φ

i
1)Vref−g

i
2I
i
L−φ̃

i
1ex̄,1−φ̃

i
2ex̄,2

)
−α1η

i
2. (17)

To proceed, we define vectors η1 =
[
η11 · · · η

n
1

]
, η2 =[

η12 · · · η
n
2

]
, IL =

[
I1L · · · I

n
L

]>. In addition, define 8j =

diag{φ1j , . . . , φ
n
j }, 8̃j = diag{φ̃1j , . . . , φ̃

n
j }, for j = 1, . . . , 4,

and G1 = diag{g11, . . . , g
n
1}, G2 = diag{g12, . . . , g

n
2}.

Then, using (17) and the definition of the vectors and the
matrices, the dynamics of the whole closed-loop system is
obtained as

ėx̄,1 = ex̄,2
ėx̄,2 = −φ̄1ex̄,1 − φ̄2ex̄,2
ėx,1 = ex,2
ėx,2 = −(K1 + φ̄1In)ex,1 − (K2 + φ̄2In)ex,2 + η1

+K31nVref − G2IL − 8̃11nex̄,1 − 8̃21nex̄,2
τ η̇1 = η2

τ η̇2 = −
α0

ḡ1
G1
(
− K1ex,1 − K2ex,2 + η1 + K31nVref

−G2IL − 8̃11nex̄,1 − 8̃21nex̄,2
)
− α1η2 (18)

where K1 = 8̃1 + 83L, K2 = 8̃2 + 84L, and K3 =

(φ̄1/ḡ1)G1 −81.
Remark 1: From the singular perturbation theory, if the

design parameter τ is chosen sufficiently small, the dynamics
of ηj is much faster than ex̄,j and ex,j. Hence, the fast variable
ηj converges to η∗j , which is called the quasi-steady-state
value, while the slow variables ex̄,j and ex,j are regarded
as a fixed parameters. It is obtained by considering the
dynamics of ηj in a stretched time scale t̄ = t/τ and
taking τ → 0.

In view of Remark 1, we define η∗j as

η∗1 = K1ex,1 + K2ex,2 − K31nVref + G2IL
+ 8̃11nex̄,1 + 8̃21nex̄,2

η∗2 = 0.

Then, we rewrite the error dynamics of the whole
closed-loop system (18) using eη,1 = η1 − η∗1 and
eη,2 = η2 − η∗2

ėx̄,1 = ex̄,2
ėx̄,2 = −φ̄1ex̄,1 − φ̄2ex̄,2
ėx,1 = ex,2
ėx,2 = −φ̄1ex,1 − φ̄2ex,2 + eη,1
ėη,1 = φ̄18̃21nex̄,1 − (8̃1 − φ̄28̃2)1nex̄,2 + φ̄1K2ex,1

− (K1 − φ̄2K2)ex,2 − K2eη,1 +
1
τ
eη,2

ėη,2 = −
1
τ

α0

ḡ1
G1eη,1 −

1
τ
α1eη,2. (19)

To proceed further, we define ex̄ =
[
ex̄,1 ex̄,2

]>, ex =[
e>x,1 e

>

x,2

]>
, eη =

[
e>η,1 e

>

η,2

]>
, and compactly rewrite the

dynamics of (19) asėx̄ėx
ėη

 =
A11 0 0

0 A22 A23

A31 A32 Ã33 +
1
τ
A33


ex̄ex
eη

 (20)

where

A11 =
[

0 1
−φ̄1 −φ̄2

]
, A22 = A11 ⊗ In, A23 =

[
0 0
In 0

]
,

A31 =
[
φ̄18̃21n −(8̃1 − φ̄28̃2)1n

0 0

]
,

A32 =
[
φ̄1K2 −(K1 − φ̄2K2)
0 0

]
,

Ã33 =
[
−K2 0
0 0

]
, A33 =

[
0 In

−
α0

ḡ1
G1 −α1In

]
.

The stability of the closed-loop system can be determined
if the systemmatrix of (20) is Hurwitz. Fortunately, the matri-
ces A11, A22, and A33 that are located on the diagonal position
are all Hurwitz since all the system parameters are positive,
and the design parameters α0, α1, and τ will be chosen as
positive numbers. In addition, the dynamics of ex̄ is stan-
dalone, it is sufficient to investigate the stability of (ex , eη).
One notable observation is that thematricesA22,A23,A32, and
Ã33 are fixed and only A33 contains the design parameters α0,
α1, and τ . On the other hand, we have uncertainties in A32,
Ã33, and A33 and this means that the interaction between ex
and eη has uncertainties and this is themain obstacle to design
stabilizing controller. Our strategy is to find a Lyapunov func-
tion forA33 that is independent of parameter uncertainty inG1
and choose τ considering the interaction between ex and eη.
The following result addresses the stability of A33 using

absolute stability [21].
Lemma 2: Let g−1 = 1/(LmaxCmax) and g+1 =

1/(LminCmin). Consider the system

ė = A33e =

[
0 In

−
α0

ḡ1
G1 −α1 In

]
e. (21)
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There exist a symmetric positive definite matrix Pη that
is independent of G1 and a constant ε > 0 such that the
functional Vη = e>Pηe satisfies

V̇η ≤ −εe>Pηe

provided that α0 and α1 are chosen such that

α1 >

√
α0

ḡ1

(√
g+1 −

√
g−1

)
. (22)

Proof: The system (21) can be regarded as a feedback
system given by

ė =

[
0 In

−
α0

ḡ1
g−1 In −α1In

]
e+

[
0
α0

ḡ1
In

]
u =: Ae+ Bu

y =
[
In 0

]
e+ 0 u =: Ce+ Du

u = −(G1 − g
−

1 In)y =: −ψ(y). (23)

It is noted that ψ(·) is an uncertain function that belongs to
the sector [0, (g+1 − g

−

1 )In] [21], i.e.,

ψ>(y)(ψ(y)− (g+1 − g
−

1 )y) ≤ 0, ∀y ∈ Rn.

Let H (s) = C(sI − A)−1B+ D be the transfer function of
the system (23). It is noted that

H (s) = h(s)In, h(s) =
α0/ḡ1

s2 + α1 s+ (α0/ḡ1)g
−

1

.

One can compute that

Re{h(jω)} =
−(α0/ḡ1)ω2

+ (α0/ḡ1)2g
−

1

ω4 + (α21 − 2α0 g
−

1 /ḡ1)ω
2 + (α0 g

−

1 /ḡ1)
2
,

and find that the Nyquist plot of h(s) is bounded to
the negative real axis and the minimum of Re{h(jω)}

is given by −α0/
(
2α1

√
α0ḡ1g

−

1 + ḡ1α
2
1

)
at ω =

±

√
α0 g

−

1 /ḡ1 + α1
√
α0g
−

1 /ḡ1. Hence,

min
ω

Re{h(jω)} =
−α0

ḡ1

(
α1 +

√
α0 g

−

1 /ḡ1

)2

− α0g
−

1

,

and the condition (22) ensures that

min
ω

Re{h(jω)} > −(g+1 − g
−

1 )
−1,

equivalently, H̄ (s) = (g+1 − g
−

1 )h(s)In + In is strictly positive
real.

Recalling that H (s) = C(sI − A)−1B + D, a minimal
realization of H̄ (s) is given by

˙̄e = Aē+ Bū

ȳ = (g+1 − g
−

1 )Cē+ Inū =: C̄ ē+ D̄ū.

Since H̄ (s) is strictly positive real, from Kalman-
Yakubovich-Popov Lemma [21, Lemma 6.3], there exist a
symmetric positive definite matrix Pη, matrices L andW , and
a positive constant ε > 0 such that

PηA+ A>Pη = −L>L − εPη (24a)

PηB = C̄> − L>W (24b)

W>W = D̄+ D̄>. (24c)

Let Vη = e>Pηe. Applying (24a) and (24b), we compute

V̇η = e>(PηA+ A>Pη)e+ 2e>PηBu
= −εe>Pηe− e>L>Le+ 2e>(C̄> − L>W )u

= −εe>Pηe− e>L>Le− 2e>L>Wu− 2u>D̄>u

+ 2(C̄e+ D̄u)>u.

From (24c), we have

V̇η = −εe>Pηe− ‖Le+Wu‖2 + 2(C̄e+ D̄u)>u.

Finally, the relation (C̄e+D̄u)>u = −y>(g+1 In−G1)(G1−

g−1 In)y results in

V̇η ≤ −εe>Pηe,

which completes the proof. �
With α0 and α1 chosen from Lemma 2, it remains to

determine τ , which is explained below. Let Px̄ = P>x̄ > 0
and Px = P>x > 0 be the solutions of

Px̄A11 + A>11Px̄ = −I2
PxA22 + A>22Px = −I2n. (25)

It is noted that the existence is guaranteed because A11 and
A22 are Hurwitz. Define

Ã1 = 2A>31Pη
Ã2 = 2PxA23 + 2A>32Pη
Ã3 = PηÃ33 + Ã>33Pη

M =
1
2
Ã>1 Ã1 +

1
2
Ã>2 Ã2 + Ã3. (26)

It is noted that M is unknown but all the parameters are
bounded (Assumption 1). Hence, we can find m̄ > 0 such
that M ≤ m̄I . Finally, choose τ such that

−
ε

τ
λmin(Pη)+ m̄ ≤ −

1
2
. (27)

Now, we are ready to present the main result of this paper.
Theorem 1: Suppose that Assumption 1 holds true and that

controller parameters α0, α1, and τ are chosen according to
(22) and (27). Then, the proposed controller (13) ensures that
all signals in the closed-loop system are bounded and that

lim
t→∞

x i1(t) = lim
t→∞

x̄1(t) = Vref, i = 1, . . . , n.

Proof: Consider the Lyapunov function candidate

V = e>x̄ Px̄ex̄ + e
>
x Pxex + e

>
η Pηeη.

Using Lemma 2 and (25), we compute

V̇ ≤ −‖ex̄‖2 − ‖ex‖2 −
ε

τ
e>η Pηeη + e

>

x̄ Ã1eη + e
>
x Ã2eη

+ e>η Ã3eη

where Ã1, Ã2, and Ã3 are defined in (26).
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FIGURE 3. The configurations of the DC microgrid implemented in Scenario 1, 2, and 3, respectively. Changed elements are colored red.

Applying Young’s inequality and recalling the definition
of M , we have

V̇ ≤ −
1
2
‖ex̄‖2 −

1
2
‖ex‖2 −

ε

τ
λmin(Pη)‖eη‖2 + e>ηMeη.

From (27), it follows that

V̇ ≤ −
1
2
‖ex̄‖2 −

1
2
‖ex‖2 −

1
2
‖eη‖2 ≤ −

1
δ
V

where δ = 1
2 min

{
1

λmax(Px̄ )
, 1
λmax(Px )

, 1
λmax(Pη)

}
.

Finally, by the comparison lemma, we have

V(t) ≤ e−
1
δ
tV(0), t ≥ 0.

This means that all the signals in the closed-loop system
are bounded and that

lim
t→∞

x i1(t) = lim
t→∞

x̄1(t) = Vref, i = 1, . . . , n,

which completes the proof. �

IV. NUMERICAL SIMULATION
In this section, we study the performance of the proposed
voltage stabilization controller described in Section III. Three
scenarios are considered and they are illustrated in Fig. 3. In
Scenarios 1 and 2, we consider a DC microgrid composed
of 4 DGUs interconnected with 5 power lines. In Scenario 1,
we evaluate the performance in terms of: 1) tracking voltage
reference during initial period; 2) transients after the con-
nection of 4 DGUs; 3) robustness of the voltage reference
change; and 4) robustness of the current load changes. Next,
in Scenario 2, we present the convergence performance of
the proposed controller. We also compare with the proposed
controller and the one from [15] when DGU 3 is changed.
In Scenario 3, we investigate the Plug and Play capability of
the proposed controller by considering that new DGU 5 is
connected/disconnected to DGUs 2 and 4. The parameters
of DGUs and power lines, and the values of current loads
are summarized in Tables 1 and 2. Regarding Assumption 1,
we assume that the parameters belong to known bounded sets;
Ri ∈ [0.1, 0.5], L i ∈ [0.001, 0.003], andC i

∈ [0.001, 0.003].
It is assumed that the control input ui is saturated so that
ui ∈ [0, 100].

TABLE 1. DGU parameters and current demands.

TABLE 2. Power line parameters.

A. SCENARIO 1
Consider a DCmicrogrid composed of four DGUs connected
through power lines (Fig. 3. Scenario 1). The voltage refer-
ence is selected as Vref = 48 V, and the controller parameters
are selected as α0 = 103, α1 = 3 × 104, φ̄1 = 2.5 × 103,
φ̄2 = 102, ḡ1 = 1, and τ = 10−4.

1) VOLTAGE REFERENCE TRACKING DURING INITIAL PHASE
During the initial time interval 0 s≤ t ≤ 2 s, the converters
operate standalone and the controller tries to steer the output
voltage to the reference value. As can be seen from Fig. 4
and Fig. 5, the output voltage of each DGU converges to
its reference rapidly despite the presence of unknown local
current load.

2) NEW CONNECTION OF THE DGU 1, 2, 3, AND 4
At t = 2 s, all DGUs are connected to the DC micro-
grid. Since the output voltages of DGUs reached the desired
value, no significant transient can be observed; see Figs. 4, 5,
and 6. This is mainly because the proposed controller is an
output feedback controller (it requires only the output V i)
and the voltage difference between DGUs mainly affects the
dynamics (4).

3) STEP CHANGE OF THE VOLTAGE REFERENCE
The response of the closed-loop system under step change of
the voltage reference (Vref) is illustrated. The voltage refer-
ence is reduced to 50% of its initial value (i.e., Vref = 48→
24 V) at t = 4 s, the response is redrawn in Fig. 7 around
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FIGURE 4. Scenario 1 - The output voltages of four DGUs and its reference (dashed line).

FIGURE 5. Scenario 1 - The output currents of four DGUs and the local current loads (dashed lines).

FIGURE 6. Scenario 1 - The control inputs of four DGUs.

t = 4 s. It can be seen that the output voltage of each DGU
converges to its new reference in 0.1 s. The current of each
DGU experiences a drop but recovers so that the current load
demand is satisfied in the steady state.

4) CHANGE OF UNKNOWN CURRENT LOAD
We also present the performance of the controller when all
current loads are decreased to half of their initial values (see
Table 1) at t = 6 s. The response around t = 6 s is zoomed
in Fig. 8. Fig. 8(a) shows that the output voltage of each DGU
converges to its reference after a slight overshoot. Fig. 8(b)
shows a good compensation of the current disturbances pro-
duced by the load change.

B. SCENARIO 2
1) TUNABLE DESIRED MODEL
One of important benefits of proposed controller is that the
desired model can be freely chosen and the behavior of each
DGU is approximately the same as the desired one. This is
because the proposed controller estimates the discrepancy

between the desire model and the real model and generates
a compensating control signal. In order to illustrate this prop-
erty, we choose two desired models: fast model (V des

f ) with
φ̄1 = 2.5 × 103 and φ̄2 = 102, and slow model (V des

s ) with
φ̄1 = 50 and φ̄2 = 15. It is noted that we do not need to
redesign the parameters of controllers and they are fixed as
α0 = 103, α1 = 3 × 104, ḡ1 = 1, and τ = 10−4. The
voltage reference is changed from 48 V to 24 V at t = 4 s.
Fig. 9 shows the output voltages and the output currents of
all DGUs around t = 4 s. In Fig. 9(a), two groups of the
responses can be seen, the responses of one group converge
to the new voltage reference very fast (lower responses, con-
vergence time less than 0.1 s) while those of the other group
converge relatively slowly. In both groups, the responses are
almost identical to the desired model and this implies that the
convergence performance of DGUs can be freely assignable
through the desiredmodel without further tuning of controller
parameters α0, α1, and τ . In Fig. 9(b), all controllers satisfy
the demands of the current load, although they have different
desired models.
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FIGURE 7. Scenario 1 - Voltage reference change. (a) The output voltage
of each DGU and the trajectory of the desired voltage model (dashed
line); (b) The output current of each DGU together with the current load
demands (dashed lines); (c) The control inputs.

2) ROBUSTNESS AGAINST DGU PARAMETER CHANGE
Next, we compare the proposed controller and the one
from [15] in terms of robustness against model change. At t =
6 s, the voltage reference is changed from 48 V to 24 V, and
the parameters of DGU 3 are changed to R3 = 0.4�,
L3 = 1.0 mH, and C3

= 1.4 mF. Note that we change the
parameters of DGU 3 within the boundaries of Ri, L i, and
C i. The parameters of the proposed controller are the same
as Scenario 1 and those of [15] are chosen as k1,i = 10

11 ,
k2,i = Ri

10 , and k3,i =
2
5Li (k1,i − 1)(k2,i − Ri).

Fig. 10 shows the output voltages of DGUs under the
proposed controller and that of [15] when the parameters
of DGU 3 change. Note that the blue and red lines are the
output voltages of DGUs before and after the change of
DGU 3 parameters, respectively. Although all of the out-
put voltages converge to the voltage reference successfully,
the output voltages of DGUs under the proposed controller
remain almost the same in spite of the parameter changewhile
a significant difference is observed under the other controller.

C. SCENARIO 3
In this scenario, we investigate the PnP capabilities of the
proposed controller. As can be seen in Fig. 3 (Scenario 3),
four DGUs are initially connected and a new DGU 5 is

FIGURE 8. Scenario 1 - Unknown current load change. (a) The output
voltage of each DGU and the trajectory of the desired voltage model
(dashed line); (b) The output current of each DGU together with the
current load demands (dashed lines); (c) The control inputs.

FIGURE 9. Scenario 2 - Tunable desired model. (a) The output voltages of
all DGUs for the fast desired model (V des

f ) and the slow one (V des
s );

(b) The output currents of all DGUs for the fast desired model and the
slow one and the current load demands (dashed lines).

connected to DGUs 2 and 4 at t = 4 s, and it is disconnected
at t = 6 s. In order to allow current flow through the
power lines, we set slightly different voltage references for
the DGUs (see Table 3) as in the work [13]. The controller
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FIGURE 10. Scenario 2 - Robustness against DGU parameter change. the
output voltages with no change of parameters (blue lines), with change of
parameters in DGU 3 (red lines), its reference (dashed line), and the
desired voltage model (densely dashed line) (a) Proposed controller;
(b) The controller from [15].

FIGURE 11. Scenario 3 - Plug-in of DGU 5 to DGUs 2 and 4. (a) The output
voltage of each DGU and the voltage reference (dashed line); (b) The
summations of the output currents of all DGUs and the summations of all
current load demands (dashed lines).

TABLE 3. Voltage references for five DGUs.

parameters are selected as α0 = 103, α1 = 3 × 104, φ̄1 =
2.5 × 103, φ̄2 = 102, ḡ1 = 1, and τ = 10−4. Figs. 11
and 12 show the output voltages of DGUs and the sum of
all output current connected to the microgrid Fig. 11(a) and
Fig. 12(a) show that the output voltage of each DGU con-
verges to the voltage reference. In particular, DGUs 2, 4, and
5, which are directly connected, have voltage variations, but

FIGURE 12. Scenario 3 - Unplugging of DGU 5 to DGUs 2 and 4. (a) The
output voltage of each DGU and the voltage reference (dashed line);
(b) The summations of the output currents of all DGUs and the
summations of all current load demands (dashed lines).

FIGURE 13. Scenario 3 - System behavior under the controller [15] in PnP
situation. The output voltage of each DGU and the voltage reference
(dashed line) (a) Plug-in (b) Unplugging.

DGUs 1 and 3 experience almost no deviation. Figs. 11(b) and
12(b) show the sum of output currents and the total current
load. Although it has a current drop in a very short transient
time interval, the sum of output currents successfully produce
the desired total current. Next, we compare the performance
of the controller [15] and the proposed controller in the PnP
situation. Fig. 13(a) and Fig. 13(b) show the output voltage of
each DGU and the voltage reference of the controller [15] in
plug-in and unplugging, respectively. Large fluctuations are
observed in the transient time interval. Moreover, unlike the
proposed controller, this undesirable behavior is observed in
DGUs 1 and 3 which are indirectly connected to DGU 5.
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V. CONCLUSION
We have presented a new voltage stabilization controller for
DC microgrids that are subject to unknown loads and model
uncertainties. The proposed controller employs the distur-
bance observer based controller. It is shown that the proposed
controller provides robustness against parameter uncertain-
ties and unknown loads, and a constructive design procedure
is presented. It is noted that the desired convergence rate of
the voltage can be easily tuned without additional modifi-
cation of controller parameters. For the whole closed-loop
system including the proposed controller, a rigorous stability
analysis is conducted and extensive simulation results are
presented showing the effectiveness of the proposed con-
troller. Our future work is to combine the proposed controller
with higher level controller for achieving, e.g., proportional
load sharing. We are also preparing a lab-scale experiment to
validate the proposed controller.

REFERENCES
[1] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares,

R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt,
M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and
N. D. Hatziargyriou, ‘‘Trends in microgrid control,’’ IEEE Trans.
Smart Grid, vol. 5, no. 4, pp. 1905–1919, Jul. 2014.

[2] J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, ‘‘Advanced
control architectures for intelligent microgrids—Part I: Decentralized
and hierarchical control,’’ IEEE Trans. Ind. Electron., vol. 60, no. 4,
pp. 1254–1262, Apr. 2013.

[3] J. M. Guerrero, P. C. Loh, T.-L. Lee, and M. Chandorkar, ‘‘Advanced con-
trol architectures for intelligent microgrids—Part II: Power quality, energy
storage, andAC/DCmicrogrids,’’ IEEE Trans. Ind. Electron., vol. 60, no. 4,
pp. 1263–1270, Apr. 2013.

[4] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero,
‘‘DC microgrids—Part I: A review of control strategies and stabilization
techniques,’’ IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876–4891,
Jul. 2016.

[5] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, ‘‘DCmicrogrids—
Part II: A review of power architectures, applications, and standardization
issues,’’ IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528–3549,
May 2016.

[6] Y. Gu, W. Li, and X. He, ‘‘Frequency-coordinating virtual impedance for
autonomous power management of DC microgrid,’’ IEEE Trans. Power
Electron., vol. 30, no. 4, pp. 2328–2337, Apr. 2015.

[7] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla,
‘‘Hierarchical control of droop-controlled AC and DCmicrogrids—A gen-
eral approach toward standardization,’’ IEEE Trans. Ind. Electron., vol. 58,
no. 1, pp. 158–172, Jan. 2011.

[8] A. Bidram and A. Davoudi, ‘‘Hierarchical structure of microgrids control
system,’’ IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963–1976, Dec. 2012.

[9] S. Anand, B. G. Fernandes, and J. Guerrero, ‘‘Distributed control to
ensure proportional load sharing and improve voltage regulation in low-
voltage DC microgrids,’’ IEEE Trans. Power Electron., vol. 28, no. 4,
pp. 1900–1913, Apr. 2013.

[10] X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, ‘‘An improved droop
control method for DCmicrogrids based on low bandwidth communication
with DC bus voltage restoration and enhanced current sharing accuracy,’’
IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1800–1812, Apr. 2014.

[11] V. Nasirian, A. Davoudi, F. L. Lewis, and J. M. Guerrero, ‘‘Distributed
adaptive droop control for DC distribution systems,’’ IEEE Trans. Energy
Convers., vol. 29, no. 4, pp. 944–956, Dec. 2014.

[12] V. Nasirian, S. Moayedi, A. Davoudi, and F. L. Lewis, ‘‘Distributed coop-
erative control of DC microgrids,’’ IEEE Trans. Power Electron., vol. 30,
no. 4, pp. 2288–2303, Apr. 2015.

[13] M. Tucci, S. Riverso, J. C. Vasquez, J. M. Guerrero, and
G. Ferrari-Trecate, ‘‘A decentralized scalable approach to voltage
control of DC islanded microgrids,’’ IEEE Trans. Control Syst. Technol.,
vol. 24, no. 6, pp. 1965–1979, Nov. 2016.

[14] M. Tucci, S. Riverso, and G. Ferrari-Trecate, ‘‘Line-independent plug-and-
play controllers for voltage stabilization in DC microgrids,’’ IEEE Trans.
Control Syst. Technol., vol. 26, no. 3, pp. 1115–1123, May 2018.

[15] P. Nahata and G. Ferrari-Trecate, ‘‘On existence of equilibria, voltage
balancing, and current sharing in consensus-based DC microgrids,’’ in
Proc. Eur. Control Conf. (ECC), St. Petersburg, Russia, May 2020,
pp. 1216–1223.

[16] S. Trip, M. Cucuzzella, X. Cheng, and J. Scherpen, ‘‘Distributed averaging
control for voltage regulation and current sharing in DCmicrogrids,’’ IEEE
Control Syst. Lett., vol. 3, no. 1, pp. 174–179, Jan. 2019.

[17] J. Lee and J. Back, ‘‘Robust distributed cooperative controller for DC
microgrids with heterogeneous sources,’’ Int. J. Control, Autom. Syst.,
vol. 19, no. 2, pp. 736–744, Feb. 2021.

[18] K. Ohnishi, ‘‘A new servomethod inmechatronics,’’ Trans. Jpn. Soc. Elect.
Eng., vol. 107-D, no. 1, pp. 83–86, 1987.

[19] J. Back and H. Shim, ‘‘Adding robustness to nominal output-feedback
controllers for uncertain nonlinear systems: A nonlinear version of
disturbance observer,’’ Automatica, vol. 44, no. 10, pp. 2528–2537,
Oct. 2008.

[20] J. Back and H. Shim, ‘‘Reduced-order implementation of disturbance
observers for robust tracking of non-linear systems,’’ IET Control Theory
Appl., vol. 8, no. 17, pp. 1940–1948, Nov. 2014.

[21] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

JUWON LEE received the B.S. degree from
the School of Robotics, Kwangwoon University,
Seoul, South Korea, in 2015. He is currently pur-
suing the M.S./Ph.D. degree with Kwangwoon
University. His research interests include con-
trol system theory, multi-agent systems, and dc
microgrids.

HYO-SUNG AHN (Senior Member, IEEE)
received the B.S. and M.S. degrees in astron-
omy from Yonsei University, Seoul, South Korea,
in 1998 and 2000, respectively, the M.S. degree in
electrical engineering from the University of North
Dakota, Grand Forks, ND, USA, in 2003, and the
Ph.D. degree in electrical engineering from Utah
State University, Logan, UT, USA, in 2006. He is
currently a Professor with the School of Mechani-
cal Engineering, Gwangju Institute of Science and

Technology (GIST), Gwangju, South Korea. His research interests include
distributed control, aerospace navigation and control, network localization,
and learning control.

JUHOON BACK (Member, IEEE) received the
B.S. and M.S. degrees in mechanical design and
production engineering from Seoul National Uni-
versity, Seoul, South Korea, in 1997 and 1999,
respectively, and the Ph.D. degree from the School
of Electrical Engineering and Computer Science,
Seoul National University, in 2004. Since 2008,
he has been with Kwangwoon University, South
Korea, where he is currently a Professor. His
research interests include control system theory

and design, renewable energy systems, and multi-agent systems.

99616 VOLUME 9, 2021


