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ABSTRACT This paper presents a novel nonlinear estimator called the fuzzy finite memory (FFM) state
estimator for electro-hydraulic active suspension systems, based on fuzzy techniques and finite impulse
response. The Takagi-Sugeno fuzzy model is introduced to effectively describe highly nonlinear suspension
systems with electro-hydraulic actuator dynamics. Compared with the conventional state estimator, which
has an infinite memory structure and requires whole data from the initial to current time, the proposed
fuzzy state estimator with a finite memory structure guarantees robustness against external disturbances and
modeling uncertainty. The simulation results verify that the developed fuzzy finite memory state estimator
is more robust under external disturbances and modeling uncertainties than the existing infinite impulse
response nonlinear estimator.

INDEX TERMS Half-vehicle suspension system, state estimation, finitememory structure, electro-hydraulic
actuator, nonlinear systems, T-S fuzzy model.

I. INTRODUCTION
Currently, automotive electronics technology is being devel-
oped for the safety and comfort of drivers and passengers.
Furthermore, the installation rates of vehicle control sys-
tems, such as rollover protection systems, adaptive cruise
control systems, and electronic stability control (ESC) are
increasing worldwide [1]. Among them, active suspension
systems that can improve vehicle comfort and steering stabil-
ity are attracting significant interest from academia and the
industry [2], [3]. Vehicle suspensions are classified as pas-
sive, semi-active, and active according to the installed ele-
ments [4]–[6]. Active suspension is known to be effective
in improving ride comfort and driving performance and has
significant potential because the actuators that can add or
dissipate energy are arranged in parallel with passive com-
ponents [7], [8].

In practical applications of active suspension systems,
the actuator must provide the desired force for control
and be suitable for packaging space, power, and band-
width requirements [9], [10]. Therefore, an appropriate
actuator must be selected. Electro-hydraulic actuators are
known to be the most suitable for active suspension
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systems owing to their high power-to-weight ratio and low
cost [11], [12]. As a result, numerous studies have been
conducted on electro-hydraulic active suspensions in recent
years [13]–[15]. However, the highly nonlinear charac-
teristics of the actuators complicate the control design.
Most recently, adaptive control of the electro-hydraulic ser-
vomechanisms using the extended state observer (ESO)
and the output feedback backstepping control of hydraulic
actuators, compensating for a delay using the ESO, was
developed [39], [40]. Furthermore, considering the interac-
tion between the vehicle suspension systems and the actuator,
the implementation of the actuator becomes more difficult in
many practical applications [16].

Over the past decades, Takagi-Sugeno (T-S) fuzzy sys-
tems have become a popular tools for describing nonlin-
ear systems [17]. The main concept of the T-S fuzzy tech-
nique is to approximate a nonlinear system using a fuzzy
blending of local dynamics [18], [19]. Therefore, a complex
nonlinear system can be expressed as a linear time-varying
system through fuzzy membership functions and IF-THEN
rules, and the existing linear technology can be successfully
applied to stability analysis and control design [20], [21].
Owing to the characteristics of the T–S fuzzy model, which
approximates nonlinear systems more accurately than the
existing Taylor approximation, several filter design results
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based on the T–S fuzzy model have been presented. A fuzzy
state/disturbance observer for integral sliding mode control
was designed in [22]. An adaptive sliding-mode observer
design was introduced in [23]. Wang et al. presented a
fuzzy observer for estimating the vehicle roll angle and roll
rate [24].

However, most studies on the control design of active
suspension systems are related to the state feedback structure.
Note that state feedback requires the assumption that all state
variables are measurable [25]. However, this is unrealistic
in many practical aspects. In terms of cost and complexity,
the online measurement of all state information is difficult
to implement. Estimating the state through available output
measurements is desirable for creating a suitable controller
for several applications. Therefore, the estimation of state
information is essential for achieving a suitable feedback
controller, and many studies have been conducted on the
estimation problem. For example, a Luenberger-type state
observer was introduced in [27] for nonlinear tracking control
of suspension systems. An adaptive Kalman filter for suspen-
sion state estimation was presented in [28]. Na et al. proposed
an active adaptive estimator for vehicle suspensions [29].
In [30], a position tracking controller for a quadrotor was
proposed using an ESO technique. However, it should be
noted that all aforementioned studies have an infinite impulse
response (IIR) structure.

As mentioned before, most state estimators used in actual
applications have IIR structures that require all historical
input and output data to estimate the current state vari-
able [31], [32]. Owing to the structural characteristics of
the IIR estimator, performance degradation or divergence
problems can occur when incorrect information or model-
ing uncertainty occurs [33], [37], [38]. Consequently, finite-
memory-based state estimators have received much interest
as alternatives to IIR-based state estimation. Many studies
have demonstrated that the state estimator based on the finite
memory structure is robust against incorrect information and
modeling uncertainty compared with the IIR-based state esti-
mator [34]–[36].

Despite being an important topic for feedback control,
to the best of our knowledge, only a few papers address
the state estimator design problem for active suspension
systems. In particular, results on finite-memory state esti-
mators for active suspension systems have not yet been
studied in literature; this was the motivation for our study.
In this study, for the first time, we investigate a new fuzzy
finite-memory state-estimation problem for active suspen-
sion systems, including nonlinear electro-hydraulic actuator
dynamics. The main contributions and novelty of this study
are as follows:
• The fuzzy finite memory state estimator design of active
suspension systems with electro-hydraulic actuator is
dealt with for the first time.

• By solving theminimum length solution of the cost func-
tion, which contains the Frobenius-norm of the fuzzy
finite memory estimator gain, the design problem of the

FIGURE 1. 4-DOF suspension model.

proposed estimator for the nonlinear suspension system
has been effectively solved.

• The proposed fuzzy finite memory state estimator does
not require noise information and uses only recent mea-
surements. In other words, the proposed estimator is
robust against uncertainty using a finite memory struc-
ture without noise statistics.

• The robustness of the proposed finite memory state
estimator against disturbance and model uncertainty are
effectively verified under different road conditions via
numerical examples.

The remainder of this paper is organized as follows.
In section 2, we present the procedure for obtaining the T-S
fuzzy suspensionmodel, including the electro-hydraulic actu-
ator dynamics. The design of the finite memory filter for the
T-S fuzzy model is presented in section 3. Section 4 presents
the simulation results and discussion. Finally, the conclusions
are presented in section 5.

II. NONLINEAR HYDRAULIC SUSPENSION SYSTEM AND
ITS APPROXIMATION
The half-vehicle model, which is commonly used for suspen-
sion control design, is shown in Figure 1. This 4-degree of
freedom(4-DOF) model, owing to the motion in the heave
and pitch directions of the sprung mass and the motion in
the vertical directions of the unsprung masses, captures more
detailed features than the quarter-vehicle model. In this fig-
ure, zsf (t) and zsr (t) are the displacements at the front and
rear bodies, respectively; zuf (t) and zur (t) are the displace-
ments at the front and rear unsprung masses, respectively.
Furthermore, zrf (t) and zrr (t) are the displacements at the
front and rear terrain heights, respectively; ϕ(t) represents the
pitch angle of inertia at the center of gravity(CG) points. The
pitch moment of inertia about the CG point is represented by
Iϕ ,ms denotes the mass of the vehicle body, and zc(t) denotes
the displacement of the CG point. The unsprung masses on
the front and rear wheels are represented by muf and mur ,
respectively; ksf and ksr represent the stiffness coefficients at
the front and rear tires, respectively. The damping coefficients
at the front and rear wheels are represented by csf and csr ,
respectively. Finally, uf (t) and ur (t) denote the forces at the
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TABLE 1. Variable description.

front and rear actuators, respectively. Assuming that (ϕ(t)) is
negligibly small, we can easily obtain the following equation:

zsf (t) = zc(t)− l1ϕ(t), (1)

zsr (t) = zc(t)+ l2ϕ(t). (2)

Placing the origin for the displacement of the CG point and
the angular displacement of the vehicle body at static equilib-
rium and applying Newton’s second law, we can express the
suspension equation as follows:

msz̈c(t)+ ksf [zsf (t)− zuf (t)]+ csf [żsf (t)− żuf (t)]

+ ksr [zsr (t)− zur (t)]+ csr [żsr (t)− żur (t)]

= uf (t)+ ur (t),

Iϕ ϕ̈(t)− l1ksf [zsf (t)− zuf (t)]− l1csf [żsf (t)− żuf (t)]

+ l2ksr [zsr (t)− zur (t)]+ l2csr [żsr (t)− żur (t)]

= −l1uf (t)+ l2ur (t),

muf z̈uf (t)− ksf [zsf (t)− zuf (t)]− csf [żsf (t)− żuf (t)]

+ ktf [zuf (t)− zrf (t)] = −uf (t),

mur z̈ur (t)− ksr [zsr (t)− zur (t)]− csr [żsr (t)− żur (t)]

+ ktr [zur (t)− zrr (t)] = −ur (t), (3)

From (1)–(3), the following can be easily obtained:

z̈sf (t) = z̈c(t)− l1ϕ̈(t)

= a1{uf (t − d(t))− ksf [zsf (t)− zuf (t)]

− csf [żsf (t)− żuf (t)]} + a2{ur (t − d(t))

− ksr [zsr (t)− zur (t)]− csr [żsr (t)− żur (t)]},

z̈sr (t) = z̈c(t)− l2ϕ̈(t)

= a2{uf (t − d(t))− ksf [zsf (t)− zuf (t)]

− csf [żsf (t)− żuf (t)]} + a3{ur (t − d(t))

− ksr [zsr (t)− zur (t)]− csr [żsr (t)− żur (t)]}, (4)

where

a1 =
1
ms
+
l21
Iϕ
, a2 =

1
ms
−
l1l2
Iϕ
, a3 =

1
ms
+
l22
Iϕ
.

To express the state-space representation, we set up the
states as shown in follow the Table 1: The dynamics (3)-(4)
can be rewritten in the following state-space model:

ẋ(t) = Ax(t)+ Bu(t)+ Gw(t), (5)

where

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

× x5(t) x6(t) x7(t) x8(t)
]T
,

u(t) = [uf (t) ur (t)]T ,

A =
[
04×4 a12
a21 a22

]
,

B =

0 0 0 0 a1 a2 −
1
muf

0

0 0 0 0 a2 a3 0 −
1
mur

 ,
G =

[
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

]
,

a12 =


1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1

 ,

a21 =



−a1 ksf −a2 ksr 0 0

−a2 ksf −a3 ksr 0 0

ksf
muf

0 −
ksf
muf

0

0
ksr
mur

0 −
ksr
mur


,

a22 =



−a1 csf −a2 csr a1 csf a2 csr

−a2 csf −a3 csr a2 csf a3 csr
csf
muf

0 −
csf
muf

0

0
csr
mur

0 −
csr
mur


, (6)

where w(t) = [żrf (t) żrr (t)]T is the disturbance input, and
04×4 is a 4×4 zero matrix. For the performance requirements
of the suspension system, three important characteristics can
be set as the controlled output. These requirements can be
divided into two types: minimized and restricted. The first
is ride comfort, which is a performance index that must be
minimized and is primarily measured using body accelera-
tion. The other performance indicesmust be limited: handling
performance and suspension structure limitation∣∣zsf (t)− zuf (t)∣∣ ≤ zf ,max ,

|zsr (t)− zur (t)| ≤ zr,max ,∣∣ksf (zuf (t)− zrf (t))∣∣ ≤ Ff ,

|ksr (zur (t)− zrr (t))| ≤ Fr .

These can be expressed as tire and suspension deflections,
respectively. Considering the above performance indices,
the two control outputs can be defined as follows:

z1(t) =
[
z̈c(t) ϕ̈(t)

]T
,

z2(t) =
[
zsf (t)− zuf (t) zsr (t)− zur (t)

× zuf (t)− zrf (t) zur (t)− zrr (t)
]T (7)
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Thus, the entire space model of a half-vehicle suspension
can be expressed as

ẋ(t) = Ax(t)+ Bu(t)+ Gw(t),

z1(t) = C1x(t)+ D1u(t),

z2(t) = C2x(t)+ D2u(t),

y(t) = Cx(t)+ Du(t), (8)

where A,B, and B1 are denoted in (6), and

C1=


−
ksf
ms

−
ksr
ms

0 0

l1ksf
Iϕ

−
l2ksr
Iϕ

0 0

−
csf
ms

−
csr
ms

csf
ms

csr
ms

l1csf
Iϕ

−
l2csr
Iϕ

−
l1csf
Iϕ

l2csr
Iϕ

 ,

D1=


1
ms

1
ms

−
l1
Iϕ

l2
Iϕ

 ,

C2=



1
zf ,max

0 0 0 0 0 0 0

0
1

zr,max
0 0 0 0 0 0

0 0
ksf
Ff

0 0 0 0 0

0 0 0
ksr
Fr

0 0 0 0


.

(9)

Before constructing the entire model, including the
actuator dynamics, the dynamics of the subsystems (fluid
dynamics, servo valve, hydraulic cylinder, and load) that con-
stitute the actuator should be understood. According to [8],
the hydraulic actuator system includes a cylinder, servo valve,
and load attached to the piston. The actuator is responsible
for transmitting forces and motions to external loads or sys-
tems. The cylinder located between the sprung and unsprung
masses was connected in parallel to the passive spring and
damper. The dynamics of the actuator are as follows:

Ḟi(t) = −βFi(t)− αA2s (żsi(t)− żui(t))

+ γaAs

√
Ps −

sgn(xvi(t))Fi(t)
As

xvi(t),

ẋvi(t) =
1
τ
(−xvi(t)+ Kvui(t)), (10)

where i is f or r ; Ps and As represent the hydraulic supply
pressure and the actuator ram area, respectively. The dis-
placement of the spool valve is represented by xvi(t); ui(t)
is the control input voltage to the servo valve. Addition-
ally, α = 4βe/Vt , β = αCtm, and γa = αCdωa

√
1/ρa,

where βe is the effective bulk modulus. The total volume
of actuator is represented by Vt ; Ctm represents the leakage
coefficient due to pressure. The discharge coefficient and
the spool valve area gradient are represented by Cd and ωa,
respectively; ρa is the hydraulic fluid density; τ is the time
constant of the spool valve dynamics, andKv is the conversion
gain. The dynamics equation (10) of the actuator can be
expressed in the following time-varying state-space model:

ẋc(t) = Ac(t)xc(t)+ Bcuc(t)+ ξcx(t), (11)

where

xc(t) =
[
Ff (t) Fr (t) xvf (t) xvr (t)

]T
,

uc =
[
uf (t) ur (t)

]T
, (12)

Ac(t) =



−β 0 γAsδf (t) 0

0 −β 0 γAsδr (t)

0 0 −
1
τ

0

0 0 0 −
1
τ


,

Bc =



0 0
0 0
Kc
τ

0

0
Kc
τ

 ,

ξc =


01×4 −αA2s 0 αA2s 0

01×4 0 −αA2s 0 αA2s
01×4 0 0 0 0

01×4 0 0 0 0


(13)

where δf (t) =

√
Ps −

sgn(xvf (t))Ff (t)
As

, δr (t) =√
Ps −

sgn(xvr (t))Fr (t)
As

. By incorporating the actuator dynam-
ics (10) with the vehicle model (8), we can obtain the entire
suspension state-space model including the electro-hydraulic
actuator as follows:

ẋa(t) = Aa(t)xa(t)+ Bau(t)+ Gaw(t),

z1(t) = C1axa(t), z2(t) = C2axa(t),

y(t) = Caxa(t), (14)

where

xa(t) =
[
x(t) xc(t)

]T
,

Aa(t) =
[
A B 08×2
ξc Ac(t)

]
,

Ba =
[
08×2
Bc

]
, Ga =

[
G

04×2

]
C1a =

[
C1 D1 02×2

]
,

C2a =
[
C2 D2 04×2

]
,

C =
[
C D 03×2

]
. (15)
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The above suspension model (14) not only effectively
incorporates the electro-hydraulic actuator dynamics but also
includes nonlinear behaviors. Thus, the T–S fuzzy modeling
technique is introduced to design the state estimator of the
nonlinear suspension model. Here, the concept of ‘‘sector
nonlinearity’’ [16] is applied to describe the nonlinear sus-
pension system as a T–S fuzzy model. In real applications,
the forces Fi(t) (where i denotes f and r , respectively) are
bounded between [Fi,min,Fi,max]. Therefore, the nonlinear
terms (δi(t)) of the actuator forces are also limited between
[δi,min, δi,max]. Thus, δi(t) can be expressed as

δi = M1i(ϑi(t))δi,max +M2i(ϑi(t))δi,min, (16)

where ϑi(t) = δi(t) denotes a premise variable, andM1i(ϑi(t))
and M2i(ϑi(t)) denote the membership functions that can be
obtained as follows:

M1i(ϑi(t)) =
δi(t)− δi,min
δi,max − δi,min

,

M2i(ϑi(t)) =
δi,max − δi(t)
δi,max − δi,min

, (17)

The membership functions M1i(ϑi(t)) and M2i(ϑi(t)) rep-
resent ‘‘high’’ and ‘‘low’’, respectively. Table 2 lists each
fuzzy rule and its corresponding weighting functions. For
notational simplicity, we denote h(ϑ(t)) as h(t). Based on this,
we consider approximating the nonlinear hydraulic suspen-
sion systems (14) using the following T-S fuzzy models:

Plant RuleR1:

IF ϑf (t) is high, and ϑr (t) is high,

THEN ẋa(t) = A1axa(t)+ Bau(t)+ Gaw(t),

where A1a can be calculated by substituting δf with δf ,max and
δr with δr,max , from Aa(t) in (14).

Plant RuleR2:

IF ϑf (t) is high, and ϑr (t) is low,

THEN ẋa(t) = A2axa(t)+ Bau(t)+ Gaw(t),

where A2a can be calculated by substituting δf with δf ,max and
δr with δr,min, from Aa(t) in (14).

Plant RuleR3:

IF ϑf (t) is low, and ϑr (t) is high,

THEN ẋa(t) = A3axa(t)+ Bau(t)+ Gaw(t),

where A3a can be calculated by substituting δf with δf ,min and
δr with δr,max , from Aa(t) in (14).

Plant RuleR4:

IF ϑf (t) is low, and ϑr (t) is low,

THEN ẋa(t) = A4axa(t)+ Bau(t)+ Gaw(t),

where A4a can be calculated by substituting δf with δf ,min and
δr with δr,min, from Aa(t) in (14).
Thus, under the limit conditions δf (t) ∈ [δf ,min, δf ,max]

and δr (t) ∈ [δr,min, δr,max] for the front and rear actuator

TABLE 2. Fuzzy rules and corresponding weight functions.

forces, respectively, a suitable T-S fuzzy model, including the
electro-hydraulic actuator dynamics, can be represented as

ẋa(t) =
4∑
i=1

hi(t)Aiaxa(t)+ Bau(t)+ Gaw(t),

z1(t) = C1ax̄(t), z2(t) = C2axa(t),

y(t) = Caxa(t), (18)

where hi(ϑ(t)) satisfies hi(ϑ(t)) ≥ 0 and
∑4

i=1 hi(ϑ(t)) = 1.
We employ hi(ϑ(t)) = hi for the convenience of notation.
In practice, Fi(t) and the spool valve position (xvi(t)) are
measurable values; thus, the proposed fuzzy system (18) can
be implemented in practice.

In most control engineering problems, controllers or state
estimators are implemented using digital computers. Because
the continuous time measurements captured by the sensor
are sampled and quantized to be converted into a discrete
signal, a discrete time state estimation technique must be
considered. If Ts is the sampling time of the micro control
unit (MCU), we can easily convert a discrete-time system to a
continuous-time system (18) using the zero-order hold (ZOH)
method as follows:

Āid Ḡd B̄d
C̄d 03×2 03×2
C̄1d 04×2 04×2
C̄2d 02×2 02×2

 =

Āi Ḡ B̄
C̄ 03×2 03×2
C̄1 04×2 04×2
C̄2 02×2 02×2

 . (19)

The newly obtained discrete-time counterparts of the T-S
fuzzy models are represented as follows:

xk+1 = Akxk + Bkuk + Gkwk ,

yk = Ckxk + vk ,

z1k = C1kxk ,

z2k = C2kxk , (20)

where Ak , Bk , Ck , and Gk are defined as

Ak
4
=

4∑
i=1

hi(ϑk )Aid , Bk
4
=

4∑
i=1

hi(ϑk )Bid ,

Ck
4
=

4∑
i=1

hi(ϑk )C i
d , Gk

4
=

4∑
i=1

hi(ϑk )Gid . (21)

where k denotes the samples of time kTs with a sampling
period of Ts.

99368 VOLUME 9, 2021



H. D. Choi, S. H. You: FFM State Estimation for Electro-Hydraulic Active Suspension Systems

III. FUZZY FINITE MEMORY(FFM) ESTIMATOR FOR
ACTIVE SUSPENSION SYSTEMS
From the discrete-time T-S fuzzy model (20), the stacked
input and measurement Uk−1 and Yk−1 can be represented
by

Uk−1 = [uTk−N , u
T
k−N+1, . . . , u

T
k−1]

T ,

Yk−1 = [yTk−N , y
T
k−N+1, . . . , y

T
k−1]

T ,

= C̄N (k)xk−N + B̄N (k)Uk−1
+ ḠN (k)Wk−1 + Vk−1, (22)

where N denotes the horizon size, which is the number of
most recently used inputs and measurements, and the matri-
ces and stacked noise vectors C̄N (k), B̄N (k), ḠN (k), Wk−1,
and Vk−1 are expressed as follows:

C̄N (k) =



Ck−N
Ck−N+1Ak−N

k−N

Ck−N+2Ak−N
k−N+1

...

Ck−1Ak−N
k−2



B̄N (k) =



0 0
Ck−N+1Bk−N 0

Ck−N+2Ak−N+1
k−N+1Bk−N Ck−N+2Bk−N+1,

...
...

Ck−1Ak−N−1
k−2 Bk−N Ck−1Ak−N+2

k−2 Bk−N+1
· · · 0 0
· · · 0 0
· · · 0 0

· · ·
. . .

...

· · · Ck−1Bk−2 0

,



ḠN (k) =



0 0
Ck−N+1Gk−N 0

Ck−N+2Ak−N+1
k−N+1Gk−N Ck−N+2Gk−N+1,

...
...

Ck−1Ak−N−1
k−2 Gk−N Ck−1Ak−N+2

k−2 Gk−N+1
· · · 0 0
· · · 0 0
· · · 0 0

· · ·
. . .

...

· · · Ck−1Gk−2 0

,


Wk−1 = [wTk−N ,w

T
k−N+1, . . . ,w

T
k−1]

T ,

Vk−1 = [vTk−N , v
T
k−N+1, . . . , v

T
k−1]

T .

The fuzzy finitememory (FFM) estimator can be expressed
as follows:

x̂k = Hk−1Yk−1 + Lk−1Uk−1, (23)

where x̂k is the estimated state in the time sequence k and
Hk−1 and Lk−1 denote the gainmatrices of the FFMestimator.
The estimated state x̂k can be expressed using the stacked
measurement vector (22) as follows:

x̂k = Hk−1(C̄N (k)xk−N + B̄N (k)Uk−1 + ḠN (k)Wk−1

+Vk−1)+ Lk−1Uk−1. (24)

Introduce the relation between xk and xk−N as follows:

xk = Ak−Nk−1 xk−N + Fu(k)Uk−1 + Fw(k)Wk−1, (25)

where

Fu(k) =
[
Ak−N
k−1 Ak−N+1

k−1 Bk−N

· · · Ak−1
k−1Bk−2 Bk−1

]
, (26)

Fw(k) =
[
Ak−N
k−1 Ak−N+1

k−1 Gk−N

· · · Ak−1
k−1Gk−2 Gk−1

]
, (27)

Ab
a =

b∏
i=a

Ai,

Aa
a = Aa. (28)

Adding the zero term (25) into the right-hand sides of (24)
and taking the expectation on both sides yield:

x̂k = E[{Hk−1C̄N − A
k−N
k−1 }xk−N ]+ E[xk ]

+E[{Lk−1 + Hk−1B̄N (k)− Fu(k)}Uk−1]. (29)

The unbiased conditionE[xk ] = E[x̂k ], should be satisfied.
Thus, the following constraint must be ensured:

Hk−1C̄N = Ak−Nk−1 , (30)

Lk−1 = −Hk−1B̄N (k)+ Fu(k), . (31)

In this study, we focus on the gain matrix Hk−1 because
Lk−1 can be obtained ifHk−1 is determined. With an accurate
state estimate for the FFM estimator, the following theorem
determines the FFM estimator gain Hk−1:
Theorem 1: The FFM estimator gain should satisfy the

unbiased condition (30), and the gain is given by

Hk−1 = Ak−N
k−1 (C̄N (k)

T�−2N C̄N (k))−1C̄N (k)T�
−2
N . (32)

where �N = diag(ωN I , ωN−1I , . . . , ωI ) denotes the weight
matrix with the weight parameter 0 ≤ ω ≤ 1, which gives
more weight to recent data but less weight to old data.

Proof: Let J = ‖Hk−1‖2F be a cost function, where
‖ · ‖F denotes the Frobenius norm, then the minimum length
solution in (30) can be obtained.We introduce the Lagrangian
multiplier method with the Lagrange multiplier 0 to derive
the minimum length solution of the FFM estimator gain H as
follows:

L = J + 0(Hk−1C̄N (k)−Ak−N
k−1 ), (33)

To minimize (33), a partial derivative with respect to Hk−1
is given as follows:

∂L
∂Hk−1

= 2Hk−1�2
N + 0C̄N (k)

T
= 0 (34)
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yields

Hk−1 = −0.50C̄N (k)T�
−2
N (35)

Substituting (35) into (30) yields

−0.50C̃N (k)T�
−2
N C̄N (k) = Ak−N

k−1 (36)

which provides

0 = −2Ak−N
k−1 (C̄N (k)

T�−2N C̄N (k))−1 (37)

Finally, the estimator gainHk−1 can be obtained by substi-
tuting (37) into (35) as follows:

Hk−1 = Ak−N
k−1 (C̄N (k)

T�−2N C̄N (k))−1C̄N (k)T�
−2
N , (38)

which completes the proof. �
The FFM estimator can be summarized with the following

remark.
Remark 1: The FFM estimation can be represented by

substituting (31) into (23) as follows:

x̂k = Hk−1Yk−1 − [Hk−1B̄N (k)+ Fu(k)]Uk−1, (39)

where the estimator gain Hk−1 is represented in (38).
The proposed FFM estimator approximates a complex

nonlinear half-vehicle suspension model through T-S fuzzy
modeling and is designed based on a finite memory structure,
which uses only recent N inputs and measurements. Infinite
memory structures, such as the Kalman filter, accumulate
errors because they use past estimates, whereas the FFM
estimator has a finite memory structure, and thus, errors do
not accumulate.
Remark 2: Theminimum length solution to obtain the gain

matrix Hk−1 enhances the robustness by reducing the effects
of uncertainties [36]. The stacked measurement (22) can be
represented by Yk−1 = Y rk−1+Y

u
k−1, where Y

r
k−1 and Y

u
k−1 are

real and uncertain measurements, respectively. The estimated
state (23) can be represented as:

x̂k = Hk−1Yk−1 + Lk−1Uk−1
= Hk−1Y rk−1 + Hk−1Y

u
k−1 + Lk−1Uk−1, (40)

where Hk−1Y rk−1 and Hk−1Y
u
k−1 denote the real estimated

state and uncertain estimate, respectively. Taking a Frobenius
norm on both sides of (40) yields:

‖x̂k‖F =‖Hk−1Y rk−1 + Hk−1Y
u
k−1 + Lk−1Uk−1‖F

≤ ‖Hk−1Y rk−1‖F + ‖Hk−1Y
u
k−1‖F + ‖Lk−1Uk−1‖F .

(41)

The uncertain estimates Hk−1Y uk−1 can be reduced when
Hk−1 is the minimum length solution.
Remark 3: For state estimation, the extended state

observer (ESO) is widely used owing to its advantage in that
both the states andmodel uncertainties can be estimated [39],
[40]. Although the extended state observer also has the
limitation of having an IIR structure; therefore, a comparison
with the finite memory state estimator would be an interesting
topic for our future research.

TABLE 3. Parameters for the half-vehicle.

TABLE 4. Parameters for the hydraulic actuator.

IV. SIMULATION RESULTS
In this section, we present the simulation results for the state
estimation performance of the proposed FFM estimator for a
nonlinear hydraulic suspension system. The parameters for
the half-vehicle suspension are listed in Table 3, and the
parameters for each actuator are listed in Table 4. To effec-
tively evaluate the suspension performance, it is necessary
to consider the variability of the road profile in the context
of comfortable riding, steering, and physical specifications.
In this simulation, two different road profiles were considered
to evaluate the performance of the proposed state estimator.

A. BUMP RESPONSE
First, we considered the time responses for the isolated
bump road profiles. The corresponding disturbance can be
expressed as:

zr (t) =


H
2

(
1− cos

(
2πV
L

t
))

, if 0 ≤ t ≤
L
V
,

0, if t >
L
V
,

(42)

In this case, we set the height of the bump to H = 50 mm,
the length of the bump as L = 6 m, and the vehicle forward
velocity as V = 35 km/h. In addition, it was assumed
that the road profile of the rear wheel zrr (t) has a time
delay of approximately (l1 + l2)/V compared to that of the
front wheel. The initial state of the estimator is set as the
zero-initial condition. The noise covariances of the external
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FIGURE 2. True state and its estimation using the fuzzy KF and FFN
estimator.

FIGURE 3. Estimator errors of two estimators concerning the front/rear
suspension deflection and tire deflection.

disturbance wk are taken as Qk = (H/2)((2πV )/L))2 I .
The sensor noise vk is assumed to be a normal distribu-
tionN (0.012, 0.012, 0.0012, 0.0012). The length of the finite
memory horizon, which is a design parameter, was taken as
N = 50. Figure 2 shows the true states (x1(t) ∼ x4(t))
and their estimations x̂1(t) ∼ x̂4(t) using a fuzzy KF and
an FFM estimator for the front/rear suspension deflection
and tire deflection, respectively. Figure 3 shows the estima-
tion errors of two estimators for the state values. As shown
in Figures 2 and 3, the fuzzy KF exhibited a large estimation
error in the external disturbance period. However, the pro-
posed FFM estimator exhibited a smaller estimation error
than the fuzzy KF owing to its characteristic finite memory
structure. These results verified that the proposed FFM esti-
mator is more robust against external disturbance than the
fuzzy KF is. To further demonstrate the performance of the
proposed estimator, we evaluated the estimator performance
in the presence of modeling uncertainties. A modeling uncer-
tainty matrix, denoted as 1Ak was set as:

1Ak =

{
0.01I 5(L/V ) ≤ k ≤ 7(L/V ),

0, otherwise,
(43)

Figure 4 shows the true states (x1(t) ∼ x4(t)) and their
estimations (x̂1(t) ∼ x̂4(t)) using the fuzzy KF and FFN
estimators for the front/rear suspension deflection and tire
deflection, respectively. Figure 5 shows the estimator errors

FIGURE 4. True state and its estimation using the fuzzy KF and FFN
estimator.

FIGURE 5. Estimator errors of the two estimators for the front/rear
suspension deflection and tire deflection.

of the two estimators for the state values. As shown in the
above simulations, a significant increase in the estimation
error occurred when modeling uncertainties are present. The
fuzzyKF exhibited dramatic increases in the estimation errors
in the presence of modeling uncertainties. However, the esti-
mation error of the proposed FFM is much smaller than
that of the fuzzy KF. These results show that the proposed
FFM estimator have more robust performance against the
modeling uncertainty than the fuzzy KF. Similar results were
also demonstrated in the following rough road profile.

B. ROUGH ROAD RESPONSE
In this simulation, we considered the following rough road
condition:

zr (t) = 0.0254sin(2π t)+ 0.005sin(10.5π t)

+ 0.001sin(21.5π t)(m). (44)

According to [16], Equation (25) effectively describes
rough road surfaces. It is assumed that the road disturbance is
similar to the vehicle body resonance frequency (1 Hz) with
a high-frequency disturbance.

Figure 6 shows the responses of the true states
(x1(t) ∼ x4(t)) and their estimations (x̂1(t) ∼ x̂4(t)).
Figure 7 shows the estimation errors of the two estimators
for the front/rear suspension deflection and tire deflection,
respectively. As shown in Figures 6 and 7, the proposed FFM
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FIGURE 6. True state and its estimation using the fuzzy KF and FFN
estimators.

FIGURE 7. Estimator errors of the two estimators for the front/rear
suspension deflection and tire deflection.

FIGURE 8. True state and its estimation using the fuzzy KF and FFN
estimator.

estimator has significantly fewer estimation errors than the
IIR structure (fuzzy KF) in the external disturbances period.
These results verify that the proposed FFM estimator is more
robust against external disturbances than the fuzzyKF. All the
results shown above are due to the characteristic finite mem-
ory structure of the proposed estimator. As with the bump
disturbances, we also evaluated the estimate performance
when modeling uncertainties in the rough road conditions.
Figure 8 represents the responses of true states (x1(t) ∼ x4(t))
and their estimations (x̂1(t) ∼ x̂4(t)). Figure 9 represents
the estimation errors of the two estimators for the fron/rear

FIGURE 9. Estimator errors of the two estimators for the front/rear
suspension deflection and tire deflection.

suspension deflection and tire deflection, respectively. In case
of the Kalman filter, a dramatic increase in the estimation
error occurs where modeling errors exist. However, the FFM
estimator produces much smaller estimation errors than the
fuzzy KF estimator. These results also show that the perfor-
mance of the proposed estimator is robust under temporary
modeling uncertainty owing to its finite memory structure.

V. CONCLUSION
In this paper, we present a new nonlinear state estima-
tor with a finite memory structure for active suspension
systems. By using the concept of ‘‘sector nonlinearity,’’ a
half-vehicle with two electro-hydraulic actuators was effec-
tively expressed using a T–S fuzzy model. A batch-form
FFM estimator for a linear discrete time-varying system
was designed and applied to a nonlinear suspension system
described as a fuzzy model. Compared with the conventional
state estimator, which is known to have an infinite mem-
ory structure and requires whole data from the initial time
to the current time to operate, the proposed state estima-
tor has a finite memory structure and guarantees robustness
to unknown initial data. Simulation results are presented
to illustrate the estimation performance and robustness of
the finite memory estimator for highly nonlinear suspension
systems. Compared with the conventional IIR-based state
estimator, the presented FFM estimator exhibits excellent
robustness performance when external disturbances and tem-
porary model uncertainty exist. Therefore, estimators with
finite memory structures are expected to be good alternatives
for several control engineering applications.
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