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ABSTRACT In this paper, we propose a novel control scheme for a vision-based prosthetic hand. To realize
complex and flexible human-like hand movements, the proposed method fuses bimodal information.
Combining information from surface EMG signals with object information from a vision sensor, the system
can select an appropriate hand motion. The training/recognition using both sEMG signals and object images
can be performedwith a single deep neural network in an end-to-endmanner. The bimodal sensor information
enables the system to recognize the operator’s intended motion with higher accuracy than that of the
conventional method using only sEMG signals. In addition, the generalization ability of the network is
improved, so motion recognition robustness is enhanced against abnormal data that include partly noisy
or missing samples. To verify the validity of the proposed approach, we prepared a dataset that contains
the sEMG signals and the object images for 10 types of grasping motions. Three kinds of experiments
were conducted: comparison of the proposed method with the conventional method, examination of the
recognition robustness against partly noisy or missing samples, and challenges to recognize hand motions
based on raw sEMG signals. The results revealed that the proposed bimodal network achieved considerably
high recognition performance.

INDEX TERMS Prosthetic hand, bimodal control, electromyography, image recognition, object detection,
grasping.

I. INTRODUCTION
Myoelectric prosthetic hands have been developed to assist
the daily activities of people who have unfortunately lost
their hands due to accidents or diseases. Surface electromyo-
graphy (sEMG) is generated while humans contract their
muscles, and it can be measured with electrodes attached
to the skin surface. sEMG contains information on human
intended movements, so it has been frequently used to
control myoelectric prosthetic hands. However, accurately
recognizing human intentions is still limited because dex-
terous hand movements are extremely complex and flex-
ible due to the complicated musculoskeletal mechanism.
To date, various control schemes have been proposed and
developed.

Visual sensation plays an important role when we grasp
an object. First, we recognize the object and then determine
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the grasping position and preshape motion based on the
object properties, such as shape, position, and posture. Our
research focuses on this point and develops a novel pros-
thetic hand control system that features a vision sensor to
recognize a target object to be grasped (Figure1). The system
controls appropriate hand motion by comprehensively fusing
the target object information recognized with the captured
image and operator’s intention estimated from his/her sEMG
signals. The vision-based prosthetic hand is attached to the
operator’s forearm part and interacts with an environment.
The hand accepts two kinds of inputs: the image from the
vision sensor and operator’s sEMG signals, as shown in Fig-
ure 2(a). The control system integrates bimodal information
and generates the appropriate motor command to control the
hand. The multimodal information fusion algorithm is crucial
for the system. However, the previous algorithm was limited
to calculating a simple logical sum, a logical product or a
rule-based heuristic approach, so there remains much room
for improvement.
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FIGURE 1. Vision-based prosthetic hand [37].

When we grasp an object, our sensorimotor system recog-
nizes multimodal information and then outputs a control sig-
nal to control our hand motion. This input-output relationship
is extremely complex and nonlinear, but humans naturally
obtain the input-output map through learning with a single
central nerve network. Referring to the excellent mechanism
of human beings, we attempt to implement a single deep
learning network in the system and model nonlinear mapping
between images, sEMG signals, and prosthetic hand motions
in an end-to-end training manner. Figure 2(b) illustrates the
concept of the proposed algorithm.

The approach has two main advantages. First, the motion
recognition accuracy can be improved by fusing bimodal
information: sEMG signals and object images. Many pre-
vious studies suggest that the sEMG feature pattern distri-
butions overlap each other between different motions, so it
sometimes makes motion recognition extremely difficult.
In the proposed method, the object image is entered into the
system as an additional index, and it can offer clues to sepa-
rate the overlapped pattern distributions. Second, the robust-
ness of the control against the abnormalities contained in
the input information can be increased since the proposed
method uses two different pieces of information to determine
the decision. Even if an abnormality occurs in either data,
recognition can be compensated based on the other normal
data.

The remainder of this paper is organized as follows.
Section 2 introduces related research trends and clarifies the
research significance. Section 3 details the system configura-
tion and functions. We conduct experiments in Section 4 to
verify the validity and effectiveness of the proposed method.
Section 5 concludes the paper.

II. RELATED WORKS
Surface electromyography (sEMG) can bemeasured from the
residual arm of the amputee and contains much information
on his/her intended motion, so it has been widely adopted as

FIGURE 2. Proposed algorithm.

an interface tool for controlling prosthetic hands. In recent
years, the rapid progress of robotics has brought novel
dexterous prosthetic hands and realized multiple degrees-
of-freedom control from a mechanical point of view. To rec-
ognize various motion intentions, more advanced pattern
recognition technology is required, and many researchers
attempted to take various approaches to recognize hand
motion from sEMG signals [1]–[7].

However, most of the techniques for EMG-based motion
recognition were limited to classifying up to ten forearm
motions, although the recognition accuracy was greatly
improved. It seemed to be difficult to control a variety of
flexible and complex human hand motions only from sEMG
signals, and it might be difficult to expect a novel break-
through technique in the near future [8]–[11].

To overcome this difficulty, researchers proposed a new
approach in which sEMG sensors were fused with dif-
ferent types of sensors, such as acceleration and gyro
sensors [12], [13]. For example, some researchers attempted
to recognize hand motions or gestures by combining accel-
eration, gyro and sEMG sensors. The studies contributed
to increasing the number of available motion classes to
be recognized [14]–[18]. The multimodal sensor approach
was applied to the control of artificial hands. Initially, IMU
sensors and 3D position sensors were frequently used, and
validation experiments were carried out [13], [19]–[22].
Our research group subscribed to this approach and further
extended the idea to a latest IoT system. In the developed
system, tiny acceleration sensors weremounted on the objects
and the prosthetic hand in the environment, and they were
connected based on recent sensor network techniques. Infor-
mation on the posture and position of the objects and the
prosthetic hand plays an important role in determining the
preshape and grasping motion [23]. However, difficulties
remained in scaling up the system.

Pioneering research has appeared in the last ten years.
Some researchers have attempted to develop a novel
prosthetic hand with visual cognition function because
vision plays an extremely important role in human
movements [24]–[27]. However, the image processing for
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FIGURE 3. Bimodal network.

object and environment recognition is extremely diverse
and complicated, so difficulties also exist in realizing the
vision-based prosthetic hand.

Recent deep learning technologies are expected to make
a major breakthrough in this vision-based prosthetic control
algorithm [28]. The deep learning model can be trained with
a large number of image samples in an end-to-end manner,
and it can recognize object categories with unprecedentedly
high accuracy and flexibility. The dramatic improvements in
calculation speed and memory capacity in recent comput-
ers have supported this innovation. Vision-based prosthetic
hands using deep learning technology have also been devel-
oped [29]–[32]. The state-of-the-art approach offers new pos-
sibilities for the control of a dexterous prosthetic hand [33].

Our research group has also been developing a
vision-based prosthetic hand based on deep learning tech-
nology [34]–[37]. In [38], we designed a prosthetic hand
control method that can determine the grasping target and
motion according to the spatial and temporal relationship
between the prosthetic hand and the objects, such as distance,
position, and gazing time. The developed hand captures the
environment with an onboard vision sensor and determines
the object to be grasped; then, themotor is triggered by sEMG
activation measured from the operator’s skin surface.

This sort of multimodal prosthetic system inevitably needs
to integrate multiple sensor inputs. However, most previ-
ous research frequently used a simple logical sum, a logi-
cal product, or rule-based heuristic algorithms to integrate
multimodal sensor information. There is still much room for
improvement. In this paper, we attempt to model nonlinear
mapping between two kinds of sensor inputs and a motion
output through training a bimodal neural network in an end-
to-end manner. Through verification experiments, we attempt
to clarify the performance of the proposed algorithm.

III. HAND GRASPING MOTION RECOGNITION BASED ON
BIMODAL INFORMATION
Grasping motions are recognized based on bimodal informa-
tion. Figure 3 illustrates the structure of the proposed bimodal
network, which is composed of three different subnetworks.

The color image and time series of sEMG signals are mea-
sured using a vision sensor and sEMG sensor. Then, they
are entered into the former two subnetworks to extract fea-
ture quantities in parallel. Then, this feature information is
combined, and the class of the operator’s intended motion is
recognized in the latter single network.

A. DATA ACQUISITION AND PREPROCESSING
The RGB color image is captured with an HD webcam
(Microsoft LifeCam Studio for Business) at a frequency
of 25 Hz. We assume that only one object exists in an image
during the measurement. An sEMG sensor, Myo armband
(Thalmic Labs, Inc), is attached to the operator’s forearm. The
eight electrodes simultaneously measure the sEMG signals at
a frequency of 50Hzwith a range from−128 to 127. It should
be noted that the images are duplicated and synchronized to
match the sampling frequency of 50 Hz of the sEMG signals.

Before entering the subnetworks, the image and signals
are preprocessed and arranged to fit the entry formats of the
subnetworks. At the current stage, a region of the target object
(227 × 227 pixels) is manually cropped from the original
color image 1920×1080. Then, the resolution of the cropped
image is reduced to 64×64 pixels. The 3-dimensional matrix
(height, width, RGB) = (64,64,3) is extracted from each
original image. The sEMG signals are also preprocessed.
After full-wave rectification, the absolute sEMG signals are
smoothed out through a low-pass Butterworth filter with a
cutoff frequency of 1 Hz. The amplitude levels of the fil-
tered signals indicate the levels of muscle activity under the
electrodes. The time window is set on the sEMG signal to
consider time-series features, which have a length of 10 sam-
ples and shifts by one sample. The 2-dimensional matrix
(length, number of electrodes) = (10,8) is entered into the
subnetwork.

B. BIMODAL NETWORK STRUCTURE
As shown in Figure 3, the bimodal network consists of
three subnetworks: a convolutional neural network (CNN),
a long-short term memory network (LSTMN), and a
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connecting network. These networks are constructed by using
Keras, an open source neural network library.

The image matrix (64,64,3) and the sEMG matrix (10,8)
are inputted to CNN and LSTMN, respectively. CNN excels
in image processing and is frequently applied to object
recognition. We designed the eleven-layer CNN architecture
including three types of layers. The convolutional layers
extract local image features, and the pooling layers enhance
the feature extraction robustness. The dropout layers restrain
overfitting. LSTMN is effective for processing a time-series
signal. The recursive structure inside the layer is relevant
to model time-series features of the sEMG signals. CNN
and LSTMN output feature vectors, and these vectors are
connected at the concatenate layer in the connecting network.
The fully connected layers integrate two different features.
The number of units in the final layer corresponds to the
number of hand motion classes.

To train the bimodal network, the teacher vector that indi-
cates the correct class of hand motion is given for each pair
of sEMG and image inputs. We assign a value of 1 to the
correct class and a value of 0 to all other classes. A categorical
cross-entropy function is defined as the loss function to train
the network. It calculates the difference between the output
vector of the network and the teacher vector. All weights in
the three subnetworks are updated based on backpropagation.

IV. EXPERIMENTS
A. CONDITION
We consider that the proposed approach can be expected to
improve motion recognition performance from at least two
perspectives. Combining bimodal information, the network
can improve recognition accuracy and recognition robust-
ness, even if a part of the entered data includes abnormal
values.

Three kinds of experiments were conducted to verify
the validity of the proposed algorithm. First, the recogni-
tion accuracy was compared between the proposed bimodal
network and single-LSTMN. Second, motion recognition
robustness with the bimodal network was examined against
abnormal inputs such as partly noisy or missing samples.
Finally, we attempted to elaborate on a further application
of the bimodal approach. The proposed algorithm can recog-
nize the motion by using raw sEMG signals. Consequently,
we can reduce signal preprocessing, full-wave rectification
and filtering from the preparation of sEMG samples.

B. DATASET FOR NETWORK TRAINING
The images and the sEMG signals were measured while
grasping an object. Figure 4 shows the target objects and
grasping motions. Five types of objects and two kinds of
grasping motions were assumed to be recognition targets.
The five objects were balls, mugs, hole punches, spoons,
and spray bottles, and twenty-five different objects (five
objects in each category) were included in the dataset. A total
of 30,000 color images (6,000 for each object) were prepared.

FIGURE 4. Target objects and hand motions.

A total of 25,000 and 5,000 images were used for network
training and testing, respectively. The sEMG signals were
measured while the operator performed grasping motions.
A total of 3,000 samples were measured 10 times for each
motion. For the sEMG dataset, 30,000 samples were pre-
pared. A total of 25,000 and 5,000 samples were used for
network training and testing, respectively.

V. RESULTS AND DISCUSSIONS
A. PERFORMANCE OF BIMODAL NETWORK
To confirm the capability of the bimodal network, a com-
parison experiment was conducted using the bimodal net-
work and single-LSTMN. The single-LSTMN is composed
by removing the CNN from the bimodal network (Fig. 3). The
same sEMG dataset was used for training and testing for both
network models. The recognition performance was examined
for 10 kinds of grasping motions.

Figure 5(a) is a confusion matrix of the recognition results
of the bimodal network. The recognition accuracy for the
testing data was 100% in all motions. Figure 5(b) shows the
histories of recognition accuracy and loss of the evaluation
function during the training. acc and val_acc are the recog-
nition accuracy for the training data and the validation data,
respectively. Loss and val_loss are the output values of the
loss function for the training data and the validation data.
Training the bimodal network was almost completed in a few
epochs. Acc and val_acc reached 1.0, and loss and val_loss
converged to 0.0.

The result of single-LSTMN is shown in Figure 6.
(a) shows the confusion matrix of the single-LSTMN. The
recognition accuracy was 89.9%. In (b), val_acc remained
at approximately 0.6 in the latter half of the epochs, while
acc reached 1.0 in a few epochs. Val_acc was 0.61 at the
end. Similarly, val_loss remained at approximately 0.3 to 0.4,
while loss converged to 0 at the beginning of the training.
The comparison results revealed that the proposed bimodal
network clearly improved motion recognition accuracy.

Figure 7 compares the results of the bimodal network and
single-LSTMN. From the top, the 8-channel sEMG signals,
the images, and the recognition results of the bimodal net-
work and LSTMN are shown. It should be noted that the
results of 10 motions are arranged side by side, but these
results are discontinuous for every motion (500 samples).
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FIGURE 5. Testing and training results of the bimodal network.

The object images are representative of the image sequence
during each motion. The blue, yellow, and red plots indicate
correct recognition, misrecognition (inside object category),
and misrecognition (outside object category), respectively.
The comparison result confirmed that the proposed network
obtained higher performance than that using only single-
LSTMN.

B. IMPROVEMENT OF ROBUSTNESS AGAINST
NOISY/MISSING DATA
In the practical usage of the vision-based myoelectric hand,
the measurement condition might not always be the best.
For example, object information is accidentally lacking dur-
ing rapid hand movements. The target object can even be
occluded behind the obstacles. Electrical noise, such as
commercial AC noise and electromagnetic induction noise,
is easily mixed into sEMG signals. We attempt to solve this
problem by using the proposed bimodal network. By comple-
menting information using two sensors, the network could be
expected to be robust against noise.

To investigate the effectiveness of the bimodal network,
the recognition accuracy was examined with partly noisy or
missing data. In addition, we intentionally rearrange the net-
work training, including some noisy or missing samples, into
the training dataset. We anticipate that the added abnormal

FIGURE 6. Testing and training results of single-LSTMN.

samples promote the robustness of the recognition perfor-
mance of the network.

Figure 8 shows the example of the testing data. (a) Partly
noisy sEMG signals and (b) partly missing sEMG signals are
prepared as the input of the LSTMN, and (c) partly noisy
image sequence and (d) partly missing image sequence are
prepared as the input of the CNN. Noisy or missing samples
were added to each [100, 200] segment.

The noise for sEMG signals was uniformly random within
the range of [0,63], and the values of the missing signals were
set to zero. A grayscale image sequence whose pixels have
uniform random values within the range of RGB = (c, c, c),
c = [0, 255] was used as the noisy image sequence, and all
pixels were set to RGB = (255, 255, 255) for the missing
image sequence. The size of these images was the same as
the image matrix for CNN (64, 64, 3).

The recognition accuracy was examined using two kinds of
trained models. One was the normal model trained with nor-
mal data. The other was the robust model trained with partly
abnormal data, which contained 10% noisy/missing samples.
For the testing dataset, 20% of the samples were replaced
with noisy or missing samples, as shown in Figure 8. In the
test, the corresponding robust model (10% noisy/missing)
was selected to recognize the test data (20% noisy/missing),
so the verifications were carried out under four conditions.
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FIGURE 7. Example of motion recognition with a bimodal network and single-LSTMN.

TABLE 1. Test results of partly noisy or missing samples.

The recognition accuracy is summarized in Table 1. The
results showed the effectiveness of the bimodal network. The
recognition accuracy of the normal model exceeds 85% in
all conditions even though 20% of the samples were replaced
with noisy or missing samples. The accuracy of the robust
model is further improved by approximately 90%.

Figure 9 (a)(b)(c)(d) shows the confusion matrices of
the recognition results with the normal model, which is
trained only using the normal samples. These tables show the
comparison among four types of test data: (a) Partly noisy
sEMG signals, (b) Partly missing sEMG signals, (c) Partly
noisy image sequence, (d) Partly missing image sequence.
In each table, the row and the column indicate the label
of the recognition result and the correct answer, and the
numbers 1 to 10 correspond to the motion label. Five-hundred
samples were recognized in each label. The blue/yellow/red
cells indicate correct recognition, misrecognition (inside
object category), and misrecognition (outside object cate-
gory), respectively. The recognition rates were (a) 86.36 %,
(b) 88.34%, (c) 86.0%, and (d) 92.24%. Considering that the

FIGURE 8. Example of partly noisy and missing signals and images.

test data contained 20 % abnormal samples, the bimodal net-
work slightly improved the recognition accuracy. However,
many misrecognitions were distributed over various motion
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FIGURE 9. Recognition result after training with normal data.

classes in abnormal sEMG conditions. In the condition of
the abnormal image sequence, misrecognition tended to be
concentrated on some specific motion classes.

Figure 10 (a)(b)(c)(d) shows the results with the robust
model, which was trained using partly abnormal samples.
These were also the comparisons among the same four types
of test data in Figure 9: (a) partly noisy sEMG signals,

FIGURE 10. Recognition result after training with partly abnormal data.

(b) partly missing sEMG signals, (c) partly noisy image
sequence, and (d) partly missing image sequence. The recog-
nition rates were (a) 90.04%, (b) 89.82%, (c) 95.12%, and
(d) 96.20%. The generalization performance of the bimodal
network was greatly improved by training with partly abnor-
mal data. The recognition rate was significantly improved
compared to the normal model. In particular, misrecognition
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FIGURE 11. Example of motion recognition with partly noisy sEMG signals.

FIGURE 12. Example of motion recognition with partly missing image sequences.

significantly decreased for partly abnormal images. The
recognition rate for partly abnormal sEMG signals did not
improve significantly, but the breakdown of misrecognition
changed. Most of the misrecognition tended to appear within
the same object category label.

The experiments revealed that the robust model that was
trained with the partly noisy/missing samples enhanced gen-
eralization ability against the abnormal data, so higher recog-
nition performance was achieved than that of the normal
model. However, there was a slight drawback that a few
normal samples were sometimes misrecognized due to the
adverse effects of training with abnormal samples.

Figure 11 and Figure 12 show the overview of the motion
recognition in conditions 1 and 4 in Table 1. The horizontal
axis indicates the sample number. Five-hundred samples were
recognized for each motion label. It should be noted that
the sEMG signals and the image sequences for 10 labels
were arranged side by side, but they were discontinued every
500 samples. From the top, 8-channel sEMG signals, repre-
sentative images from the image sequences, and recognition
results are shown in the figures. As shown in Figure 11, part of
the 500 series of sEMG samples was replaced with 100 series
of noisy samples at random points. The blue, yellow, and
red plots correspond to correct recognition, misrecognition
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FIGURE 13. Training and testing results of raw EMG signals with a
bimodal network.

(inside object category), and misrecognition (outside object
category), respectively. Since the plots are dense, the correct
recognition and misrecognition plots overlap each other. The
misrecognitions were observed in the noisy section. However,
due to the information of the object’s image, most of their
labels remained within the same object category, and correct
recognitions were also observed.

In Figure 12, 100 series of image frames are missing
in each image sequence. Ten representative photos are dis-
played, and the accrued and missing areas of the images
are indicated under the photos. Similar to Figure 11, input
data were discontinued every 500 samples. The recognition
results are plotted in the lower part of the graph. Even though
the image information was partly missing, extremely high
performance with very few misrecognitions was observed.
The results confirmed that the robust model can improve
recognition performance against data that include abnormal
samples.

C. APPLICATION TO MOTION RECOGNITION BY USING
RAW sEMG SIGNALS
The experiments in the previous section proved that the pro-
posed approach can significantly enhance motion recognition
performance. Finally, we attempted to apply the bimodal
network to process the raw sEMG signals as a practical appli-
cation. Since sEMG signals have complex characteristics,

FIGURE 14. Training and testing results of raw EMG signals with
single-LSTMN.

the signals generally need to be preprocessed before motion
recognition, such as full-wave rectification and low-pass fil-
tering. However, there are some drawbacks to the process.
The low-pass filtering process causes a phase delay of the
sEMG signals, making it difficult to recognize them in exact
real time. Electrical circuits or software programs are also
needed for processing, so they tend to complicate a system.
If the system can accept the raw sEMG signals, the process
can be eliminated, and the operator’s motion can be recog-
nized in exact real time with his/her sEMG generation.

In the experiments, we compared the bimodal network
accuracy with that of the single-LSTMN. The datasets for
training and testing were the same as those used in the previ-
ous section. However, the raw sEMG signals were used, and
no preprocessing was applied.

Figure 13(a) and Figure 14(a) show the confusion matrix
of the recognition results with the bimodal network and
the single-LSTMN, respectively. The displayed information
is the same as in Figure 9 and Figure 10. Five-hundred
samples were recognized in each label. The bimodal net-
work clearly outperformed the LSTMN. Many misrecogni-
tions were improved, and all misrecognitions occurred within
the same object category. The recognition accuracy of the
bimodal network and that of the LSTMN were 92.82% and
70.76%, respectively. These results proved that the bimodal
network is more effective than the single-LSTMN in motion
recognition with raw sEMG signals.
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FIGURE 15. Recognition example of raw sEMG signals with a bimodal network.

Figure 13(b) depicts the accuracy and loss function his-
torical values while the bimodal network was trained. Acc
and val_acc are the recognition accuracy for the training
data and the validation data, respectively. Loss and val_loss
are the output values of the loss function for the train-
ing data and the validation data. In a few epochs, acc and
val_acc values increased over 0.9, and loss and val_loss
values dropped under 1.0. Figure 14(b) indicates the results
of LSTMN; the acc value increased by approximately 0.9 in
the first 30 epochs and then became almost stable. However,
the val_acc value fluctuated at approximately 0.6, and the
final value remained at 0.56. The loss value monotonically
decreased by almost 0, while val_los did not decrease after
100 training epochs.

Figure 15 demonstrates the motion recognition example
with raw sEMG signals. From the top of the figure, 8-channel
raw sEMG signals (1 to 8), representative images of the
target objects, recognition results of the bimodal network
and the single-LSTMN are displayed. Many misrecogni-
tions were successfully reduced using the proposed bimodal
approach. The misrecognitions were observed within the
same category of the target objects.

VI. CONCLUSION
The study proposed a novel neural network model to
recognize object grasping motions. This network uses
bimodal information of the sEMG signals and the object
image sequences and can display two main effects: motion
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recognition accuracy improvement and recognition robust-
ness improvement.

To verify the validity of the proposed method, the motion
recognition accuracy was investigated with 10-class motions
for 25 objects in 5 categories. The experimental results clar-
ified that the proposed method greatly improved motion
recognition performance. In addition, training with the
dataset including abnormal samples enhanced recognition
robustness. We also suggested that the bimodal approach has
the potential to recognize motion directly from the raw sEMG
signal.

In the future, we propose to apply the proposed method
to the real-time control of the vision-based prosthetic hand
in a practical environment. By increasing the number of
motion classes and the number of object categories, we aim
to develop a more practical system.
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