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ABSTRACT In recent years, researchers have proposed many deep learning (DL) methods for various tasks,
and particularly face recognition (FR) made an enormous leap using these techniques. Deep FR systems
benefit from the hierarchical architecture of the DL methods to learn discriminative face representation.
Therefore, DL techniques significantly improve state-of-the-art performance on FR systems and encourage
diverse and efficient real-world applications. In this paper, we present a comprehensive analysis of various
FR systems that leverage the different types of DL techniques, and for the study, we summarize 171
recent contributions from this area. We discuss the papers related to different algorithms, architectures,
loss functions, activation functions, datasets, challenges, improvement ideas, current and future trends of
DL-based FR systems. We provide a detailed discussion of various DL methods to understand the current
state-of-the-art, and then we discuss various activation and loss functions for the methods. Additionally,
we summarize different datasets used widely for FR tasks and discuss challenges related to illumination,
expression, pose variations, and occlusion. Finally, we discuss improvement ideas, current and future trends
of FR tasks.

INDEX TERMS Deep learning, face recognition, artificial neural network, convolutional neural network,
auto encoder, generative adversarial network, deep belief network, reinforcement learning.

I. INTRODUCTION
The human face is a crucial aspect of social communication
and interaction. Humans need to recognize the face of others
for these purposes. Throughout his whole life, a person has
to recognize thousands of other persons’ faces surrounding
him. For human-computer interaction, face recognition is also
essential. Nowadays, it is also widely used in access control,
security, surveillance systems, the entertainment industry.
Improvement of face recognition makes those work easier
and faster. Face recognition can be divided into two types:
face verification and face identification. Face verification is
a 1:1 matching where it simply detects from two images,
whether both images are from the same person or not. On the

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangxiu Han .

other hand, face identification 1:N matching, where it is
needed to determine who this person is in the image among
all possible outputs. Figure 1 shows us the pipeline of Face
Recognition (FR) and Figure 2 shows the block diagram of
FR. FR is a combination of three sub-tasks: face detection,
feature extraction or alignment, and face verification or iden-
tification. Our work mainly focuses on feature extraction
from face images and how those can be classified. Figure 3
shows the percentage of different face recognition techniques
in our review and Figure 4 shows the year wise distribution
of the papers.

A. CLASSICAL FACE DETECTION
Face detection with a machine was started with some simple
statistical techniques. Eigenfaces [1] was one of the most
popular among them. It represents every image as a vector
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FIGURE 1. Face recognition pipeline.

FIGURE 2. Face recognition block diagram.

of weights obtained by projecting on eigenfaces compo-
nents [2]. Researchers also tried to use some other traditional
methods like elastic graph matching [3], Karhunen-Loeve
based methods [4], singular value decomposition [5] for face
recognition. Those methods were mostly tested on small
datasets. Even in some cases, the size of the dataset was less
than 100. Though statistical methods are not quite efficient,
it gives the confidence that the machine itself can recognize
the human face without external interference. It has a long-
lasting certain impact on further improvement.

FIGURE 3. Different deep learning architectures for face recognition.

FIGURE 4. Paper distribution by year.

B. FEATURE EXTRACTION
The performance of any model on any particular dataset
largely depends on the features extracted from the data. After
using various methods on face detection, face alignment is
also done using various statistical methods. Some face align-
ment methods are Active Appearance Model (AAM) [6],
Active ShapeModel (ASM) [7]. Those aligned faces are used
for feature extraction. Some traditional methods for feature
extraction are Local Binary Pattern [8], Fisher vectors [9].
Some dimensionality reduction methods like Principal Com-
ponent Analysis (PCA) [10], Subclass Discriminant Analysis
(SDA) [11] can be used for feature extraction. Depending
on the priority area for feature extraction, it can be divided
into local feature extraction and global feature extraction.
Global feature generalizes the whole image; for example,
Histogram of Gradient (HoG) and Bag of Words (BoW) use
global feature extraction. On the other hand, local features
extract the key points from the image, and one example of
this method is Local Binary Patterns (LBP) [8]. Depending
on how the features are extracted, feature extraction can be
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divided into many types; geometry-based technique, holis-
tic approach, template-based technique, appearance-based
approach, and color-based method are some of them. Also,
several hybrid and hand-crafted [12] methods are tradition-
ally used for face recognition. From time to time, fea-
ture extraction methods have been improved and robustly
extracted more advanced features. So that face recognition
methods can do their job more efficiently. Nowadays, Convo-
lutional Neural Network (CNN) or Deep Convolutional Neu-
ral Network (DCNN) based methods are primarily used for
feature extraction. Taking advantage of these feature extrac-
tion methods, we can implement face recognition efficiently
using traditional machine learning methods like SVM [13].

C. ARTIFICIAL NEURAL NETWORK
Artificial Neural Network (ANN), a network which is
inspired by the biological neurons, got attention from various
researchers. They tried to use it in face recognition in multiple
forms. ANN was constructed for some specific purposes like
data classification or pattern recognition. The main idea of
using ANN for face recognition is to use extract features with
different feature extraction methods and use them in differ-
ent ANN combinations. WISARD (WIlkie, Stoneham and
Aleksander’s Recognition Device) [14] was one of the initial
models of ANN, which was used for face recognition [15].
It has a single-layer adaptive neural network structure. Taking
advantage of Gabor features and LDA feature extraction
models, ANN can recognize persons from images [16].
Fernandez et al. [17] started with detecting the face using
Viola-Jones Algorithm and cropped it. Then they extracted
the skin color, eyes color, the distance between the two eyes,
the width of the nose, the height and width of the lips, and the
distance between the nose and the lips from those cropped
images. Those features are used in an ANN to identify a
specific person.

D. DEEP NEURAL NETWORK
Development of Deep Neural Network (DNN) and applying
them into face recognition systems push recognition further
ahead. DNN can extract more diverse features effectively
from inputs which are never possible for ANN or other
statistical methods. DNN is an extended version of ANN
with multiple hidden layers in it. With some disadvantages,
the more hidden layers in the DNN network, the more robust
feature it can extract. Shepley [18] provided a critical analy-
sis and comparison of different state-of-the-art DNN based
face recognition methods in his survey paper and showed
their benefits and problems. Learned-Miller et al. [19] dis-
cussed different approaches on the LFWdataset in their work.
Balaban [20] provided a brief introduction to the influences of
the state-of-the-art deep learningmethods in face recognition.

E. CONVOLUTIONAL NEURAL NETWORK
Due to the recent progress of Deep Convolutional Neural
Networks (CNNs) [21], [22], the performance of state-of-the-
art methods on image processing has significantly increased.

Most of the CNN-based face recognition tasks are done by
following the conventional pipeline of two steps. First is face
detection and then recognition of those detected faces using
different network architecture [23]–[26]. However, there are
some exceptions too [27]. CNN-based models mainly extract
features from images and use them in face recognition. CNN
can extract handy high-label features that are hard for a
human to understand and different studies did the extraction
in different ways. FaceNet [28] extract high-quality features
from images and predict 128 elements from them and rep-
resent them in a vector named face embedding. This face
embedding is used as the basis for training classifier systems.
Some researchers [25], [29] also tried to recognize face from
videos. Face tracking is the additional step to recognize a face
from different frames of a video. In some controlled environ-
ments, CNN-based face recognition can do much better than
humans.

F. DEEP REINFORCEMENT LEARNING
Reinforcement learning (RL) comes from the eagerness to
mimic humans’ decision-making process. RL agents decide
their behavior from environment experience using Markov
Decision Process (MDP) [30]. Generally, RL is not used
directly in face recognition. It is used as a part of a hybrid
method like CNN and RL or GAN (Generative Adversarial
Network) and RL. The researchers used RL to solve some
problems, for instance, adaptation of loss functions [31],
skewness embedding [32], user authentication [33], and
searching a set of dominant features [34].

G. LOSS FUNCTION
Different deep learning-based face recognition models
mainly differ in three main positions: dataset, network archi-
tecture, and loss function. A loss function is used to evaluate
how well the model can predict the output by mapping with
the actual output. If the model can predict the output properly,
it produces a small value; otherwise, it provides a high value.
Historically, with CNN, traditional softmax [35], [36] can be
used for face recognition. However, some studies [37], [38]
show that traditional softmax is not always quite sufficient
for classification task. So, the researchers pay attention to
develop more powerful loss functions. Most of the loss func-
tions share the same idea of maximizing inter-class distance
and/or minimizing intra-class distance [26], [38]. The prefer-
ence of the loss function used in a model also depends on the
neural networks activation function.

H. DATASET
Finding a properly labeled and large dataset is another
important criterion for developing a new and more accu-
rate face recognition technique. Early dataset like CASIA-
WebFace [39] to recent datasets like MS-Celeb-1M [40],
VggFace2 [41] and IMDb [42] are playing their role
to develop new techniques. With the improvement of
multimedia technology, both datasets and the number
of images are increasing. CASIA-WebFace [39] contains
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0.5M images from 10,575 individuals. On the other hand,
MSCeleb-1M [40] has about 10M images of 100K identities.
As a result, there are some problems in the labeling of the
data. The researchers like Wang et al. [43], Wu et al. [44],
and Deng et al. [45] tried to solve this problem. Depending
on the labeled data, those face dataset can be divided into two
types: open-set and close-set.

I. 3D FACE RECOGNITION
3D face recognition can perform face recognition more effi-
ciently than 2D face recognition. Because it does not face
problems with light, pose, rotation, make-up, or blur images.
Also, geometric information of 3D faces is more reliable than
2D faces. Initially, LDA, PCA, color-based methods, Gaus-
sian, Gabor wavelet approach [3], [46] were mostly used for
3D face recognition. Most of the current methods are depend-
ing on DCNN, GAN, or pose variations. As 3D face data can-
not be used directly in face recognition, some pre-processing
and feature extraction makes those data usable. 3D FR can be
divided into two types depending on the extracted features:
local feature-based methods [47] and global [48] feature-
based methods. There is another technique called hybrid that
is also used in feature extraction. It is a combination of
local and global feature-based methods. It performs better
than each technique individually. However, the main problem
with 3D face recognition is, it does not have a large dataset.
It is also not possible to collect data from websites like 2D
faces. Also, it is a hard and time-consuming task to create
dataset using infrared laser beams or 3D scanning. As a result,
Bosphorus database [49] contains 4,652 scans of 105 indi-
viduals and CASIA-3D FaceV1 dataset [50] contains
4,624 scans of 123 individuals. Researches like [24], [51]
provide ways to generate 3D dataset form 2D dataset.

J. PAPER SUMMARY
We have presented various types of deep learning architecture
of face recognition system. In this paper, we have discussed
different types of models, datasets, loss functions, and lots
of occlusion handling techniques for FR task. A taxonomy
of the deep learning methods, loss functions and activation
functions used for Face Recognition is shown in Figure 5.
Figure 4 shows the year-based distribution of the discussed
papers and the most recent DL-based tasks for face recog-
nition system have been discussed. Figure 3 shows the
discussed DL methods of this paper. In the DL-based FR
system, we have found that CNN plays an important role.
Many types of FR tasks have been proposed based on the
CNN model. Some of them are ResNet50, LightCNN-v9,
SqueezeNetResNet-50, VGG16 and so on [52]. Other Deep
Learning-based algorithms such as Autoencoder (AE), Gen-
erative Adversarial Networks, Deep Belief Networks, Hybrid
Networks, and Deep Reinforcement Learning [53] have been
briefly discussed in this paper. A Table has been constructed
that merged the DL-based FR tasks with datasets, architec-
tures, and accuracy.

Datasets are an essential factor in a machine learn-
ing system. DL algorithms cannot do their job accord-
ing to the user requirements without sufficient features
in the datasets. LFW, YTF, YTC, IJB-A, IJB-B, IJB-C,
CASIA-WebFace, MS-Celeb-1M, IMDb, VggFace2 and
Celebrity-1000 datasets [52] are vastly used to train the
DL-based FR system and test the performance of the model.
We have also categorized some activation functions that are
generally used in FR tasks. Most of these are Sigmoid, Tanh,
Softmax, ReLu, Softplus, Leaky RelU, Parametric ReLU,
ELU, Swish and Maxout [54]. Moreover, we have discussed
Hierarchical Softmax Loss, Contrastive Loss, Triplet Loss,
N-pair Loss, Marginal Loss, Ring Loss, COCO Loss and
Softmax Loss [52]. Still image-based datasets and video-
based datasets are also discussed. We have also took the
most popular LFW dataset for comparing the accuracy of
various models. In conclusion, recent Deep Learning-based
face recognition methods have been thoroughly discussed in
our paper.

K. CONTRIBUTIONS
The highlighted points of this paper are noted below:
• Recent works on DL-based FR tasks have been dis-
cussed in our paper.

• Briefly introduce the new DL-based FR Models. e.g.,
Deep Belief Network, Deep Reinforcement Learning.

• Detail discussion of the loss functions and activation
functions.

L. ORGANIZATION
We have organized the rest of this paper in the following
manner.
• II Deep Learning Methods: Face recognition models
based on Deep Learning.

• III Comparison of Different Deep Networks: Com-
parison of Different Deep Networks by accuracy on a
dataset.

• IV Loss functions and Activation functions: Different
types of Loss functions and Activation functions are
discussed in this section.

• VChallenges in Face Recognition Using Deep Learn-
ing: Occlusion and other various types of challenges has
been discussed.

• VI Face Datasets: Most used still images and video
datasets for Face Recognition tasks have been discussed
in this section.

• VII Future Trends:Various types of application of
DL-based FR tasks with the direction of Future Trends
have been discussed here.

• VIII Conclusion: Overall summary of our work.

II. DEEP LEARNING METHODS
A. CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Network [55] is the most popular
Deep learning algorithm for image recognition, image clas-
sification, pattern recognition, and other feature extraction
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FIGURE 5. Taxonomy of the deep learning methods, loss functions & activation functions used for face recognition.

operation from an image [56]. There are many types of CNN
algorithm. But basically, two types are presented here to
explain the CNN algorithm. One is feature extractor and

the other is the classifier. The name of CNN comes from a
mathematical linear operation between two matrices known
as convolution. In CNN, one matrix is the image and the
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TABLE 1. Overview of CNN based deep learning models.

other is the kernel (operator). Actually, an image is a simple
single channel (gray-scale image) or three-channel (colour
image) matrix, each entry in this matrix is one pixel of the
image. The dimension of the imagematrix is (HxWxD). Here,
H=height, W=width and D=RGB channel for RGB colour
image. The Grayscale image channel contains one and the
colour image channel contains three RGB colour channel.
The kernel (operator) is also a matrix that has dimension
of (MxNxD). Here M and N are arbitrary but most pop-
ular kernels such as Edge detectors or other operators use
3 × 3 size kernel. Here, D means the depth or dimension
of the kernel. The dimension of the kernel is similar to the
image colour channel. Figure 6 describes the architecture of
CNN. In Face Recognition systems, CNN shows an excellent
performance and many models have been built from CNN
architecture. Table 1 shows overview of CNN-based face
recognition systems.

The basic CNN architecture contains four layers: the
convolutional layer, pooling layer, non-linear, and fully-
connected layer. The first two layers are parameterized,

FIGURE 6. Basic CNN architecture [57].

and the other two are non-parameterized [58]. Parameter-
ized layers are convolutional layers and fully-connected lay-
ers. However, non-parameterized layers are nonlinear layers
and pooling layers. However, this architecture may change
according to the problem requirements. After modifying the
CNN architecture, the researchers build many FR archi-
tectures, e.g. VGGNet, GoogLeNet, and ResNet, etc. [52]
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Most deep face recognition systems work in a supervised
fashion [59].

Resnet50 is a CNN-based architecture that contains 50 lay-
ers and used for the supervised learning. A new dataset
has been created manually named VGGFace2 [41], which
was used to train ResNet50 and SqueezeNet-ResNet-50 [52]
models. Wen et al. [60] proposed a novel approach for age-
invariant face recognition. The author claimed it as the first
deep CNN-based age-invariant work. They used the largest
dataset of age-invariant for training and tested and discussed
the accuracy on various datasets.

Hu et al. [67] presented a CNN-based process, which
improved face recognition performance. They added an extra
layer with CNN, which was equivalent to Gated Two stream
Neural Network (GTNN). Here, the authors proposed a robust
nonlinear tensor-based fusion framework for face recogni-
tion, which can optimize Face Recognition Feature (FRF)
and Face Attribute Feature (FAF) using low-rank tensor opti-
mization and a GTNN. First, they systematically investigated
and verified the various face recognition scenario, such as
pose and illumination. Then, the authors applied a low-rank
Tucker-decomposition of a tensor-based fusion framework,
equivalent to GTNN, optimized by a neural network. The
authors got 99.65% accuracy on the LFW dataset and 99.94%
on CASIA NIR-VIS2.0 (Cross-modality environment).
However, 100% accuracy was achieved using ±45◦ pose
angle.

Face recognition accuracy has been improved using a pre-
trained model of VGG-Face net and Lightened CNN [68].
A comprehensive analysis has been done based on some
occlusion conditions. These conditions are upper and lower
face occlusion, varying head pose angles, misalignment due
to erroneous facial feature localization, and changing illumi-
nation of different strengths. Five popular datasets are used
in this experiment. These datasets are AR face database,
CMUPIE, ExtendedYale dataset, Color FERET database and
FRGC database. The authors [68] claimed that the FaceNet
model achieved 95.12% accuracy on the YTF dataset and
99.63% accuracy on the LFW dataset. Again, applying the
DeepFace Network increases the LFW datasets’ accuracy,
which is 97.35% and the accuracy for the YTF dataset is
91.4%. DeepID network was trained on the Celebrity Faces
dataset (CelebFaces) and tested on the LFW dataset, and
achieved an accuracy of 97.45%. After modifying some
architecture of the VGG-Face net and Lightened CNNmodel,
the performance was also evaluated. Some factors such as
illumination, occlusion, misalignment, and head pose had
reduced the face recognition accuracy of the Deep learn-
ing model. In these cases, VGG-Face has achieved better
performance than Lightened CNN. Five popular datasets,
the AR face database, CMU PIE, Extended Yale dataset,
Color FERET database, and the FRGC database, had been
used in this experiment.

A new face identification-verification technique using
a Deep Convolution Network was proposed, known as
Deep IDentification-verification features (DeepID2) [69],

by increasing inter-personal variations and reducing intra-
personal variations of images. LDA, Bayesian face, and
unified subspace models have limitations. These models
are developed to handle inter and intra-personal variations.
However, when the variations are more complex, these mod-
els show limited performance and achieved 99.15 ± 0.13%
accuracy gain on the LFW dataset.

Chen et al. [62] proposed a low-resolution face recog-
nition (LRFR) model. LRFR can perform creditably at the
low resolution of the face smaller than 32*32 pixels. The
authors gave priority to both angle discrepancy and mag-
nitude discrepancy or magnitude gap between high reso-
lution (HR) and corresponding low resolution (LR) face
pairs. The purpose of the article was to recover the identity-
aware information for LRFR. LR faces increase the angle
and magnitude gap of the features. The authors claimed
that all super resolution-based methods reduce the angled
gap and magnitude gap among the features. That is why
the super-resolution network achieved 98.46% accuracy on
LightCNN-v9 and 98.98% on LightCNN-v29, which outper-
formed other renowned methods.

To perform face verification and face re-identification task,
Yu et al. [65] proposed a Deep Discriminative Representa-
tion Learning (DDRL) network. It has two parts a DCNN
based encoding network and a distance metric module. Here,
they used l2 distance to verify the two images were the
same or not. On the other hand, they used softmax for face
identification. Pointing out some problems with two folds
face recognition, Wu et al. [27] proposed an end-to-end face
identification method. Gathering inspiration from the spatial
transformer, they proposed a module called Recursive Spatial
Transformer (ReST). Their model has three parts: convolu-
tion layers, localization network, and spatial transformation
layer. A DCNN (modified AlexNet) network with a softmax
layer follows ReST and identifies the faces from the images.
They also mentioned three different types of HiReST depend-
ing on the number of hierarchies (0-2).

On the other hand,Wang et al. [66] used an advanced CNN
network for face recognition. They used a pyramid diverse
attention to introduce multiple attention-based local branches
at different scales to emphasize different discriminated facial
regions at various scales automatically and adaptively. They
presented a hierarchical bilinear pooling to combine features
from different hierarchical layers. Lai et al. [23] used the idea
to detect pores from face images for face recognition called
PoreNet. At first, They extracted the pore features from high
regulation face image using a scale-normalized Laplacian
of Gaussian (LoG) blob detector. Then they matched those
features with other images to classify them. They used Grid-
basedMotion Statistics (GMS) [74] to reject outline. PoreNet
is modified version of HardNet [75]. A novel approach was
proposed by Wen et al. [60] for Age Invariant Face Recog-
nition (AIFR). This approach is a robust age-invariant deep
face recognition framework. It is the first deep CNN-based
age-invariant work, as they claimed. The coupled learning of
latent factor-guided CNN (LIA-CNN) is beneficial to AIFR.
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TABLE 2. Overview of auto-encoder based deep learning models.

FIGURE 7. Basic auto encoder architecture [81].

It minimizes the classification error and maximizes the likeli-
hood probability that latent factors generate from the training
samples.

Yang et al. [29] presented a method for face identifi-
cation and verification with a variable number of inputs
face from image or video called Neural Aggregation Net-
work (NAN). They extracted features from the image using
CNN (GoogLeNet) network. Those features were passed
through two attention blocks and assigned linear weights
for them. For face verification, they used Siamese neural
aggregation network and minimized average contrastive loss.
Moreover, for face identification, they used a fully-connected
layer followed by a softmax and minimize average classi-
fication loss. On the other hand, Kim et al. [25] mainly
developed a method for face recognition from the video.
This method also considers the upper body along with the
face. In that paper, face detection was done by the same
method as mentioned in [76] with some improvement in the
network. Then they associated the body pose detected by
OpenPose [77] with face information. Finally, these two data
are used for face recognition with ResFace101 [21]. Besides
mentioning a method for augmenting the 3D face dataset,
Gilani and Mian [24] proposed a method to recognize them
called FR3DNet. Their method maintains the same CNN-
based architecture as [69] with some changes in convolution
layers.

B. AUTO ENCODER
Reconstructing an image from a noisy image is one of the
great challenges for face recognition systems. Noisy images
decrease the performance of a recognition system. Auto-
Encoder is an excellent way to reconstruct an image. Table 2
shows the summary of auto-encoder techniques and perfor-
mance. Auto-encoder is an unsupervised feature learning-
based deep neural network which encodes and decodes the
data efficiently [78]. It can automatically learn robust features
from the large size of unlabeled data [79] and for this reason,
the researchers use the autoencoder to encode the input into
dimension reduction and represent it with significance. This
technique has two stages: one is encoding, and the other is
decoding. The entire architecture contained one or more hid-
den layers with an input and an output layer. In the encoding
stage, the input compresses into a lower-dimensional feature
with a meaningful representation. This process is continued
until the required dimension is achieved. The next stage is
the decoding phase. In this phase, the process is reversed to
generate essential features from the encoded stage. The back-
propagation is applied at the time of training models. The
setting is set in the layer-by-layer decoding stage according
to the input target size; thus, the error can be minimized.
It decodes again, reconstructing the output similar to the
original input. There are many variations in autoencoder
techniques, for example, the denoising autoencoder [80] tech-
nique was proposed to improve the image representation
ability of the autoencoder. A basic architecture is shown
in Figure 7.

Though autoencoder combines the generative and learning
properties to learn in an unsupervised manner, sometimes
it can learn disentangled representations. Adversarial Latent
Autoencoder (ALAE) [82] was proposed to handle this type
of limitation. ALAE architecture improves the training pro-
cedure of GAN. Manifold-value data comes from the med-
ical image. Higher-dimensional data arise when Magnetic
Resonance Imaging (MRI) on brain connectomes in cog-
nitive neuroscience. This higher dimensional space cannot
reduce using PCA and for this reason, uncertainty arises
when analyzing manifold-value. To overcome this situation
Miolane and Holmes [83] proposed a Riemannian variational
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TABLE 3. Overview of GAN based deep learning models.

FIGURE 8. Basic GAN diagram [96].

autoencoder but in low light condition, face recognition mod-
els cannot perform properly. To solve the problem, Face
matching in cross-domain thermal to visible techniques have
been proposed. A deep autoencoder [70] based method learns
from mapping between thermal and visible face images.
Extensive works have been done using theDeep autoencoders
and facial expression that can recognize images by reducing
the dimensions [84].

The age-invariant problem in face recognition systems
was solved by a couple of autoencoder-based face recogni-
tion techniques (CAN) [73]. CAN is constructed from two
autoencoders and performed well for aging and de-aging
on the complex nonlinear process using two shallow neural
networks.

C. GENERATIVE ADVERSARIAL NETWORK
Generative Adversarial Networks are another kind of unsu-
pervised deep learning method. It automatically discovers

and learns the regularities or patterns from the input data.
Figure 8 shows the block diagram of a GAN. The GAN
model includes two sub-models: a generator model for gen-
erating new features and a discriminator model for classi-
fying whether generated features are actual, taken from the
domain, or fake, generated by the generator model. GANs
are based on a game-theoretical schema where the generator
network has to contend against an adversary. The generator
part generates features and examples directly from its adver-
sary, and the discriminator part tries to differentiate among the
samples taken from the training data and the samples taken
from the generator [97]. Table 3 describes the overview of
GAN methods.

GANs are utilized in solving general face recognition
problems as cross-age face recognition, face synthesis, pose-
invariant face recognition, video-based face recognition,
makeup-invariant face recognition, and so on. For exam-
ple, R3AN architecture [85] was proposed for cross model
FR problem. It divides the method into three paths: recon-
struction, representation, and regression for training. More-
over, using a mapping function, it maximizes the conditional
probability. TR-GAN [91] was proposed as a cross model
over thermal to RGB. Here, GAN is used for loss training,
and the generator part synthesizes images with fine details.
For improving the performance of NIR-VIS heterogeneous
samples, ACSFC [86] was proposed. It prototypes a high-
resolution heterogeneous [98] face synthesis with two com-
ponents: a texture inpainting component and a pose correction
component. A novel 3D pose correction loss, two adversarial
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TABLE 4. Overview of deep belief network based models.

losses, and a pixel loss are used for generating results.
DA-GAN [90] was proposed to do face synthesis under
extreme poses. It merges the knowledge from adversarial
training and domain from perception losses and projects 3D
face image into 2D face image space.

A novel framework AFRN-GAN [87] was proposed for
cross-age face recognition. It combines transfer learning
(TL) and adversarial learning (AL). The discriminator part is
trained to discriminate the age information, and the generator
part extracts features using TL and suppresses age informa-
tion using AL. Age-cGAN [88] was proposed to improve
the aging system. However, it fails to improve much in the
face verification sector. For overcoming this, Age-cGAN+
LMA [89] was proposed. This combination improves the
drawbacks of Age-cGAN. An encoder-decoder structure-
based Disentangled Representation learning-Generative
Adversarial Network, DR-GAN [92], was proposed to solve
the large pose variation. Here, generator takes a face image,
a pose-code c, and a random noise vector z as the inputs to
generate a face of the same identity with the target pose that
can fool the discriminator. It works on both single image and
multi-image. CpGAN [93] was proposed for heterogeneous
face recognition. This model has two sub-networks; each
has a separate GAN. The first sub-network is for the visible
spectrum, and the other one is for the non-visible spectrum.
The authors used a dense encoder-decoder structure with
multiple loss functions to keep the features from each sub-
network close to each other. They also used perceptual loss
function in the coupling loss function.

D. DEEP BELIEF NETWORK
Traditional DNN-based networks have some problems such
as stuck at local optima, slow learning and require a lot of
training datasets. A type of DNN was proposed to cope with
those problems, a composite of multiple hidden units called
Deep Belief Network (DBN) [99]. In DBN, hidden units of
different layers are internally connected, but the units of the
same layers are not connected. It can be treated as a sequence
of restricted Boltzmann machines (RBMs) or autoencoder
where each hidden sub-layer works as a visible layer for
the next hidden sub-layer. It generally ends with a soft-
max layer for classification. Figure 9 describes the Deep

FIGURE 9. Deep belief network architecture.

Belief Architecture. Table 4 shows a brief overview of the
deep belief network works on face recognition.

Taking advantage of convolutional restricted Boltzmann
machines (CRBM), Huang et al. [100] developed a novel
method to learn face recognition features. It is a local CRBM
and applied to high-resolution images. They cropped the
images into three different sizes and used them as inputs.
Then, they divided the images into some overlapping regions
and assigned a different set of weights for a different region.
After that, they applied Information-Theoretic Metric Learn-
ing (ITML) [101] to produce a Mahalanobis matrix [102].
Finally, a linear SVM [13] was applied to perform face ver-
ification. Fan and Hu [103] used DBN on a small Olivetti
Research Laboratory (ORL) [106] dataset with two hidden
layers with 500 units per layer for face recognition. As the
dataset is small, the model might overfit. So, they randomly
added 50% dropout to reduce that. As a result, their model
achieved high accuracy, as they claimed. However, they
did not mention how the dropout would react on a larger
dataset.

On the other hand, Annamalai [104] divided the face
recognition task into five sub-steps: image collection, image
de-noising, feature extraction, optimization, and classifica-
tion. The collected images are from ORL [106], YALE [107],
and Face Semantic Segmentation (FASSEG) [108] databases.
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TABLE 5. Overview of hybrid models based face recognition.

They used Histogram equalization for image de-noising,
Local Ternary Pattern (LTP) [109] and Binary Robust Invari-
ant Scalable Keypoints (BRISK) [110] for feature extrac-
tion and enhanced fire-fly [111] for optimization. Finally,
a DBN network is used to classify the facial images.
Bouchra et al. [105] made a comparison between three mod-
els on BOSS [105] and MIT [112] dataset. Those models
are DBNwith four layers, Stacked Auto-Encoder (SAE) with
three layers, and Back Propagation Neural Networks (BPNN)
with three layers. DBN outperformed the other twomodels on
both datasets. DBM is sometimes used for liveness detection
as an extended part of face recognition [113].

E. HYBRID NETWORK
A hybrid model is a combination of two or more generic
machine learning models to improve the overall performance
of the model. In this technique, one algorithm augments
another algorithm to solve problems precisely. Most of the
time, a single machine learning algorithm is designed for
a particular task. However, when two or more algorithms
are combined, the performance of the hybrid model sig-
nificantly increases. Some hybrid models are CNN+GAN,
CNN+AE, GAN+RL, etc. Table 5 shows the summary of a
Deep learning-based hybrid models for the face recognition
system.

Sun et al. [114] proposed a combining ConvNet Restricted
Boltzmann Machine for face verification. Generally, when
the dataset comes with a high dimension and more com-
plex feature vector, the dataset is needed to be compressed
for feature extraction. Hybrid models are more robust pro-
cess than a single algorithm for extracting features. CNN
extracts features from two images; hence we can compare
that both are similar or not. Here, the RBMmethod calculates
the inference of image features to overcome the complex-
ity. Singh et al. [115] combined DBMs and AEs for face
recognition. This model follows the regularize-based process

that easily learns facial-invariant problems. This method
improves accuracy significantly. Goswami et al. [116] pro-
posed a hybrid model named MLDFace. It is a combination
of DBMand a stack of DenoisingAutoencoders for the video-
based face recognition framework. Another face recognition
hybrid model, Conditional Adversarial Networks [117], was
proposed to combine DCNN and GAN for cross-modality
learning.

Instead of using traditional handcrafted features such as
LBP or HOG, Liu et al. [63] introduced a two-stage face
recognition method. It shows high-performance in the real-
world face recognition system. Multi-patch deep CNN and
deep metric learning methods are combined to build this
model. This method can recognize faces with variant poses,
occlusions, and expressions correctly. However, the number
of faces and identities, data size, and the number of patches in
training data are crucial for achieving the final performance.
After a certain number of patches, the error rate of test data
increases due to overfitting issues. When the authors com-
bined tenmodels and train the data with that combinedmodel,
it showed the best result.

Yang et al. [29] proposed Neural Aggregation Network
(NAN) for video database based face recognition. This hybrid
network is made using GoogleNet and Siamese neural aggre-
gation networks. The authors extracted features from the
image using CNN (GoogleNet), which passed through two
attention blocks. For face verification, they used Siamese
neural aggregation network and minimized average con-
trastive loss. For face identification, they used a fully con-
nected layer followed by a softmax and minimize average
classification loss. A hybrid network was proposed combin-
ing VGG-net and GoogLenet, named DeepID3 [118], that
improved face verification and identification accuracy using
very DNN architecture. DeepID3 network is rebuilt from
VGG-net and GoogLenet to change their exterior architec-
ture. DeepID3 network shows excellent performance on LFW
faces in verification and identification. When training on
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TABLE 6. Overview of deep RL based models.

FIGURE 10. Basic RL diagram [123].

large-scale data, the efficiency will be increased. When the
face labels are accurate, the accuracy of DeepID3 is 99.52%
on the LFW dataset and 96.0% on the LFW Rank-1 dataset.
DeepID3 net1 and DeepID3 net2 reduce the error rate by
0.81% and 0.26% compared to DeepID2+ net.

F. DEEP REINFORCEMENT LEARNING
Reinforcement Learning learns from the adjacent environ-
ment. It originated from humans’ decision-making proce-
dure [30], enabling the agent to decide the behavior from its
experiences by trial and error. Figure 10 describes the basic
Reinforcement Learning state diagram. The combination of
Deep Learning and Reinforcement Learning is used mainly
in face recognition. Researchers use it in various sectors of
Face Recognition. Table 6 shows a brief overview of RL in
the face recognition method.

In RL-RBN [32], the racial bias of face recognition has
been reduced. The authors also proposed an optimal margin
loss for this model. The authors had created two train datasets
and applied the RL-based race-balance network. They also
used the Markov decision process (MDP) to find the optimal
margin for non-Caucasians. They worked on the self-created
dataset. Duong et al. [121] used Deep RL for the face aging
technique. It generates a future face of old age from a young
face in a video frame. Here, the first step is to take feature
embedding using CNN and normalize using VGG-19 with an
additional extra conv3_1, conv4_1, conv5_1 layers. In this

model, deep RL is used for neighbor selection. It can exploit
the temporal relation among two consecutive frames. Here,
each 900× 700 resolution video frame needs 4.5 minutes.
In Fair Loss [31], the authors used Deep Q-Learning to

train an agent to learn a margin-adaptive strategy to make the
additive margin more reasonable for various classes. More-
over, it solves the class imbalance problem. In this model,
first, they trained a CNN by manually changing the margin
in the loss to collect a series of samples. Then, the samples
were used to train an agent for the margin-adaptive strategy.
Finally, they trained fair loss networks with margins changing
by the action outputs from the agent. They used a two-layer
fully connected network with proposed Q-function; a ReLU
activation function follows each layer.

For video face recognition, an attention-aware deep rein-
forcement learning (ADRL) [119] was proposed. The authors
made a system of finding videos’ attention as a Markov
decision process and used deep RL for training the atten-
tion model. They took a pair of face videos as the input of
the attention model. This framework has two parts: feature
learning and attention learning. The first part is processed
with a deep CNN model, a recurrent layer, and a temporal
pooling layer, and the second part is a frame evaluation
network, which produces the values of the frames. They
introduced a flexible local bi-directional recurrent layer and
a local temporal-pooling layer using long short-term memory
(LSTM). They tried to adopt a human strategy using rein-
forcement learning to remove the worst frames step by step.
The remaining frames are the most sensitive ones.

III. COMPARISON OF DIFFERENT DEEP NETWORKS
We have set LFW dataset as the benchmark dataset and
compared all the proposed methods’ accuracy in Table 7.
In the Table, we place the FR methods from different years.
In Figure 11, we have shown a gradually increasing graph
of the performances. Though in 2016, the accuracy dropped
by 0.1%.

However, this comparison is based on the data from the
renowned models. After this, we take methods tested in the
YTF dataset and present their accuracy in Table no 8.
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TABLE 7. Verification accuracy of the deep learning methods on LFW dataset.
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TABLE 7. (Continued.) Verification accuracy of the deep learning methods on LFW dataset.
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TABLE 8. Verification accuracy of the deep learning methods on YTF dataset.

FIGURE 11. Accuracy distribution by year on LFW dataset.

IV. LOSS FUNCTIONS & ACTIVATION FUNCTIONS
A. DIFFERENT LOSS FUNCTIONS
The use of loss functions is an essential factor in machine
learning-based methods. It helps the machine to learn and
predict the results. If the expected result defers from the
actual result in the training time, then loss functions try to
minimize the difference and help to generate a better predic-
tion. In Table 9, the classical loss functions and recent loss
functions are described shortly.

1) CONTRASTIVE LOSS
Contrastive loss is a distance-based loss function used to com-
pute the distance between the actual output and the predicted
output. It provides the pairwise distance between two points
through an equation. Contrastive loss can be shown like this:

Dw(X1,X2) = ||Gw(X1)− Gw(X2)|| (1)

Here, we need to optimize the shared parameters w.Gw(X1)
andGw(X2) are the two points in the low-dimension space that
generated by mapping images x1 and x2. If x1 and x1 belong
to different class then contrastive loss function value will be
large. Otherwise, the value will be small.

2) TRIPLET LOSS
Triplet loss [156]mainly focuses on both intra-class and inter-
class difference. It creates a triplet which consists of baseline
xb, positive image xp and negative image xn. Mathematically
it is defined by:

TL(xb, xp, xn)=max(||xb−xp||2−||xb−xp||2+α, 0) (2)

At first, three face images are needed to be provided where
two of them are from the same person, and the third one is
from a different person. This loss function’s objective is to
minimize the distance from the baseline to the positive image
(xb − xp) and maximize the distance from the baseline to the
negative image (xb−xn). The negative image should be away
from the positive image by a margin α, just like SVM. It is
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mainly used for face verification tasks. Liu et al. [63] used
this loss in their matrix learning step to reduce the features’
dimension. FaceNet [28] also used this loss in their work.

3) N-PAIR LOSS
N-pair loss [157] is more general version of triplet loss. It is
applied on N + 1 images. Among them N − 1 are negative
images and one positive image. The N-pair loss with N + 1
example is defined by:

NP(x, x+, {xi}
(N−1)
i=1 ; f ) = log(1+

N−1∑
i=1

exp(f T fi − f T f +))

(3)

Here, f is an embedding kernel. The deep neural network
defines it. x+ is the only positive example, and x1, . . . , xN−1
are negative examples. When the number of negative exam-
ples is one, it works similarly to triplet loss.

4) MARGINAL LOSS
By minimizing the intra-class variances and maximizing the
inter-class distances of the in-depth features, Deng et al.
proposed a loss function to enhance discriminative power
called marginal loss [61]. It mainly focuses on the marginal
example and tries to minimize the difference between them.
The function of marginal loss can be shown like this:

Lm =
1

m2 − m

m∑
i,j,i6=j

(ξ − yij(θ − ||
xi
||xi||
−

xj
||xj||
||
2
2))+ (4)

Here, xi and xj are input images. θ is the threshold mar-
gin, and ξ is the error margin for classification. yij becomes
−1 or 1 depending on whether xi and xj are in the same
class or not. (u)+ indicates that u is positive or zero. For
marginal loss, ||xi − xj|| is close to θ when xi and xj are
from the same class otherwise is considerably away from
θ . Marginal loss can work individually or along with other
traditional loss functions like Softmax.

5) RING LOSS
Feature normalization through traditional normalization
results in a non-convex formulation. To solve this,
Zheng et al. [26] proposed an elegant normalization approach
for the deep neural network called Ring loss. Mathematically
it can be written as LR and shown in equation 5.

LR =
λ

2m

m∑
i=1

(F(xi)− R) (5)

For image xi, F(xi) is the feature from deep neural network.
Here,m is the batch size, and λ is the variable weight that has
significant impact on the main loss function LR. Moreover,
the target norm valueR is also learned. In Ring Loss, Softmax,
large-margin Softmax, or SphereFace is used as the primary
loss function.

FIGURE 12. Softmax diagram.

FIGURE 13. L-Softmax diagram [133].

6) CONGENEROUS COSINE LOSS (COCO LOSS)
Liu et al. [158] proposed this loss by minimizing the cosine
distance between samples. It reduces the complexity and
normalizes the inputs. It also enlarges the distinction between
inter-class and decreases the variation between inner-class.

7) SOFTMAX LOSS
The Softmax or Softargmax function is a generalization of
logistic function to multiple dimensions [162]. It is com-
monly used in deep learning and neural networks. It is a
combination of Softmax activation and cross-entropy loss
that outputs the probability for every class, and later these
will be summed up, shown in Figure 12.

8) LARGE-MARGIN SOFTMAX LOSS (L-SOFTMAX)
It is a modified softmax loss function that works with the dis-
tances between classes in CNN, proposed by Liu et al. [133].
It tries to maximize the distance between different classes
and minimizes the distance between the same classes. As a
result, intra-class compactness and inter-class separability
boost the performance of recognition and detection tasks.
It can also avoid overfitting. Figure 13 shows the workflow
of L-Softmax.

9) HIERARCHICAL SOFTMAX
A faster and alternative loss function of Softmax is Hierar-
chical Softmax. The time complexity of Softmax is O(n),
where it can be done by Hierarchical Softmax in just O(logn)
time. In computation, it uses a multi-layer binary tree where
each class is in the trees’ leaf node, and each edge contains
a probability value. The probability is calculated with the
product of values on each edge from the root to that node from
that tree. The main advantage of hierarchical Softmax is that
it works faster than the Softmax function. Wang et al. [163]
used hierarchical Softmax with ABASNet in their multi-face
recognition method.

10) ANGULAR SOFTMAX LOSS (A-SOFTMAX)
Liu et al. [37] proposed a model called SphereFace where
they used a new loss that incorporates the angular margin.
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TABLE 9. Loss functions.

They changed the decision boundary of softmax loss to
||W1|| = ||W2|| = 1 and b1 = b2 = 0, which are weight
and bias. So, the decision boundary becomes ||x||(cos(θ1) −
cos(θ2)) = 0. Then, the decision boundary only depends on
θ1 and θ2. It directly optimizes the angles, enabling CNNs
to learn angularly distributed features. They used an integer
(m > 1) to quantitatively control the decision boundary and
used it with θ1 and θ2 respectively in two classes, where m
controls the size of the angular margin.

11) ADDITIVE MARGIN SOFTMAX LOSS (AM-SOFTMAX)
Wang et al. [159] proposed AM-Softmax for deep face verifi-
cation. It is instinctively appealing andmore efficient than the
existing loss in margin-based work. It normalizes the weight
and bias like A-Softmax. It uses an entirely new hyperpa-
rameter s, which measures the cosine value. The decision
boundary is also adjusted according to the loss.

12) L2-SOFTMAX LOSS
For solving the performance gap of similarity score between
positive pairs and negative pairs, Ranjan et al. [160] pro-
posed a new loss L2-constrained Softmax Loss. It has an
L2-constraint in feature descriptors which constricts the fea-
tures to be on a fixed radius hypersphere by keeping the
L2-norm constant. Forcing it to stay in a fixed radius mini-
mizes the cosine similarity between the negative and positive
pairs.

13) ADDITIVE ANGULAR MARGIN LOSS (ArcFace)
Deng et al. [45] proposed a new loss function called Additive
Angular Margin Loss (ArcFace). It can obtain highly dis-
criminative features for FR and stabilize the training process.
Moreover, it also has a clear geometric interpretation due to
its exact correspondence to geodesic distance on a hyper-
sphere. The dot product between the DCNN feature and the
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last fully connected layer is equal to the cosine distance after
feature and weight normalization. The arc-cosine function is
used to determine the angle between the current feature and
the target. The authors fixed the bias as zero, transformed the
logit, fixed the individual weight by l2 normalization, fixed
the embedding feature, and rescaled it.

14) NOISY SOFTMAX LOSS
Chen et al. [161] tried to solve softmax loss’s early saturation
behaviour by proposing noisy softmax loss. It migrates the
early saturation problem by injecting annealed noise for every
iteration and also brings continuous gradient propagation,
which dramatically encourages the SGD solver.

15) CosFace: LARGE MARGIN COSINE LOSS (LMCL)
Wang et al. [143] proposed a novel loss function, namely
Large Margin Cosine Loss (LMCL). They applied L2 nor-
malizing in both features andweight vectors and reformulated
the softmax loss as a cosine loss. Then, a cosine margin term
m was introduced to maximize the decision margin in the
angular space, dubbed Large Margin Cosine Loss (LMCL).
The model, which is trained with LMCL, is named as Cos-
Face. Authors contributed in 3ways: (1) proposed a novel loss
function called LMCL, (2) provided theoretical analysis for
LMCL. (3) advanced the state-of-the-art performance over
most of the famous face databases.

16) FAIR LOSS
For solving the imbalance problem, Liu et al. [31] proposed
a new margin-aware reinforcement learning-based loss using
Deep Q-Learning. They explored the adaptive boundaries
between classes and proposed to balance the additive margins
between various classes. They imitated all changes in additive
margins for classes in the training process and collected
influence on the training model. They concluded a strategy
of adaptive margin by using Deep Q-learning.

17) CurricularFace: ADAPTIVE CURRICULUM
LEARNING LOSS
Huang et al. [148] proposed a credible method named Curric-
ularFace using Adaptive Curricular Learning. CurricularFace
solves convergence issues of features. It mainly addresses
easy samples in preliminary stages and complex samples in
later stages. Firstly, the curriculum construction is adaptive;
the samples are randomly selected in each mini-batch. The
curriculum is established adaptively via mining the hard
online, which shows the diversity in samples with different
importance. Secondly, the priority of complex samples is
adaptive. The misclassified samples in mini-batch are chosen
as complex samples and weighted by adjusting the modula-
tion coefficients of cosine similarities between the sample and
the non-ground class vectors.

B. DIFFERENT ACTIVATION FUNCTIONS
The activation function defines output depending on a given
single input or a set of inputs in a node. It detects how

much that node will contribute to the next node or nodes.
The activation function can be both linear or non-linear.
For deep learning, non-linear activation functions are highly
preferable. Those can give a highly accurate output than the
linear activation functions. There are many types of non-
linear activation function. Table 10 shows a brief overview
of commonly used activation functions.

1) SIGMOID
Sigmoid is one of the most popular probability functions.
There are many types of sigmoid activation functions; one
of them is the logistic activation function. It takes all possible
values as input and provides output in the range of 0-1. Its
output is an ‘‘S’’-shaped curve, also called a sigmoid curve.
It is mainly used in the last layer to predict the output. It can
show the probability of a new data point of being that class.
The main problem with sigmoid is that it cannot handle the
vanishing gradient problem. It can only predict two classes;
it is not possible to classify in multi-class with sigmoid
activation. Some other sigmoid activations are used in face
recognition are Adjustable Generalized Sigmoid, Sigmoidal
selector.

2) TANH
Hyperbolic tangent Activation Function, also known as Tanh
activation function, is another sigmoid type activation func-
tion. Its output graph is also ‘S’-shaped curve ranging
between −1 to 1. It is mainly used in feed-forward neural
networks. Being zero means it can handle both positive and
negative values easily. It works better than the sigmoid acti-
vation function in almost all situations. Like sigmoid, it also
cannot handle the vanishing gradient problem and cannot
classify in multi-class.

3) SOFTMAX
Softmax is another popular activation function for DCNN,
DNN,machine learningmodels. It is primarily used in the last
layer for multi-class classification. It converts the output as a
vector of probabilities of that data is in each class. The sum of
the possibilities is one. It can take positive, negative, or zero,
all possible values. It provides one output for every possible
class in a normalized form in the range of 0 to 1. It solves
the main problem of sigmoid and tanh activation function.
It can classify into multi-class. Almost all CNN or DCNN
based face identification researches, including [27], [65] used
softmax in their last layer.

4) ReLU
Rectified Linear activation function or ReLU [164] is one
of the most popular and sometimes default activation func-
tions for many DCNN based models. It is a piecewise linear
activation function that takes all possible values as input and
output only when the values are positive and sets all negative
values as zero. Its output range is 0 to infinity. Solving the
vanishing gradient problem is not possible for Sigmoid and
Tanh activation function, but it can be solved with ReLU.
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TABLE 10. Activation functions.

ReLU is faster than most of the other activation functions.
ReLU also faces some problems. Its centre is not at zero
and has no maximum limit. It sometimes comes to a state
where the neuron becomes inactive and stuck there, especially
in the first few layers. Also, no backpropagation can take
the neuron out of it. It is called the dying ReLU problem.
All popular DCNN based models for face recognition models
use ReLU in their internal convolution layers. A smoother
version of ReLU is Softplus [165]. Some other methods,
including [171] use softplus as an activation function for their
face recognition methods.

5) LEAKY ReLU
Leaky Rectified Linear Activation, also known as Leaky
ReLU or L-ReLU [166], is also a piecewise activation func-
tion that works with the same idea as ReLU. The only differ-
ence between ReLU and Leaky ReLU is when the input value
is negative. Instead of setting zero like ReLU when the value
is negative, Leaky ReLU multiplies the value with a small
number a (generally .01). So the negative portion gets a value
but very small. It is an attempt to solve the dying ReLU prob-
lem. However, linearity is the main problem of leaky ReLU.
So it cannot be used in complicated classification tasks. Also,
it is hardly possible to find out the perfect multiplayer value a.

6) PARAMETRIC ReLU
Parametric Rectified Linear Activation or Parametric
ReLU or P-ReLU [167] is another version of Leaky ReLU.
However, unlike Leaky ReLU, P-ReLU takes the slope of
the negative portion as parameter a. The neural network
finds it through gradient descent. It solves the problem of
a predefined multiplier from Leaky ReLU. Nevertheless,
it creates a new problem; it can act differently in a different
situation.

7) EXPONENTIAL LINEAR UNIT (ELU)
Exponential Linear Unit was also known as ELU [168]. It is
also a piecewise activation function. It provides the same
value as input, when the value is positive. However, when the

input value is negative, its output is exp (x)− 1 multiplied by
a constant value. The constant value is generally 0.1 or 0.3.
As a result, it does not suffer from vanishing and exploding
gradients problem. As it does not stick at zero on a nega-
tive value, so does not suffer from dying neuron as ReLU.
Moreover, the most significant advantage is that it provides
higher accuracy, and training timing is faster than ReLU in
the neural network. Another type of ELU that also used in
face recognition is Parametric ELU.

8) SWISH
Swish [169] also provides a ReLU like output, where the
input value is highly negative. The difference is that it does
not change certainly at zero. From zero, it bends towards a
negative value depending on a variable and creates a smooth
curve. For positive values, it provides a positive output.
In the Deep Neural Network test, swish always performs
better than ReLU with every batch size. It is used in face
recognition in [182].

9) MAXOUT
Maxout [170] is a simple piecewise activation function that
provides the maximum of the input. It is a generalization of
ReLU and Leaky ReLU activation functions. It takes advan-
tage of the ReLU unit but does not have drawbacks. The
main problem with maxout is that it doubles the number of
computations in each neuron. As a result, it is much slower
than ReLU. FaceNet [28] model used maxout activation in
their fully connected layer for face recognition.

V. CHALLENGES IN FACE RECOGNITION USING
DEEP LEARNING
Many challenges can be seen when we use face recognition
in real-life scenarios. Those challenges keep us from getting
the perfect accuracy. Deep learning methods try to solve
the drawbacks and significantly improve accuracy. In recent
years researchers focused on solving the challenges. We can
notice several challenges in still image-based face recognition
(SIFR), video-based face recognition (VFR), heterogeneous
face recognition (HFR), etc.
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TABLE 11. Overview of still image-based face recognition.

A. STILL IMAGE-BASED FACE RECOGNITION
We can see more than half of the published papers on face
recognition are on solving the SIFR challenges in the past.
The problems are solved using CNN, AE, GAN, RL, etc. The
researchers focus on solving pose variations problems, cross-
age, illumination changes, facial makeup and expression vari-
ations. Table 11 shows the summary of still image based face
recognition methods.

1) POSE-INVARIANT
Nowadays, CNN-based models of face recognition have two-
step pipeline: face detection and face recognition. In the
ReST [27] paper, the authors discussed the problems of
this two-step pipeline. Sometimes the alignment step trans-
forms all faces into the same, and this causes geometrical
information loss. We can see diversity when it comes to
different poses, illumination, etc. However, in the two-step
pipeline system, we lose this, which is essential for differ-
entiation objects. To solve this problem, they design a novel
Recursive Spatial Transformer module for CNN. It optimizes
face alignment and recognition jointly in one network in an
end-to-end system. The recursive structure has three parts:

Convolutional layers, Localization network and Spatial
Transformation layer. Here, the whole face is divided into
hierarchical layers of regions, and each region is equipped
with a ReST. It tries to handle large face variations and non-
rigid transformations.

In DR-GAN [92], the author used Generative Adversarial
Network for pose variations. They used an encoder-decoder
structure-based Disentangled Representation Learning.
Luan et al. [172] proposed a Geometric Structure Preserving-
based GAN for multi-pose face frontalization. Here the
perception loss compels the generator part to adjust the face
image with the same input image. In the discriminator part,
the self-attention block is used to preserve the geometry
structure of a face. Zhang et al. [173] worked with large
pose and photo-realistic frontal view synthesis variations in a
generic manner and proposed a Pose-Weighted Generative
Adversarial Network (PW-GAN). To solve problems like
not being photo-realistic and losing ID information, they
frontalized the face image through the 3D face and gave more
attention to large poses, and they refined the pose code in the
loss function.

Zhu et al. [124] proposed a method HPEN to recover
the frontal face pose variation, which can recover the
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canonical-view of images using a 3D morphable model
that automatically generates the face from frontal pose and
expression. They created a 3D landmark from a 2D image
using 3DMM (morphable method). Then, they used the
mesh technique for the invisible position, and the invisible
region was filled with the Trend fitting and Detail fitting
method. However, this method’s main drawback is that it
performs poorly when it comes to occluded images, and there
is no clearance for large databases or real-time feedback.
Peng et al. [64] tried to reconstruct from pose-invariant based
images in their DNN based FR model. They reconstruct
the 3D shape from a near-frontal face to generate new face
images. They generate a non-frontal view from the frontal
image and search the identity of the large embedded feature
of identity and pose-variance. They also developed a feature
reconstruction metric to learn the identity.

Wang et al. [66] proposed a pyramid diverse attention
(PDA) to learn multiscale diverse local representation auto-
matically and adaptively. They claimed this model reduces
problems like pose variations or large expressions or similar
local patches. They developed the model HPDA by fusing
HBP and PDA. In HPDA, it can describe diverse local patches
at various scales adaptively and automatically from varying
hierarchical layers. Here, it guides multiple local branches in
each pyramid scale to focus on diverse regions instead of face
mark landing and a hierarchical bilinear pooling is combined.
It also uses different cross-layer bilinear modules to integrate
both high and low levels. This model has four parts: stem
CNN, local CNN, global CNN, and classification. They use
HSNet-61 in the background mainly. They also fused SENet
and HSNet model. They used their own proposed divergence
loss in diverse learning to guide multiple local branches to
learn diverse attention masks. The diverse learning encour-
ages each local branch to learn different attention masks by
increasing their distances. Ding and Tao [183] briefly dis-
cussed pose-invariant face recognition in their survey paper.
The authors quoted the problems of PIFR as well as discussed
possible future directions of Face Recognition tasks.

2) AGE-INVARIANT
Age is always an essential factor in Face Recognition.
We know that with the change of age, face changes. So, rec-
ognizing faces becomes more complicated when the test
sample is aged. The researchers tried to solve this problem by
experimenting with many deep learning models. Following
it, Wen et al. [131] proposed a deep CNN based age invari-
ant face recognition named LF-CNN for deep face features.
They extracted the age-invariant deep features from convolu-
tional features by a carefully designed fully connected layer,
termed as (LF-FC) layer. They developed a latent variable
model, called latent identity analysis (LIA), to separate the
variations caused by the aging process from the identity-
related components in convolutional features. This model
has two components: convolutional unit for feature learning
and latent factor fully connected layer for age-invariant deep

feature learning. They also used PReLU and max-pooling for
enhancing robustness.

Li et al. [174] proposed a novel distance metric opti-
mization technique that integrates feature extraction and the
application of distance metrics and interaction between them
using DCNN. It learns feature representation with an end-to-
end decision function. They collected images from different
age instances. Then they enlarged the differences between the
unmatched pairs by reducing variations among matched pairs
simultaneously. They used the mini-batch SGD algorithm
to update the parameters, the top fully connected layer of
the distance matrix, and the image features from the bottom
layer.

The intra-class discrepancy has always been a problem
in face recognition, especially in age-invariant problems.
Wang et al. [175] proposed a novel Orthogonal Embed-
ding CNNs (OE-CNNs) which decomposed the deep face
features into two orthogonal components. It represents age-
related and identity-related features. They used A-Softmax
loss because different identities are discriminated by differ-
ent angles and decomposed in spherical coordinates with
radial coordinate and angular coordinates. The decomposed
features improve performance. In reducing discrepancy on
AIFR, Wang et al. [176] also proposed a novel algorithm.
They tried to remove age-related components from features
mixed with identity and age information. They factorized a
new mixed face feature into two non-correlated elements:
identity-dependent and age-dependent. They proposed the
Decorrelated Adversarial Learning (DAL) algorithm, and a
Canonical Mapping Module (CMM) was introduced, which
found the maximum correlation of the paired features. The
model learns the decomposed attributes of age and identity.
To ensure the correct information, it simultaneously super-
vised the identity-dependent attribute and the age-dependent
attribute. The proposed model has an extension of CCA,
the Batch Canonical Correlation Analysis (BCCA). This
method significantly increases the state-of-the-art (SOTA) on
AIFR datasets.

Besides age and pose-invariant challenges in still image-
based face recognition, we can see many challenges, such
as facial makeup, illumination changes, partial face, facial
expression, etc. Recently many researchers have started work
on these challenges. Choi et al. [177] used a DCNN model
for eliminating illumination effects and maximizing discrim-
inative power. Zhao and Wei [186] used a modified local
binary pattern histogram (LBPH) for solving illumination
diversification, expression variation and attitude deflection.
Du and Hu [181] proposed a framework for illumina-
tion changes and occlusion in face recognition named
Nuclear Norm based Adapted Occlusion Dictionary Learn-
ing (NNAODL). They used a two-dimensional structure and
dictionary learning (DL) in their framework. Li et al. [187]
proposed a bi-level adversarial network (BLAN) for makeup
problems in FR. To overcome posture, illumination and
expression problems, ElBedwehy et al. [180] proposed
a novel approach called Relative Gradient Magnitude
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TABLE 12. Overview of video face recognition.

Strength (RGMS) for feature extraction. This method is based
on Deep Neural Networks (DNNs).

B. VIDEO-BASED FACE RECOGNITION
Video-based FR (VFR) is difficult in comparison with still
image-based face recognition. When it comes to VFR, vari-
ous problems come forward. Most of the videos usually come
from mobile, which causes large pose variations, occlusions,
out-of-focus blur, motion blur, etc. On the other hand, surveil-
lance cameras, CCTV cameras cause cross-domain problems,
and low-quality problems, etc. Researchers tried to partially
solve pose-variations and occlusion in SIFR using the embed-
ding technique [63], [137], but in VFR, the techniques are
not extended. Some methods which are mainly proposed for
SIFR but also work quite well for VFR, for example, Deep-
Face [36], DeepID2 [134], FaceNet [28], VGGFace [69],
C-FAN [188] etc. In C-FAN, Sixue et al. trained the model
usingCNN for SIFR and learned the quality value-added to an
aggregation module. It performs well in VFR as it aggregates
deep feature vectors in a single vector for face in the video.
Table 12 shows the overview of video based face recognition
methods.

Yang et al. [29] proposed a Neural Aggregation Net-work
(NAN) for VFR. As input, it takes a set of face images or face
video and produces a compact, fixed-dimension feature rep-
resentation. They used DCNN for feature embedding, and
for face verification, Siamese neural aggregation network
and minimized average contrastive loss is used. On the other
hand, a fully connected layer followed by a softmax and clas-
sification loss is used for identification. Kim et al. [25] pro-
posed a novel approach, face and body association (FBA) in
VFR. They used a retrained YOLO detector in face detection
and a single DNN with ResNet-50 as backbone architecture
in verification. For a video frame, they extract 18 key points
in the 2D joints of the skeleton person. The data association
stage has a scoring function, greedy data association, tracklet
initialization and termination, tracklet filtering, and param-
eter settings like sub-stages. However, it treats the face and
upper body as similar. Recently, there are some works on
VFR using deep reinforcement learning such as ADRL [119],

automatic face ageing [121] etc. For the real-time video,
Wang et al. [184], and Grundstrom [189] proposed DCNN
based models. Liu et al. [185] proposed a dependency aware
attention control (DAC) model, which used a reinforce-
ment learning-based sequential attention decision of image
embedding.

C. HTEROGENEOUS FACE RECOGNITION
Besides VFR and SIFR, Heterogeneous Face Recognition
remains a challenging problem as cross-modality has limited
training samples as well as complicated generation procedure
of face images. Cao et al. [200] proposed a GAN-based
asymmetric joint learning (AJL) process, which transforms
the cross-modality variance. Wu et al. [201] proposed a
CNN-based coupled deep learning (CDL) method to seek a
shared feature space. In this method, heterogeneous images
are treated as homogeneous images. Di et al. [202] proposed
a hybrid model using GAN and CNN, which focused on
extracting images from the visible range for synthesizing and
took thermal images as input. He et al. [203] also proposed
CFC, a GAN-based model for solving heterogeneous face
synthesis problems. Lezama et al. [204] proposed to extend
the DL breakthrough for VIS face recognition to the NIR
spectrum without retraining the underlying deep models that
see only VIS faces. It has two core integrants, cross-spectral
hallucination, and low-rank embedding. Cross-spectral hal-
lucination produces VIS faces from NIR images through a
DL approach. Low-rank embedding restores a low-rank struc-
ture for the deep features of faces across both the NIR and
VIS spectrum. Ouyang et al. [98] discussed briefly in their
survey paper on heterogeneous FR. Here, they quoted NIR-
based faces, sketch-based faces, 3D faces, low-resolution
images, etc. They also discussed their observation on the
paper and some future directions, for example, computing
time, datasets, alignment, technical methodologies, training
volume, etc.

VI. FACE DATASETS
A. IMAGE DATASETS
Face recognition is a complex task in the real world scenario.
To do it perfectly large and correctly labelled training dataset
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TABLE 13. Image datasets for face recognition.

is required. Collecting face images and label them properly is
a time-consuming task. There are a lot of publicly available
datasets those can be used for this purpose. Earlier datasets
were small in size, less than hundred identities. As time
passes, more researchers and companies have come into this
field. They are investing their time and money, so the size of
the datasets is getting large. Some of the publicly available
datasets have already crossed a few million face images [42],
[195]. Nowadays, most of the images to create a new dataset
are collected from different social media or websites [199].
Themain problem for face recognition from the images is that
most of the features from the face change with the change of
the pose or age. Pointing out this problem, some researchers
added images of different pose and age limit [193], [196].
Some datasets also contain synthetic face images to increase

the number of images in their collection, for instance, GAN-
Faces500k [195]. After covid-19 breaks out, face recognition
with face masks getting researchers’ attention. Some datasets
of people with masks and without masks like RMFRD [198],
SMFRD [198] are already publicly available. Table 13 shows
some of the recent available datasets.

B. VIDEO DATASETS
Face recognition from video data is a great issue in this
era. So the video-based FR machine learning algorithm
has become more popular nowadays. Many videos data
have been generated through YouTube, Facebook, Insta-
gram, and other social media. However, for this process,
more videos data need to be trained through machines,
so that the model can achieve excellent performance.
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TABLE 14. List of video datasets for face recognition.

It is obvious that large-scale datasets are needed to show
better accuracy for face recognition from video data.
To improve the Video-based FR task, some excellent work
has been done and the researchers collected video data
that helped to enhance the accuracy of the system. It is
also noted that five groups from world renowned institu-
tions work on Point-and-Shoot Challenge (PaSC) video data
to evaluate the accuracy of PittPatt algorithm [226]. Here,
Table 14 shows different video face datasets (e.g. IJB-A,
YTF, IJB-B, YTC, and IJB-C etc.) for face recognition and
explains their properties.

C. HETEROGENEOUS FACE DATASETS
Heterogeneous face recognition is a challenging but impor-
tant. It is used in different types of applications like secu-
rity and law enforcement. HFR is a problem of recognizing
face from images of nontraditional sources of light such
as Near Infrared (NRI), Sketch, or 3D images. Images of
NRI datasets are taken under infrared instead of visible
light. CUHK VIS-NIR [212], NIR-PF [213] contains image

under infrared. Sketch images are human art of other human’s
face. MGDB [215], e-PRIP [216] are recent sketch face
image datasets for face recognition. On the other hand,
LS3DFace [221] and Lock3DFace [222] databases con-
tain 3D faces. Although HFR is getting popular and some
datasets are available, most of the datasets are small in size.
Table 15 shows a brief overview of the recently available HFR
datasets.

VII. FUTURE TRENDS
A. DATASET SIZE AND TRAINING TIME
DNN based face recognition has come a long way. Currently,
the state-of-the-art networks can take millions of images
to train and manage hundreds of millions of parameters to
generate output. Some of those methods showed incredible
results on testing datasets. But still, DNN has a long way to
go. Most of the methods took a long time and large dataset
to train. Researchers can search the way to develop methods
which can be trained with small dataset and take short time.
Bio-inspired methods can be a great help for them.
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TABLE 15. Heterogeneous face datasets for face recognition.

B. COVID-19
As the COVID-19 has broken out in recent years, some
security measures have been taken to save the human species
from this pandemic. Wearing masks is one of them, and for
this reason, traditional face recognition methods are mostly
useless in this unexpected situation. So, researchers should
pay attention and search for new ways to detect faces or per-
sons. Some researchers [198] have already started their work.
But more should come and join them. The use of infrared
cameras can be a good solution. Moreover, researchers can
think of this type of scenario for FR.

C. FACE RECOGNITION IN INFRARED FACES
Whenever obstacles come between face and camera, regu-
lar face photos are not adequate for FR. To overcome this
issue, the researchers can focus on Infrared (IR) face images
nowadays. IR images provide a multi-dimensional imaging
system. The multi-dimensional imaging system is used to get
more accurate results in unfavorable conditions like object
illumination, expression changes, facial disguises, and dark
environments [227]. So, the researchers can improve algo-
rithms which are focused on IR-based FR.

D. COST FUNCTION
In recent times, researchers have tried to improve the cost
functions. They can try to merge existing loss functions
like Softmax loss and Centre loss [38], [228]. They can

also try to use various cost functions in different layers like
Yang et al. [229]. Mainly, the researchers need to find
more efficient cost functions to decrease the computational
time.

VIII. CONCLUSION
Our paper has demonstrated the recent advances of Deep
learning-based face recognition systems that are mainly
focused on algorithms, architecture, loss functions, activation
functions, datasets, and varied types of occlusion such as
pose-invariant, illusion, expression of face, age, and varia-
tions of ethnicity etc. Most of the Face Recognition systems
has been built using Deep learning and the architecture may
be changed according to the dataset variations and perfor-
mance improvement issues. Deep learning architecture has
shown excellent performance in the face recognition sys-
tems in recent decades. Different types of datasets like still
image-based, heterogeneous face image-based, video-based,
and occlusion-based datasets are shown in our paper as
summarized forms. Our paper found that LFR, IJB, YTF
and Ms-celeb-1M have shown near perfect performance in
various FR tasks. Occlusion based challenges still appear in
the FR task. This situation hampers the performance of the
FR systems. More datasets and novel algorithms may reduce
the occlusion based problems. Despite some limitations and
challenges of the face recognition tasks, these systems are
improved significantly in recent years.
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