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ABSTRACT With data increasingly collected by end devices and the number of devices is growing rapidly
in which data source mainly located outside the cloud today. To guarantee data privacy and remain data
on client devices, federated learning (FL) has been proposed. In FL, end devices train a local model with
their data and send the model parameters rather than raw data to server for aggregating a new global model.
However, due to the limited wireless bandwidth and energy of mobile devices, it is not practical for FL to
perform model updating and aggregation on all participating devices in parallel. And it is difficulty for FL
server to select apposite clients to take part in model training which is important to save energy and reduce
latency. In this paper, we establish a novel mobile edge computing (MEC) system for FL and propose an
experience-driven control algorithm that adaptively chooses client devices to participate in each round of
FL. Adaptive client selection mechanism in MEC can be modeled as a Markov Decision Process in which
we do not need any prior knowledge of the environment. We then propose a client selection scheme based
on reinforcement learning that learns to select a subset of devices in each communication round to minimize
energy consumption and training delay that encourages the increase number of client devices to participate
in model updating. The experimental results show that the unit of energy required in FL can be reduced by up
to 50% and training delay required can be reduced by up to 20.70% compared to the other static algorithms.
Finally, we demonstrate the scalability of MEC system with different tasks and the influence of different non
independent and identically distributed (non-IID) settings.

INDEX TERMS Client selection, federated learning, mobile edge computing, reinforcement learning.

I. INTRODUCTION
Currently, artificial intelligence has become an essential
part of our lives today, following the recent successes of
machine learning (ML) in several domains, e.g., image recog-
nition and natural language processing [1], [2]. ML model
requires a wealth of data to update the model to achieve
the desirable accuracy [3]. In traditional training of ML
model, a cloud-centric based approach is adopted whereby
data collected bymobile devices is centralized andMLmodel

The associate editor coordinating the review of this manuscript and
approving it for publication was David Flynn.

training occurs in a powerful cloud server or data center [4].
However, this approach is no longer sustainable in three main
aspects: privacy leaking that data owners are increasingly
privacy sensitive, long propagation delay which incurs unac-
ceptable delay for real-time decisions, and backbone network
burden which the transfer of data to the center occupancy
quite some time and bandwidth [5]. These are intensified
by the fact that cloud-centric training approach is relatively
reliant on wireless communications.

With data increasingly collected by end devices and the
number of end devices is growing rapidly, which means
data source mainly located outside the cloud today. Hence,
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Mobile Edge Computing has naturally been proposed as a
solution to train distributed ML model which brings ML
training model closed to data source [6]. In conventional
MEC ML training collaborative paradigm, cloud server first
send training data an ML model to edge servers for train-
ing a low-level model, before more computation inten-
sive ML model training process is offloaded to the cloud
server. However, this collaborative paradigm incurs signifi-
cant communication costs and computation offloading, which
involves the transmission of potentially sensitive personal
data. This will prevent privacy sensitive clients to participate
in ML model training processing, or even violate personal
privacy laws.

To guarantee that data remains in clients own devices
and to facilitate the complex ML model training among
distributed devices, [7] proposed a promising collaborative
decentralized ML paradigm called federated learning. In FL,
FL server first send ML model to clients who will participate
in model training this round. Clients use their own privacy
data to train a personal ML model. They then send upload
the model updates, i.e., the ML model’s weights, to the FL
server. FL server aggregates all models’ weights uploaded
by clients through synchronization aggregation algorithm [8].
These steps are continuously repeated multiple rounds until
ML model achieves the desirable accuracy. As compared
to conventional cloud-centric ML model training approach,
the implementation of FL in MEC for ML model training
features highly efficient use of clients’ bandwidth which will
ease pressure on backbone network, client privacy and low
delay.

Given the aforementioned advantages, FL has being
increasingly an enabling technology for ML model train-
ing at MEC system optimization. Traditional optimization
approaches that are built on static models fare relatively
poorly in modelling dynamic MEC network, which devices
are constrained by computation, storage and energy. In FL
global model training progress, FL server selects clients to
take part in ML model updating in this training round and
offloads the newest globalmodel when they complete training
task. In general, FL server randomly selects a set of clients to
participate incurs highMLmodel training time which limited
by the slowest client, i.e., stragglers. However, recent studies
have paid more attention to purely FL or MEC system, rather
than effectively combining the two fields for research. At the
same time, for FL in MEC, the independent resource status
of each client needs to be considered. The existing meth-
ods are more static algorithms, and intelligent algorithms
are rarely used for this field. In this paper, we propose
a data-driven Deep Reinforcement Learning (DRL) based
approach for optimizing resource allocation and selecting
clients through amending decision making in dynamic MEC
environment.

FL server first observes all clients’ resource information
such as wireless channel states, computation capacities, and
real-time energy states. According to clients’ resource infor-
mation, FL server estimates the time and energy required for

broadcasting ML model, training local ML model, upload-
ing local model and aggregating model received. FL server
repeats these stepsmultiple rounds untilMLmodel achieves a
certain desired performance. However, clients are constrained
by personal energy and computation that may reduce effi-
ciency of ML training tasks and clients’ bandwidth limita-
tion that increases communication cost and model training
latency. To solve the two limitations, FL server should select
eligible clients that equipped with energy unit, storage and
CPU to participate in ML model training aims to minimize
the energy consumption and training latency. However, it is
challenging for FL server to determine optimal decisions
since the MEC environment is stochastic in which clients’
resource information are uncertain. In this paper, we thus
propose to use the Deep Q-Learning (DQL) technique that
enables FL server to find the optimal client selection policy
in MEC system through FL without any priori knowledge of
network dynamics [9]. We first formulate the dynamic MEC
system as a Markov Decision Process (MDP). We then adopt
the DQL based on the Double Deep Q-Network (DDQN) to
make the optimal decision that selecting adaptive clients to
train ML model for FL server [10]. Simulation results show
that our proposed DDQN algorithm outperforms the static
algorithms in terms of energy units consumption and delay.

We conclude our contributions as follows.
1) We establish a MEC model for FL which contains

FL server and client devices with energy, CPU, data
storage, bandwidth and wireless charging.

2) We model the MEC system as MDP which need not
any prior knowledge. Then we use DDQN to adaptively
select clients to take part in global model updating to
minimize resource consumption such as energy and
bandwidth.

3) We demonstrate our proposed algorithm in MEC sys-
tem on MNIST and Fashion-MNIST datasets in which
greatly reduce the energy consumption and the model
updating delay.

4) We explore the influence of different edge server tasks
and non-IID settings on our MEC system.

II. RELATED WORK
In this section, we introduce the related work about FL and
recent work for the implementation in MEC system.

A. FEDERATED LEARNING
FL is an emerging decentralized ML technique in which a
number of clients use their privacy data to train a shared
model that reminds their own data locally. Reference [7]
proposed the concept of FL and Federated Averaging algo-
rithm (FedAvg) which could achieve desirable accuracy even
when data is non-IID across clients. Reference [11] invites
specified clients to train ML model leveraging on implicit
association between raw data distribution and local model’s
weights. Reference [12] proposed MOCHA algorithm in
which an alternating optimization approach to solve the min-
imization problem of resource constraints of clients. But it
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cannot effectively apply non-concave deep learning mod-
els. Reference [13] proposed Loss-based AdaBoost Feder-
ated ML (LoAdaBoost) algorithm in which client should
retrain local ML model before aggregation if the current
cross-entropy loss is higher than the median loss from the
previous training round so as to increase training efficiency.
However, the method does not consider the resource con-
sumption of participating clients, which may occupy client
device resources for a long time. Reference [14] proposed
structured and sketched updates to reduce communication
costs through reducing the size of ML model weights. Ref-
erence [15] proposed q-Fair FL (q-FFL) algorithm in which
assigns higher weights in the loss function to clients with
higher loss so as to lower the variance of performance of FL
model across clients. But, the algorithm did not consider the
actual resource situation of the client. However, the exiting
studies usually treat FL and MEC separately.

B. FEDERATED LEARNING IN MOBILE EDGE COMPUTING
In cloud computing, recent research addressed the problems
of massive amount of energy consumption and service level
agreements violation with concentrate on CPU utilization
[16], [17]. References [18] and [19] proposed energy-aware
host overload detection algorithm and virtual machines selec-
tion algorithms to reduce the energy consumption of mobile
cloud data centers. While in MEC, recent research pays more
attention to client resources with intelligent algorithms. Ref-
erence [20] and [21] model the computation offloading task
as a MDP and maximize the long-term utility performance
with DQL to make optimal decisions. Reference [22] studies
the computation offloading for clients with energy harvesting.
However, most existing surveys on MEC do not consider FL
as a potential solution to preserve client privacy in computa-
tion offloading.

In addition, the implementation of FL for MEC system’s
resource optimization mostly do not focus on client selec-
tion policy. Reference [23] proposed a resource allocation
approach based on DRL with clients are mobile and uncer-
tainty to maximize the success rate of broadcasting global
model. However, it did not consider the convergence prob-
lem of the global model. Reference [9] proposed a new
Federated Learning with Client Selection (FedCS) protocol,
which selects clients with higher computing capabilities to
participate. However, the agreement cannot be a good choice
for suitable clients when the system is large, that is, when
there are many participants. Reference [24] modelled the
interaction between clients and FL server as Stacklberg game
in which each client could non-cooperatively decide on its
own profit maximization price. However, the simulation envi-
ronment of the game only involves a small number of devices,
and its effectiveness has not been proven for a large number
of devices. Reference [25] proposed an incentive mechanism
in which FL server set price for client to join at will.

In summary, most exiting surveys rarely consider MEC
system resource optimization and non-IID data of clients
together, and little surveys concentrate on the challenges of

client selection to reduce resource consumption and speed up
ML model convergence.

III. SYSTEM MODEL AND ASSUMPTION
In this section, we briefly introduce the general workflow of
FL and assumption about MEC system.

A. FEDERATED LEARNING AND ASSUMPTION
FL allows clients to collaboratively train a global model
while keeping personal data on their own devices to protect
privacy. Therefore, FL can serve as a enabled technology for
ML training. ML models’ success based on large of training
data. A training data sample j consists of two parts: a feature
vector xj as the input of the ML model and a label yj that is
regarded as the output of the ML model. We train a two-layer
CNN model with client data determined by σ which means
σ percent of client data comes from a random dominant class
and the remaining belong to other labels.

FL system contains two main entities, i.e., clients that is
regarded as the data owner and themodel owner that is desired
FL server. Assume that there is a set N = {1, 2, . . . , n} of
clients in MEC system. Each round FL server decides theML
model training task, i.e., the number of local training itera-
tions ε and the corresponding training data requirements µ.
After FL server broadcasts the initialized global model w0

0 to
the selected m clients, where w0

G denotes the global model
parameters in first iteration m denotes a subset of N . And in i
communication round, client k respectively uses its own local
data and device resource to train update global model wi

k ,
where wi

k is local model parameters of client k in commu-
nication round i. The goal of client k is to find optimal local
model parameters wik that minimize the loss function lk (w).
The updated local model parameters are subsequently sent
to FL server. FL server aggregates the local models from m
clients and sends the updated global model parameters wi+1

G
to the selected m clients. The aggregation function in FL
server is defined as

wi+1G =
1∑m

k=1 |µk |

∑m

k=
|µk |wik (1)

where |µk | denotes the data size of clients k and i denotes
the current iteration index [7]. According to clients willing
and FL server aggregation efficiency, we defines the cor-
responding training data requirements is µ. Therefore, the
aggregation function in FL server is

wi+1G =
1
m

∑m

k=1
wik (2)

FL training task is iterated till the global loss function
converges, or achieved desirable accuracy �.

B. SYSTEM MODEL AND ASSUMPTION
Fig. 1 shows a typical architecture of MEC system in which
contains our method for FL. MEC system consists of an
edge server that broadcasts global model, a radio frequency
source (RF) that charging for clients, and n clients that
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FIGURE 1. Illustration of adaptively client selection in MEC system.

equipped with CPU, energy unit and storage. Instead of
randomly selecting clients, we propose a DQN-based client
selection approach. First, n clients inform edge server with
their resource information. And then edge server estimates
MEC system energy consumption and transmission delay in
next global model training progress that selecting a specific
set of N ′ = {1, 2, . . . ,m} clients that utilizing resource
information. We assume the limitation of time required for
broadcasting global model, updating local model and upload-
ing local model is Lmax, i.e.,

Lmax ≥ max{T localk + T transk }, where k ∈ N ′ (3)

We assume that each client k has independent CPU-cycle
frequency fk , energy units ek , wireless bandwidth rk and
wireless charging. The selected clients update local model
in parallel with corresponding training data requirements µ
that requires µG CPU cycles each iteration where G is the
training required number of CPU cycles for each bit of data.
Therefore, the local computing time required is

T localk =
µG
fk
, where k ∈ N ′ (4)

Then, selected clients upload local model parameters
which rely on wireless communication channels. Therefore,
the other time required for global model updating which
called transmission time can be calculated as

T transk =
D
rk
, where k ∈ N ′ (5)

where D is the size of the global model. We assume time
required L for global model transmission and local model
training depend on local model training delay and local model
upload delay in which the Internet upload speed is typically
much slower than download speed [14]. Lmax is defined as

Lmax ≥ max{
µG
fk
+
D
rk
}, where k ∈ N ′ (6)

Edge server aggregates updated local models’ parameters
that uploading by selected clients with FedAvg algorithm
and evaluates the new global model performance with certain

validation data set. Edge server repeats above steps multiple
iterations until global model achieves a desirable accuracy �
or arrives the final deadline.

IV. PROBLEM FOMULATION
The problem of adaptive client selection in MEC system for
training a shared model could be formulated as MDP that
defined as 〈S,A,P,R〉, where S, A, P, and R are state space,
action space, state transition probability and reward function,
respectively.

A. STATE SPACE
Let the state space of MEC system be represented by n clients
resource information that is defined as

S =
∏n

k=1
Sk (7)

where
∏

is the Cartesian product, and Sk is the state of
client k . The state space of client k is expressed as

Sk = {fk , ek , rk ; fk ≤ F, ek ≤ E, rk ≤ R} (8)

where F , E , R are the limitation of CPU-cycle frequency,
energy units and wireless bandwidth, respectively.

B. ACTION SPACE
The action space of MEC system is the combination of the
selection policy by edge server which includes n clients.
Action space could represent

A =
∏n

k=1
Ak (9)

where Ak = {0} ∪ {1} that the action state of client k . Ak = 0
means that client k does not participate in updating global
model this round, whereas Ak = 1 means that client k take
part in this round to train a local model.

C. STATE TRANSITION PROBABILITY
The state transition of MEC system from the current state s to
the next state s′ is determined based on the transitions of all
clients’ states. For the energy unit state, each client that taking
part in updating global model required consumes energy units
which consists of local training and transmission. In this
paper, we assume energy unit consumption Bk depending on
training which the transmission power is relatively low. The
energy unit consumption each iteration can be calculated as

Bk = f 2k τµG (10)

where f is assumed to follow the uniform distribution and τ
is determined by the effective switched capacitance that
depends on the chip architecture of client [26].

At each iteration, client k has ek energy units and could be
charged with Ck energy units from environment. The energy
transition from the current energy state ek to the next energy
state ek is calculated as

ek ′ = max{ek − Bk + Ck , 0} (11)
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Charging energy units Ck is assumed to follow the Poisson
distribution, i.e.,

P(Ck = t) = eω
ωt

t!
(12)

where ω is the average energy arrival rate.

D. REWARD FUNCTION
Edge server selects adaptive clients with adequate resources
to take part in model updating till achieves the desirable accu-
racy in which consume CPU-cycle frequencies and energy
units. Edge server makes the best decision to maximum
resource utilization of MEC system.

We demonstrate the effectiveness of selecting more clients
to participate in updating global model to speed up conver-
gence. In this experiment, we train a two 16 × 16 layers
with each layer followed by 2×2 max pooling convolutional
neural network model on MNIST dataset which contains
60,000 training samples. We consider training data of each
client C = 1 MB, set non-IID setting σ is 30, make the
desirable accuracy� is 99%, and each updating process on a
different thread. As shown in Fig. 2, FL server selects 1 clients
randomly needs more than 200 rounds to achieve desirable
accuracy �. And FL server selects 2 to 4 clients randomly
needs 135, 106, 82 communication rounds respectively. It is
evident that the convergence speed of 4 clients participate in
global model training than other setting in early round, which
means more clients take part in FL process will lead a faster
convergence speed.

FIGURE 2. Accuracy with communication rounds.

Therefore, reward function should be proportional to the
number of clients and inversely proportional to energy con-
sumption and training delay. The reward function could be
defined as

R(s, a) = αn
m
n
− αe

E
Emax

− αl
L

Lmax
(13)

where αn, αe, αl are the scale factors. E is the total energy
units consumption by MEC system in each iteration, i.e.,

E =
∑m

k=1
Bk , where k ∈ N ′ (14)

TABLE 1. List of notations.

Emax is the total energy units of system, i.e.,

Emax =
∑n

k=1
E, where k ∈ N (15)

L is the maximum delay for clients that taking part in this
iteration, i.e.,

L = max{(
µG
fk
+
D
rk
)} where k ∈ N ′ (16)

For ease of reference, our commonly used symbols are
summarized in Table 1.

E. DEEP REINFORCEMENT LEARNING BASED ON CLIENT
SELECTION
According to the current state of all clients s ∈ S, edge
server selects a ∈ A to maximize the long-term cumulative
reward of the entire system. Edge server makes the best
decision which is defined as π∗ : S → A. In order to find
the best decision, standard Q-Learning is often used [10].
Q-Learning constructs a continuously updated Q-value table
with action-state pairs and then looks up Q-table to obtain the
best decision which namely Q(s, a) [27]. Edge server updates
Q-value based on experience replay, as follows:

Q′(s, a)=(1−β)Q(s, a)+β[R(s, a)+γ max
a′∈A

Q(s′, a′)]

(17)

where β is learning rate, γ is discount factor [10].
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After updating Q(s, a), the server can rely on Q-table to
proceed. According to any state s, edge server could select
action a with the largest cumulative reward to make the
optimal decision π∗. However, Q-table will occupy large
storage resource in which the state space is always cursed
by dimensionality that the time of searching the optimal
policy in Q-table is very long. Traditional Deep Q-Network
(DQN) uses a single neural network (NN) tomake the optimal
decision for edge server to reduce Q-table’s storage and speed
up searching. However, the single NN has the overoptimistic
Q-value estimate problem since the same derived policy net-
work to select and to evaluate an action for client selection
policy.

Therefore, we propose Double Deep Q-Network (DDQN)
that consists an action-value online network Y and an
action-value target network Y ′. The online NN updates its
weights θ based on experience replay 〈s, a, r, s′〉, and the
target NN resets its weights θ ′ = θ regularly with gradient
descent algorithm [10]. The loss function is defined as

Lθ = E[y-Q(s, a; θ )]2 (18)

where target value y is defined as

y = R(s, a)+ γQ′(s′, argmax
a′∈A

Q(s′, a′; θ ); θ ′) (19)

DDQN selects an action for edge server based on online
NN and evaluates the action with target NN that prevents the
policy overoptimistic problem [28]. Algorithm 1 shows the
DDQN training process for making an optimal decision that
finds proper clients to update global model in each round.

Algorithm 1 DDQN-Based Client Selection
1: Initialize the replay memoryM , action-value

function with random weights θ and target
action-value function with random weights θ ′ = θ ,
learning rate β, discount factor γ , global model
weights.

2: for episode i = 1 to U do
3: Initialize clients states ∈ sS.
4: for iteration k = 1 to achieve the desirable

accuracy do
5: Select an action a randomly with probability ε

or a = argmaxa∈AQ(sk , a, θ) with probability
(1− ε).

6: Execute action a and update global model,
observe reward r and next state s′.

7: Store experience 〈s, a, r, s′〉 in M .
8: Sample a minibatch size ofm experiences from

M .
9: Update θ with gradient descent by m

experiences with (18).
10: Regularly resets θ ′ = θ .
11: end for
12: end for

Before training process, FL server initializes replay mem-
ory M , learning rate β and discount factor γ , sets online
action-value function with random weights θ , sets target
action-value function weights θ ′ = θ . Each training process,
online NN selects an action randomly with probability ∈ or
executes all actions. FL server observes all selected clients’
reward r and next state s′ to find the optimal decision while
storing experience 〈s, a, r, s′〉 in M . Then, a mini-batch size
ofm experiences fromM is sampled to update the online NN.
FL server sets the target action-value weights θ ′ = θ . Agent
is updated till global model achieve the desirable accuracy�.

V. EXPERIMENTAL RESULTS
In this section, we provide a performance evaluation to
demonstrate the effectiveness of our proposed method.
We measure the algorithm with the all MEC system’s energy
consumption and delay. We use Q-learning algorithm, ran-
dom algorithm, and greedy algorithm as baselines.

A. GENERAL SETUP
We assume that the MEC system consists of 1 edge server
and 4 IOT devices. Edge server initializes global model in
which consists of two 32 × 32 convolution layers followed
by 2 × 2 max pooling and two 64 × 64 layers followed by
2× 2 max pooling. Clients upload their resource information
such as wireless channel states and energy states. Each client
has privacy data C = 1 MB in which the non-IID setting σ is
30% and the dataset is MNIST. Client device’s CPU-cycle
frequency fk follow the uniform distribution U[0, 1] and
wireless bandwidth rk follow the uniform distributionU[0, 2].
Edge server employs DDQN, Q-learning, random and greedy
algorithms to select clients participating in updating global
model. DDQN will train an agent to select clients adaptively
to update global model. The mechanism of Q-learning is
creating a Q-table for searching the most decision. Random
algorithm will select clients randomly to take part in model
training process. Greedy algorithm will invite all clients to
update the global model. All parameters are shown in Table 2.

B. MNIST EXPERIMENTS
Our initial study includes three consumption on MNIST
datasets and set � = 99%. The tasks that clients need to
handle are continuously sent from other clients or servers in
which task queue is always full. Even if client can charge from
a nearby RF source, but also needs to properly arrange their
own energy to avoid additional consumption, resulting in
inefficient task process. Therefore, we regard system energy
planning as the most important influencing factor. As shown
in Figure 3, in each iteration, DDQN, Q-learning, random
and greedy algorithms needs to consume about 2.0, 2.5, 3.5,
4.0 energy units after convergence. It is conspicuous that
DDQN algorithm reduces extra energy consumption inmodel
training by up to 50% compare with greedy algorithm in
MNIST dataset. DDQN also has greatly development com-
pared with random algorithm. The reason is that greedy algo-
rithm will choose as many clients as possible to participate in
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TABLE 2. Simulation parameters.

FIGURE 3. Energy consumption comparison.

model training, as long as the clients have sufficient energy to
support the global model training. In this case, greedy algo-
rithm cannot achieve an effective balance between CPU-cycle
frequency and energy consumption, resulting in low energy
utilization efficiency. On the contrary, in terms of energy-
saving, DDQN can effectively select suitable clients adap-
tively from heterogeneous clients to reduce extra energy units
consumption.

Energy is the basis of the client training model. In addition
to energy, delay determines the iteration speed and con-
vergence speed of the global model. For the MEC system,
less delay means less time required for each model update.
In other words, the algorithm with less delay will iterate
the global model more times at the same time. As shown
in Figure 4, DDQN, Q-learning, random and greedy algo-
rithms take 230, 240, 260, 290 seconds separately after

FIGURE 4. Delay consumption comparison.

FIGURE 5. Client consumption comparison.

convergence. It is obvious that DDQN reduces the average
delay of each model update by up to 20.70% compared to
greedy algorithm. Compared with another static algorithms,
random algorithm also has a little improvement. The reason is
that greedy algorithm will select as many clients as possible
within the limited delay Lmax . This leads to high delay of
greedy algorithm and is greatly affected by the CPU-cycle
frequencies and wireless bandwidth. In other words, the delay
of each client in the system will vary greatly and will fluc-
tuate greatly. This is unfavorable for the system to select
clients, because it cannot make good use of devices which
has rich computing resources, wireless bandwidth resources,
and energy units. Equipment with high training time delay
drags down the training efficiency of the entire system.
In contrast, DDQN can select clients with similar delay in
the system. This not only prevents poorly-resourced equip-
ment from affecting the whole system, but also improves the
efficiency.

As shown in Figure 5, DDQN, Q-learning, random and
greedy algorithms select average 2, 1.7, 1.5, 3.0 clients to
take part in global model training process. It is clearly that
greedy algorithm selects 75% of all clients to participate
in global model training each iteration, while DDQN can
select 52% of the clients to participate. We also studied the
performance of global model communication rounds after
convergence. Fig. 6 shows that center, DDQN, Q-learning,
random and greedy algorithms select clients with their own

VOLUME 9, 2021 98429



H. Zhang et al.: Adaptive Client Selection in Resource Constrained FL Systems

FIGURE 6. Accuracy with communication rounds after convergence.

FIGURE 7. Energy consumption comparison on fashion-MNIST.

mode needs 30, 98, 133, 155 and 94 communication rounds
to achieve desirable accuracy. Though greed algorithm only
faster a little than DDQN algorithm. We infer the reason for
the similar performance between greed and DDQN algorithm
is that DDQN will be giving priority to clients which are
more benefit for the convergence with reducing the resource
consumption.

C. DIFFERENT EDGE SERVER TASKS
We also ran experiments on different FL server tasks which
including the Fashion-MNIST dataset to further validate our
algorithm in which � = 89%. As shown in Figure 7-10,
we ran experiments on the Fashion-MNIST dataset. In each
iteration, DDQN, Q-learning, random and greedy algorithms
needs to consume about 2.0, 2.5, 3.6, 3.9 energy units sep-
arately which DDQN algorithm reduces energy unit com-
putation by up to 48.7% compare with greedy algorithm
after convergence. And DDQN, Q-learning, greedy and ran-
dom algorithms needs about 233, 239, 261 and 287 sec-
onds, respectively. Our algorithm reduces the average delay
in each iteration by up to 18.82% compared with greedy
algorithm while average engagement clients are 2.1, 1.7, 1.6,
3.0, respectively and communication rounds are 172, 186,
251, 151, separately in which need more communication
rounds to achieve desirable accuracy compare with center
algorithm.

FIGURE 8. Delay consumption comparison on fashion-MNIST.

FIGURE 9. Client consumption comparison on fashion-MNIST.

FIGURE 10. Accuracy with communication rounds after convergence.

In different edge server tasks, it is obvious that the perfor-
mance and the improvement of MEC system resources of our
algorithm are similar. From experiments on Fashion-MNIST
dataset and MNIST dataset, the MEC system proposed in
this paper has strong scalability to accommodate different
edge server tasks, while effectively scheduling and optimiz-
ing the resources in which clients’ computation, energy and
wireless bandwidth resources are limited. However, it can
be clearly seen that the DDQN algorithm could reach the
optimal state faster on the Fashion-MNIST dataset than it
trained on the MNIST dataset in which the state could
optimize MEC system resources more effectively. We con-
jecture this is largely due to edge server requires more
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FIGURE 11. MEC system energy consumption with different levels of
non-IID setting.

communication rounds to achieve the desirable accuracy on
the Fashion-MNIST dataset in each iteration inwhich give the
experience-driven decision-making algorithm more training
rounds. But, it increases averagely the required MEC system
energy units by up to 40% compared to it trained on the
MNIST dataset.

D. DIFFERENT LEVELS OF NON-IID SETTING
FL has been shown to work well approximating the model
trained on centrally collected data in which the data and label
distributions are independent and identically distributed on
MEC system. However, in reality, FL is unstable and may
even diverge when clients’ data distributions are non-IID
in which the different performances and usage patterns. In
this secession, we explore the influence of different levels
of non-IID settings on Fashion-MNIST dataset. As shown in
Figure 11, MEC system will consume more energy units with
the setting of non-IID increases and even lead convergence
failure. This is due to the inconsistency between the locally
performances, which aims to minimize the loss value on local
model and edge server aims to minimize the overall loss on
the MEC system. As we keep fitting models on different
clients to heterogeneous local data of clients, the divergence
among the weights of local models will be accumulated and
eventually degrades the performance of FL which will lead to
more communication rounds before global model converges
or global model reach the desirable accuracy and more MEC
system energy units consumption.

VI. CONCLUSION
In this paper, we focus on the research for resource optimiza-
tion of adaptive client selection for training global model in
MEC system with each client resources is changed in real
time each model updating process while recent researches
pay more attention to select fixed number of clients. We then
model global model training process in MEC system as a
MDP and demonstrate a faster convergence speed with more

parallel clients. In order to solve the formula MDP, we pro-
pose an adaptive client selection algorithm based on DDQN.
The algorithm can not only withstand the curse of the dimen-
sionality of the state space, but also does not require any prior
information about MEC system. In the simulation, we found
that our DDQN-based client selection algorithm reduces the
energy unit consumption by up to 50% and the delay by
up to 20.70% compared with greedy algorithm, while the
communication rounds is just increased 4%. Comparing with
other baseline, our algorithm represents better performance.
Then, we explore the impact of different edge server tasks
and demonstrate the scalability of our proposed MEC sys-
tem. Finally, we discuss the influence of different levels of
non-IID setting and find the divergence of local models will
degrade the performance of FL and even make more energy
consumption. In the future, wewill concentrate on solving the
curse of action space to extend our algorithm could withstand
the rapidly gowning number of client devices.
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