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ABSTRACT Polynomiography is a fusion ofMathematics and Art, which as a software results in a new form
of abstract art. Rendered images are through algorithmic visualization of solving a polynomial equation via
iteration schemes. Images are beautiful and diverse, yet unique. In short, polynomiography allows us to
draw unique and complex-patterned images of polynomials which be re-colored in different ways through
different iteration schemes. In the modern age, polynomiography covers a variety of applications in different
fields of art and science. The aim of this paper is to present polynomiography using newly constructed
root-finding algorithms for the solution of non-linear equations. The constructed algorithms are two-step
predictor-corrector methods. For reducing computational cost and making the algorithm more effective,
we approximate the second derivative via interpolation technique. These methods have been derived by
employing Househölder’s method, interpolation technique and Taylor’s series expansion. The convergence
criterion of the newly developed algorithms has been discussed and proved their sixth-order convergence
which is higher than many existing algorithms. To analyze the accuracy, validity and applicability of the
proposed methods, several arbitrary and engineering problems have been tested and the obtained numerical
results certify the better efficiency of the suggested methods against the other well-known iteration schemes
given in the literature. Finally, we present polynomiography through the constructed iteration schemes and
give a detailed comparison with the other iteration schemes which reflects the convergence properties and
graphical aspects of the constructed algorithms.

INDEX TERMS Order of convergence, non-linear equations, Newton’s method, Halley’s method,
polynomiography.

I. INTRODUCTION
Polynomiography deals with the algorithmic visualization of
complex polynomial equations via different numerical algo-
rithms [1], [12], [19]. It is actually both, the art and science
associated with the visualization of the task of root-finding
for a complex polynomial equation through fractal and non-
fractal images fabricated by means of mathematical con-
vergence properties of iteration functions which were being
under consideration [15]. The term “polynomiography”was
introduced to science in 21st century by Kalantari [15],
that was the last thought-provoking contribution to the
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polynomials root-finding history. He further described poly-
nomiography as a process that creates aesthetically pleasing
and beautiful graphics, it was patented by Kalantari in the
USA in 2005 [9], [16]. An individual image that is generated
in the process of polynomiography, is known as a “poly-
nomiograph”. There exist a lot of techniques to create poly-
nomiographs. Among them, some are fractal while others are
non-fractal. The polynomiographs generated through New-
ton’s iteration scheme result in familiar fractals. Fractal art is
one of the most widely used types of mathematical art. There
exist different kinds of fractals. One of them, the canonical
type occurs as a result of numerical algorithms which are
used for finding roots of polynomial equations, a problem
that brought an evolution in the study Science, Mathematics,
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Art and Design, etc. Another type of fractals that is used
excessively in arts is the complex fractals that are the fractals
generated in a complex plane through different root-finding
algorithms. The obtained patterns can be used for paintings,
carpet designing, sculptures and animations, etc. For further
study on fractals and iterations, one can see Mandelbrot [21],
Devaney [5], Beardon [3], Gleick [8], Peitgen et al. [30],
Milnor [23] and Kalantari [16].

One of the classic and quintessential properties which are
exhibited by polynomiography is the basins of attraction of
the polynomials’ zeros. The basins of attraction are relied
on the iteration schemes that were being used. The basins of
attraction impart an accurate and deep understanding about
the dynamical features of the considered algorithms over a
variety of examples and the sets of the parameter values.
For more study, one can see [31], [35] and references are
therein. It can be utilized to study the convergence properties
of different numerical algorithms.

There exist many numerical algorithms that have been
used to generate polynomiographs. The classical and basic
Newton’s iteration scheme was proposed by Isaac Newton
in 1669 and later by Raphson in 1690. In 1964, J.F. Traub
proved that the Newton’s method converges quadratically.
With the passage of time, many mathematicians tried to mod-
ify Newton’s iteration scheme for the sake of better accuracy
and higher convergence order. Some basic and classical iter-
ation schemes have been introduced in the literature [1], [4],
[10], [12], [19], and the references are cited therein. With the
help of the latest computer technology, multi-step iterative
methods become more vital because the calculation of such
types of methods is much easier with the help of computer
programs than before. That is why, in recent years, many
researchers try to modify Newton’s method and proposed
multi-step iterative methods which have a higher order of
convergence with less number of functional evaluations.

In [29], [37], the authors constructed quartic-order itera-
tion schemes with the insertion of Newton’s algorithms that
behaves as a predictor in the given schemes. With the passage
of time, Noor et al. [28] modified the existing Halley’s iter-
ative scheme with sextic convergence order and then made
it second-derivative and introduced a new iterative scheme
with quintic-convergence order. By employing the finite-
difference technique, the authors in [25] constructed a novel
derivative free iterative scheme with quintic-convergence
order. After that in 2018, Kumar et al. [20], presented a
novel family of iterative schemes with sixth-order conver-
gence for computing zeros of non-linear functions. In [36],
the authors employed the technique of composition along
with the rational interpolation and the basic idea of Padé
approximation and then constructed some novel optimal
fourth- and eighth-order derivative-free modified forms of
King’s method by. Wang and Zhu [38], in 2020, proposed
two new iterative methods by using inverse interpolation
technique, having convergence of order 4.5616 and 10.1311
respectively. In 2021, Naseem et al. [24] by applying varia-
tional iteration technique, introduced some novel ninth-order

iteration schemes and then gave a detailed graphical repre-
sentation through polynomiographs using different complex
polynomials.

In this article, we establish and then analyze two new
root-finding iteration schemes namely; Algorithm 1 and
Algorithm 2, in whichwe consider Newton’s iterative scheme
as a predictor. To derive these methods, we employ Taylor’s
series, Househölder’s method and the interpolation technique
for making the suggested method derivative-free. The con-
vergence criterion of the suggested algorithms has been dis-
cussed and established that the proposed algorithms are of
the sextic convergence. To show the superiority of the pro-
posed algorithms among the other comparedmethods, we test
some arbitrary and real-world problems and the numerical
results certify the validity of the proposed algorithms. Finally,
we give a detailed graphical comparison of the constructed
algorithms with different iteration schemes of the same cat-
egory by means of polynomiographs for different complex
polynomials that reveals the convergence speed and the other
graphical aspects of the constructed algorithms.

The rest part of the paper is divided as follows. Some basic
and classical methods are discussed in Section 2. In Section 3,
we proposed two new root-finding algorithms for non-
linear equations. The convergence criterion of the suggested
schemes is discussed in Section 4. In Section 5, several test
examples along with the engineering problems have been
solved to show the performance, applicability and validity
of the suggested iteration schemes. In Section 6, the poly-
nomiography through the suggested iteration schemes have
been presented by considering some complex polynomials.
Finally, the conclusion of the paper is given in Section 7.

II. ITERATIVE METHODS
The mechanism of getting approximate roots of non-linear
functions has been involved in many scientific fields such as
video and audio processing, Mathematics, Fluid-mechanics
and fuzzy systems, etc. The ability to find the roots of non-
linear systems of equations is the most important task that has
tremendous applications in fuzzy systems.

Let us consider the non-linear algebraic equation of the
form:

ξ (s) = 0, (1)

where ξ : D ⊂ R → R is a scalar function defined on the
open interval D.

Assuming ‘‘α’’ as a simple zero of equation (1) and ‘‘ω’’
as a starting point that should be sufficiently close to ‘‘α’’.
By applying Taylor’s series around ‘‘ω’’ for equation (1), one
can write:

ξ (ω)+ (s− ω)ξ ′(ω)+
1
2!
(s− ω)2ξ ′′(ω)+ . . . = 0. (2)

If ξ ′(ω) 6= 0, then the above expression can be approxi-
mated up to the second term as:

ξ (sk )+ (s− sk )ξ ′(sk ) = 0.
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If we choose sk+1 the root of equation, then we have

sk+1 = sk −
ξ (sk )
ξ ′(sk )

. (3)

This is well-known, Newton’s iteration scheme [4], [19],
for solving non-linear functions. From (2), one can evaluate

sk+1 = sk −
2ξ (sk )ξ ′(sk )

2ξ ′2(sk )− ξ (sk )ξ ′′(sk )
, (4)

which is Halley’s iteration scheme [1], [10] for approximating
the roots of non-linear functions in one dimension with third-
order convergence. Simplification of (2) give rise to another
iterative scheme:

sk+1 = sk −
ξ (sk )
ξ ′(sk )

−
ξ2(sk )ξ ′′(sk )
2ξ ′3(sk )

, (5)

which is cubic-order Househölder’s iteration method [12] for
computing zeros of non-linear scalar equations.

III. CONSTRUCTION OF NEW ALGORITHMS
Let ξ : D → R, D ⊂ R is a scalar function, where the
domainD is an open interval inR. By choosing s0 as a starting
point sufficiently close to the exact root α and implementing
Taylor’s series around the starting point s0, we have:

ξ (s0)+ (s− s0)ξ ′(s0)+
1
2!
(s− s0)2ξ ′′(s0) = 0. (6)

After simplification, one can obtain:

s = s0 −
ξ (s0)
ξ ′(s0)

−
ξ2(s0)ξ ′′(s0)
2ξ ′3(s0)

. (7)

If we rewrite the above equation in generalized form,
we obtained the well-known Househölder’s method given
in (5). Again from equation (6):

s = s0 −
ξ (s0)
ξ ′(s0)

−
(s− s0)2ξ ′′(s0)

2ξ ′(s0)
. (8)

Now from Householder’s method in equation (7):

s− s0 = −
ξ (s0)
ξ ′(s0)

−
ξ2(s0)ξ ′′(s0)
2ξ ′3(s0)

. (9)

Using equation (9) in (8), we obtain:

s = s0 −
ξ (s0)
ξ ′(s0)

−
ξ2(s0)ξ ′′(s0)[2ξ ′2(s0)+ ξ (s0)ξ ′′(s0)]2

8ξ ′7(s0)
.

(10)

Now taking the Newton’s iteration scheme as a predictor
and rewrite the above equality in iterative form, we obtain a
new root-finding algorithm of the form:

Which is the new modified form of Househölder’s method
in which Newton’s iterative scheme has been taken as a
predictor. To obtain the approximate roots of the given non-
linear scalar equations, one has to find the first and second
derivatives of the given function ξ. But sometimes, we have
to deal with such functions where the existence of the second
derivative becomes impossible that may cause the failure of
the proposed algorithm for finding the solution. To resolve the

Algorithm 1 Given a starting point s0, the approximate zero
sn+1 can be achieved by the iterative schemes given as:

tn = sn −
ξ (sn)
ξ ′(sn)

, n = 0, 1, 2, . . . ,

sn+1 = tn −
ξ (tn)
ξ ′(tn)

−
ξ2(tn)ξ ′′(tn)[2ξ ′2(tn)+ ξ (tn)ξ ′′(tn)]2

8ξ ′7(sn)
.

above-described issue, we approximate the second derivative
by utilizing the idea of interpolation.

For this purpose, we consider the following function:

η(u) = a1 + a2(u− tn)+ a3(u− tn)2 + a4(u− tn)3,

where a1, a2, a3, and a4 are the unknowns that can be deter-
mined by means of the interpolation conditions given as:

ξ (sn) = η(sn), ξ (tn) = η(tn), ξ ′(sn) = η′(sn),

ξ ′(tn) = η′(tn), ξ ′′(tn) = η′′(tn),

where sn and tn are the arbitrary points in the domain of the
function ξ on which it is defined.

The above conditions providing us a system containing
four linear equations with four variables. Solution of this
system provides us the following equality:

ξ ′′(tn) =
6[ξ (sn)− ξ (tn)]− 2[sn − tn][2ξ ′(tn)+ ξ ′(sn)]

(sn − tn)2
= η(sn, tn). (11)

After substituting the value of ξ ′′(tn) from equation (11) in
Algorithm 1, we obtain the following new algorithm which is
second-derivative free.

Algorithm 2 Given a starting point s0, the approximate zero
sn+1 can be achieved by the iterative schemes given as:

tn = sn −
ξ (sn)
ξ ′(sn)

, n = 0, 1, 2, . . . ,

sn+1 = tn −
ξ (tn)
ξ ′(tn)

−
ξ2(tn)η(sn, tn)[2ξ ′2(tn)+ ξ (tn)η(sn, tn)]2

8ξ ′7(sn)
.

Which is a new second-derivative free algorithm in which
the Newton’s iterative scheme acts as a predictor. By apply-
ing this algorithm, one can easily determine the approxi-
mate solutions of those functions where second derivative
fails to exist. Also, the above-described algorithm needs just
two functional evaluations and only one of its derivatives
that imparts the higher efficiency index in comparison with
those algorithms which need the evaluation of the second
derivatives.
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IV. CONVERGENCE ANALYSIS
This section includes the convergence analysis of the con-
structed algorithms.
Theorem 1: Assuming α ∈ D as a simple zero of the

differentiable function ξ : D ⊂ R → R where the domain
D is an open interval in R. If the initial guess s0 is the
neighborhood of the exact root α, then Algorithm 1 locally
converges with the convergence of order six.

Proof: To show the sixth-order convergence of
Algorithm 1, we suppose ‘‘en’’ be the error at nth step of
iteration, where en = sn − α and by applying the Taylor’s
series about s = α, one can obtain the following equality

ξ (sn) = ξ ′(α)en +
1
2!
ξ ′′(α)e2n +

1
3!
ξ ′′′(α)e3n

+
1
4!
ξ (iv)(α)e4n +

1
5!
ξ (v)(α)e5n +

1
6!
ξ (vi)(α)e6n + O(e

7
n),

ξ (sn) = ξ ′(α)[en + c2e2n + c3e
3
n + c4e

4
n + c5e

5
n + c6e

6
n

+ O(e7n)], (12)

ξ ′(sn) = ξ ′(α)[1+ 2c2en + 3c3e2n + 4c4e3n + 5c5e4n
+ 6c6e5n + 7c7e6n + O(e

7
n)], (13)

where

cn =
1
n!
ξ (n)(α)
ξ ′(α)

, n = 2, 3, 4, . . .

With the help of equations (12) and (13), we get

tn = ξ ′(α)[α + c2e2n + (2c3 − 2c22)e
3
n + (3c4 − 7c2c3

+ 4c32)e
4
n + (−6c23 + 20c3c22 − 10c2c4

+4c5 − 8c42)e
5
n

+(−17c4c3 + 28c4c22 − 13c2c5 + 5c6 + 33c2c23
−52c3c32 + 16c52)e

6
n + O(e

7
n)], (14)

ξ (tn) = ξ ′(α)[c2e2n + (2c3 − 2c22)e
3
n + (5c32 − 7c2c3

+3c4)e4n + (24c3c22 − 12c42 − 10c2c4 + 4c5
−6c23)e

5
n + (−73c3c32 + 34c4c22 + 28c52 + 37c2c23

−17c4c3 − 13c2c5 + 5c6)e6n + O(e
7
n)], (15)

ξ ′(tn) = ξ ′(α)[1+ 2c22e
2
n + (4c2c3 − 4c32)e

3
n

+(6c2c4 − 11c3c22 + 8c42)e
4
n + 28c3c32 − 20c4c22

+8c2c5 − 16c52)e
5
n + (−16c4c2c3 − 68c3c42

+12c33 + 60c4c32 − 26c5c22 + 10c2c6 + 32c62)e
6
n

+O(e7n)], (16)

ξ ′′(tn) = ξ ′(α)[2c2 + 6c2c3e2n + (12c23 − 12c3c22)e
3
n

+(−42c2c23 + 18c4c3 + 24c3c32 + 12c4c22)e
4
n

+(−12c2c4c3 + 24c5c3 − 36c33 + 120c23c
2
2

−48c3c42 − 48c4c32)e
5
n + (−78c3c2c5 + 30c3c6

−54c4c23 − 96c3c4c22 + 198c2c33 − 312c23c
3
2

+96c3c52 + 72c2c24 + 144c4c42 + 20c5c32)e
6
n

+O(e8n)]. (17)

Using equations (14)− (17) in Algorithm 1, we get

sn+1 = α − c3c32e
6
n + O(e

7),

which implies that

en+1 = −c3c32e
6
n + O(e

7).

The above equality justified the sixth-order convergence of
Algorithm 1. �
Theorem 2: Assuming α ∈ D as a simple zero of the

differentiable function ξ : D ⊂ R → R where the domain
D is an open interval in R. If the initial guess s0 is the
neighborhood of the exact root α, then Algorithm 2 locally
converges with the convergence of order six.

Proof: From equations (12) − (16) together with the
similar assumptions as in the previous theorem, we obtain:

D(sn, tn) = ξ ′(α)[2c2 + (6c2c3 − 2c4)e2n + (12c23 − 12c3c22
+4c2c4 − 4c5)e3n + (2c2c5 + 26c3c4 − 42c2c23
+24c3c32 + 2c4c22 − 6c6)e4n + (−48c4c2c3
+12c24 − 24c4c32 + 28c5c3 + 4c5c22 + 120c23c

2
2

−48c3c42 − 8c7 − 36c33)e
5
n + (−60c5c2c3

+28c4c3c22 + 2c2c7 + 22c5c4 − 10c5c32
+30c6c3 + 6c6c22 + 20c2c24 − 86c4c23 + 88c4c42
+198c2c33 − 312c23c

3
2

+96c3c52 − 10c8)e6n + O(e
7
n)]. (18)

Using equations (14)−(16) and (18) in Algorithm 2, we get

sn+1 = α + (c4c22 − c3c
3
2)e

6
n + O(e

7),

which implies that

en+1 = (c4c22 − c3c
3
2)e

6
n + O(e

7).

The above equality justified the sixth-order convergence
of Algorithm 2. �

V. NUMERICAL COMPARISONS AND
ENGINEERING APPLICATIONS
In this section, we illustrate the accuracy, validity, appli-
cability and performance of the constructed algorithms by
considering several test functions which include some real-
life problems in Engineering also. We compare the numeri-
cal results of these suggested algorithms with the following
iteration schemes:

A. NOOR’s ITERATION METHOD ONE (NIM1)
Given a starting point s0, the approximate zero sn+1 can be
achieved by the following iterative schemes:

tn = sn −
ξ (sn)
ξ ′(sn)

, n = 0, 1, 2, 3, . . . ,

sn+1 = tn −
ξ (sn)
ξ ′ (sn)

+

[
ξ (sn)
ξ ′ (sn)

]
ξ ′(tn)
ξ ′(sn)

.

Which is Noor’s iteration method one [27] with conver-
gence of second-order for computing roots of non-linear
equations.
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B. NOOR’s ITERATION METHOD ONE (NIM2)
Given a starting point s0, the approximate zero sn+1 can be
achieved by the following iterative schemes:

tn = sn −
ξ (sn)
ξ ′(sn)

, n = 0, 1, 2, 3, . . . ,

sn+1 = sn −
2ξ (sn)

ξ ′ (sn)+ ξ ′ (tn)
.

Which is Noor’s iteration method two [27] with third-order
convergence for computing roots of non-linear equations.

C. OSTROWSKI’s ITERATION METHOD (OIM)
Given a starting point s0, the approximate zero sn+1 can be
achieved by the following iterative schemes:

tn = sn −
ξ (sn)
ξ ′(sn)

, n = 0, 1, 2, 3, . . . ,

sn+1 = tn −
ξ (sn)ξ (tn)

ξ (sn)ξ ′(sn)− 2ξ ′(sn)ξ (tn)
.

Which is well-known Ostrowski’s iteration method [29]
with fourth-order convergence for computing roots of
non-linear equations.

D. TRAUB’s ITERATION METHOD (TIM)
Given a starting point s0, the approximate zero sn+1 can be
achieved by the following iterative schemes:

tn = sn −
ξ (sn)
ξ ′(sn)

, n = 0, 1, 2, 3, . . . ,

sn+1 = tn −
ξ (tn)
ξ ′(tn)

.

Which is known as Traub’s iteration method [37] with
fourth-order convergence for computing roots of non-linear
equations.

E. MODIFIED HALLEY’s ITERATION METHOD (MHIM)
Given a starting point s0, the approximate zero sn+1 can be
achieved by the following iterative schemes:

tn = sn −
ξ (sn)
ξ ′(sn)

, n = 0, 1, 2, 3, . . . ,

sn+1 = tn −
2ξ (sn)ξ (tn)ξ ′(tn)

2ξ (sn)ξ ′2(tn)− ξ ′2(sn)ξ (tn)+ ξ ′(sn)ξ ′(tn)ξ (tn)

Which is modified Halley’s iteration method [28] for com-
puting roots of non-linear equations, having the convergence
of order five.

For comparing the above-described iteration schemes with
the suggested methods, we consider eleven arbitrary and
engineering examples and solve them.

In all examples, we choose the accuracy ε = 10−15 for the
stopping criterion of the computer programs |sn+1− sn| < ε.

Tables 1-2 illustrate the comparisons of the constructed
algorithms with the other similar existing methods. In the
columns of the given tables, the iterations consumed by dif-
ferent iteration schemes has been represented by the sym-
bol N , the absolute value of the function has been denoted

by |ξ (s)|, the approximated zero of the given function has
been shown by sn+1, the absolute distance of consecutive
approximations through different iteration schemes has been
represented by |sn+1 − sn| and the symbol COC stands for
the computational order of convergence with the following
standard form:

COC ≈
ln |(sn+1−α)|
|(sn−α)|

ln |(sn−α)|
|(sn−1−α)|

.

which was introduced in 2000 by Weerakoon et al. [40].
Example 1: Open Channel Flow Problem
The flow of water under the uniform flow condition is

illustrated by the well-known Manning’s equation [22]:

Water Flow = F =
√
mar

2
3

n
, (19)

where the symbols a, m, r and n stand for the area, slope,
hydraulic radius and the Manning’s roughness coefficient
respectively. For a channel, having rectangular shape with
depth s and width b has the following equations:

a = bs, & r =
bs

b+ 2s
. (20)

With the help of (19) and (20), we can write:

F =
√
mbs
n

(
bs

b+ 2s
)
2
3
.

To find the depth of water in the channel for a given
quantity of water, the above equation may written in the form
of non-linear function as:

ξ1(s) =
√
mbs
n

(
bs

b+ 2s
)
2
3
− F .

We select the specific values of different parameters
appeared in the above equation as m = 0.017, b = 4.572m,
n = 0.0015 and F = 14.15 m3/s. For initialing the process
of iterations, we take the starting point s0 = 0.4 and the
numerical results have been recorded in Tab. 1.
Example 2: Adiabatic Flame Temperature Equation
Regarding the equation of the adiabatic flame temperature,

we consider the following equality:

ξ2(s) = 1H + c1 (s− 298)+
c2
2

(
s2 − 2982

)
+
c3
3

(
s3 − 2983

)
,

where 1H = −57798, c1 = 7.256, c2 = 0.002298, c3 =
0.00000283. For more study, one can see [32], [33]. The
non-linear function defined above is a cubic polynomial with
three roots. One of the simple root among these three roots
is α = 4305.3099136661 which has been approximated by
taking the starting point s0 = 2050.0 and the numerical
results have been recorded in Tab. 1.
Example 3: Fraction Conversion of Nitrogen-Hydrogen to

Ammonia
This problem has been taken from [2], that illustrates

the fraction of the conversion of Nitrogen-Hydrogen feed
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to Ammonia. In the present problem, we choose the values of
pressure as 250 atm and that of temperature as 5000C. The
problem in terms of non-linear function has following form:

−0.186−
8s2 (s− 4)

2

9 (s− 2)3
= 0. (21)

After simplifying (21), we can obtain the following
polynomial:

ξ3(s) = s4 − 7.79075s3 + 14.7445s2 + 2.511s− 1.674.

It should be noted that polynomial given in the above
equation is of degree four and in the light of fundamental
theorem of Algebra, the roots of the polynomial must be four.
As the numerical value of fraction conversion falls between
the interval (0, 1), therefore the one and only feasible solution
that falls in the (0, 1) interval is 0.2777595428. The remand-
ing roots of the above polynomial is meaningless physically.
For initialing the process of iterations, we take the starting
point s0 = 0.1 and the numerical results have been recorded
in Tab. 1.
Example 4: Finding Volume fromVanDerWall’s Equation
The well-known van derWaal’s equation [39] in the Chem-

ical Engineering and Chemistry has a significant importance
and it is used for studying the behavior of gases. The standard
mathematical form of this equation is:

(P+
A1n2

V 2 ) (V − nA2) = nRT . (22)

By choosing the feasible values of the different parameters
that appeared in (22), the following non-linear function can
be obtained:

ξ4(s) = 0.986s3 − 5.181s2 + 9.067s− 5.289,

where the variable s in (22) stands for the volume of the
gas and can be calculated by computing the zeros of ξ4.
As the function ξ4 is a cubic degree polynomial, so there
exist three roots. The positive real and simple root among
the three roots is 1.9298462428. The remanding two roots of
ξ4 is meaningless physically because volume can never be
negative. Therefore, for initialing the process of iterations,
we take the starting point s0 = 2.0 and the numerical results
have been recorded in Tab. 1.
Example 5: Transcendental and Algebraic Problems
To numerically analyze the suggested algorithms, we con-

sider the following seven transcendental and algebraic equa-
tions and their numerical results can be seen in Tab. 2.

ξ5(s) = ses
2
− sin2(s)− 3 cos (s)+ 5,

ξ6(s) = cos (s)− s,

ξ7(s) = s3 + 4s2 − 15,

ξ8(s) = (s− 1)3 − 1,

ξ9(s) = 2− 2
√
s,

ξ10(s) = e(s
2
−7s−30)

− 1,

ξ11(s) = s3 − 10.

TABLE 1. Numerical comparison among different algorithms for the engineering problems ξ1 − ξ4.
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TABLE 2. Numerical comparison among different algorithms for transcendental and algebraic problems ξ5 − ξ11.

By carefully examining the results recorded in Tabs. 1–2,
it is clear that the constructed iteration schemes are superior
to the other comparable ones with respect to different param-
eters such as convergence speed, iterations’ consumption and
the accuracy.

Table 3 has been designed by increasing the accuracy
up to 100 decimal places in the stopping criterion which
gives us the detailed comparison in terms of iterations that
have been consumed by different iteration schemes with the

constructed algorithms. The vertical columns of Tab. 3 give us
the information about the iterations’ consumption by different
iteration schemes for different non-linear functions together
with the starting point s0.
The results of Tab. 3, again proved that the constructed

algorithms consumed less iterations when the accuracy has
been increased as compared to the other iteration schemes.
All the numerical computations have been carried out through
the computer program Maple 15.
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TABLE 3. Comparison of the iterations consumed by different algorithms for ε = 10−100.

VI. POLYNOMIOGRAPHY
To generate polynomiographs through the computer program
for different complex polynomials, we consider an initial
rectangle R that contains the zeros of the polynomial which
is being under consideration. Corresponding to the start-
ing point z0 in the region of R, we execute the process of
iteration and color the point corresponding to z0 that relies
on approximated convergence of truncated orbit to the root.
The discretization of the rectangle R is directly related to the
quality and resolution of the drawn image i.e., if we made the
discretization of the rectangle R into the grid of 2000×2000,
then the resultant image will be of high quality with the better
resolution.

We know that if there exists a polynomial p with degree
n then it must possess exactly n roots by the fundamental
theorem of Algebra and can be written uniquely as :

p(z) = cnzn + cn−1zn−1 + . . .+ c1z+ c0, (23)

or by its zeros (roots) {z1, z2, . . . , zn−1, zn} :

p(z) = (z− z1)(z− z2) . . . (z− zn), (24)

where {cn, cn−1, . . . , c1, c0} are the complex coefficients.
The iterative algorithms can be easily applied to both rep-

resentations of the complex polynomial p. The number of
basins of attraction of the considered polynomial is depicted
by its degree. The basins’ location can easily be managed by
changing the position of roots in the complex plane manually.
The polynomiographs’ colors are directly associated with the
iterations’ consumption to attain the approximate solution of
the polynomial with the defined accuracy and the considered
scheme of iteration.

The most general and the basic algorithm for drawing
polynomiographs has been given in Algorithm 3.

The iteration scheme is supposed to be converged or
diverged if the Convergence Test (zn + 1, zn, ε) returns
TRUE or False in the above-defined Algorithm 3. The stan-
dard convergence test which is used to study the convergence
or divergence of the iteration scheme has the following form:

|zn+1 − zn| < ε, (25)

where zn+1 and zn are the two successive approximations in
the process of iteration and ε > 0 represents the defined

Algorithm 3 Polynomiograph’s Generation
Input: p ∈ C—A complex polynomial, A ⊂ C— The

area, k — Maximum number of iterations, I —
Iteration scheme, ε — The accuracy, Colormap
[0 . . .C − 1] — Colormap with C colors.

Output: Polynomiograph for the complex polynomial p
in area A.

for z0 ∈ A do
i = 0
while i ≤ k do

zn+1 = I (zn)
if |zn+1 − zn| < ε then

break
i = i+ 1

color z0 through the colormap.

accuracy. In the present article, we consider the same stop-
ping criterion as given in (25). Using the constructed novel
algorithms and other methods of the same kind, we obtained
nice-looking and interesting polynomiographs. The different
coloring of polynomiographs relies on the number of iter-
ations requires to approximate the roots of the polynomial
with defined accuracy ε. A plethora of such types of images
can be drawn through the computer program by the variation
of k which denotes the upper bound of iterations consumed
by the iteration scheme. For further study in the field of
polynomiography along with the artistic applications, one
can see [6], [7], [9], [11], [13], [16]–[18], [26], [34] and the
references therein.

For drawing polynomiographs and comparing them with
the other iteration schemes, we consider six different complex
polynomials:

p1(z) = z3 − 1, p2(z) = (z3 − 1)2, p3(z) = z4 − 1,

p4(z) = (z4 − 1)2, p5(z) = z5 − 1, p6(z) = (z5 − 1)2.

For drawing aesthetically pleasing images, we utilize the
computer technology with the program Mathematica 12.0
for creating all the presented images by taking the accuracy
ε = 0.01, the area A = [−2, 2] × [−2, 2], and the upper
bound of the number of iterations k = 15. In order to color
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the iterations in the process of polynomiographs’ generation,
we utilize colormap presented in the Fig. 1.

FIGURE 1. The colormap for drawing polynomiographs.

Example 6: Polynomiographs for the Polynomial p1
Through Various Numerical Algorithms

FIGURE 2. Polynomiographs associated with the polynomial p1.
(a) stands for NIM1, (b) for NIM2, (c) for OIM, (d) for TIM, (e) for MHIM,
(f) for Algorithm 1 and (g) for Algorithm 2.

Example 7: Polynomiographs for the Polynomial p2
Through Various Numerical Algorithms
Example 8: Polynomiographs for the Polynomial p3

Through Various Numerical Algorithms
Example 9: Polynomiographs for the Polynomial p4

Through Various Numerical Algorithms
Example 10: Polynomiographs for the Polynomial p5

Through Various Numerical Algorithms
Example 11: Polynomiographs for the Polynomial p6

Through Various Numerical Algorithms
In Examples 6–11, containing Figures 2–7, the conver-

gence regions for Noor’s iteration method one (NIM1),
Noor’s iteration method two (NIM2), Ostrowski’s iteration
method (OIM), Traub’s iteration method (TIM), the modified
Halley’s iteration method (MIHM) and the newly constructed
algorithms have been shown using different degrees complex
polynomials.

In the first experiment, we executed all comparable iter-
ation schemes for the purpose of obtaining the simple roots
of p1 which is actually a cubic-degree polynomial and their

FIGURE 3. Polynomiographs associated with the polynomial p2.
(a) stands for NIM1, (b) for NIM2, (c) for OIM, (d) for TIM, (e) for MHIM,
(f) for Algorithm 1 and (g) for Algorithm 2.

results can be seen in Fig. 2. In the next experiment, we take
the polynomial p2 which is a six-degree polynomial with
three distinct zeros of multiplicity 2. The corresponding poly-
nomiographs are given in Fig. 3. In the eighth and ninth exam-
ples, we again executed the comparable iteration schemes for
p3 and p4 which are fourth- and eight-degree polynomials
and their drawn images have been given in Figs. 4 and 5.
Both p3 and p4 have four distinct roots but the latter one
possesses zeros of multiplicity 2. The drawn images for
p5 and p6 which are fifth- and tenth-degree polynomials
through the comparable iteration schemes in the form of
polynomiographs can be seen in Figs. 6 and 7. These poly-
nomials possess five different zeros but p6 possesses non-
simple zeros with multiplicity 2. All zeros or roots of the
considered polynomials p1 − p6 are displayed in the form
of white circles in Figs. 2-7. The repeated zeros or roots of
the polynomials possess identical colors and the location on
the corresponding polynomiographs which can be seen in
Figs. 3, 5 and 7.Moreover, the drawn images through the sug-
gested iteration schemes have interesting and diverse fractal
patterns with higher dynamics.

Two important features of the considered algorithms can
be predicted by examining the generated polynomiographs
carefully. The first feature among them is the rate or conver-
gence speed of the iteration, i.e. each point’s color informs
us about the iterations carried out by the considered iter-
ation scheme to approximate the zero. The second feature
is the dynamics of the iteration scheme that is used to
draw polynomiographs. Low dynamics of the drawn images
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FIGURE 4. Polynomiographs associated with the polynomial p3.
(a) stands for NIM1, (b) for NIM2, (c) for OIM, (d) for TIM, (e) for MHIM,
(f) for Algorithm 1 and (g) for Algorithm 2.

FIGURE 5. Polynomiographs associated with the polynomial p4.
(a) stands for NIM1, (b) for NIM2, (c) for OIM, (d) for TIM, (e) for MHIM,
(f) for Algorithm 1 and (g) for Algorithm 2.

exist in the areas, having small colors’ variation and the
areas with large colors’ variation, the dynamics are high.
The brighter areas in figures showing the best performance of

FIGURE 6. Polynomiographs associated with the polynomial p5.
(a) stands for NIM1, (b) for NIM2, (c) for OIM, (d) for TIM, (e) for MHIM,
(f) for Algorithm 1 and (g) for Algorithm 2.

FIGURE 7. Polynomiographs associated with the polynomial p6.
(a) stands for NIM1, (b) for NIM2, (c) for OIM, (d) for TIM, (e) for MHIM,
(f) for Algorithm 1 and (g) for Algorithm 2.

the considered algorithm whereas the black color in images
points out those places at which the solution is impossible to
achieve for the defined number of iterations. The same colors’
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areas in the presented images providing us the information
about the same iterations’ consumption for determining the
approximate zeros and appear identical to the contour lines on
the map. It should be noted that the drawn images through the
constructed algorithms possess brighter areas and almost free
from black areas against the other ones of similar type that
justified the supremacy of the constructed algorithms over the
other ones.

VII. CONCLUDING REMARKS
In this article, we established two new root-finding algo-
rithms for the solution of non-linear functions which bearing
the convergence of sixth-order. These algorithms have been
derived by employing Househölder’s method, interpolation
technique and Taylor’s series expansion and one of them
is second-derivative free that results in a better efficiency
with less computational cost. The applicability, validity and
performance of the constructed algorithms have been ana-
lyzed by solving some test functions including engineer-
ing and arbitrary problems. Tables 1–3 show the numerical
results of some test examples that certified the superiority
of established algorithms with respect to convergence speed,
efficiency, accuracy and the iterations’ consumption over
the other iteration schemes with similar nature. We ran the
constructed algorithms with the aid of computer technol-
ogy for creating some new art in the form of aesthetically
pleasing images by considering some complex polynomials
and compared them with other two-step algorithms. The
obtained images are brighter, colorful, having complex and
aesthetic patterns which reveal the convergence speed, fractal
behaviors and some other graphical features of the proposed
algorithms. Using the idea of this paper, one can derive a class
of new iterative algorithms and create some new mathemat-
ical art through these algorithms in future work. The proven
results of this paper may give rise to further research in this
field.
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