
Received May 6, 2021, accepted July 1, 2021, date of publication July 9, 2021, date of current version July 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3096034

Methods for Measuring Geodiversity in
Large Overhead Imagery Datasets
AARON M. WESLEY 1,2, (Member, IEEE), AND
TIMOTHY C. MATISZIW 1,3,4, (Senior Member, IEEE)
1Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
2National Geospatial-Intelligence Agency, Saint Louis, MO 63118, USA
3Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
4Department of Geography, University of Missouri, Columbia, MO 65211, USA

Corresponding author: Aaron M. Wesley (amwvg5@umsystem.edu)

ABSTRACT Geographic variation in the appearance of objects on Earth is readily observable in remotely
sensed imagery (RSI) and somewhat intuitive to understand for most people – many classes of objects
(houses, vehicles, crop fields etc.) simply look different depending on their location. This variation has
recently been shown to have important implications when training machine learning models on geotagged
image datasets for specific object detection and classification tasks. For example, models trained on datasets
with ethnocentric biases in image content have been shown to misclassify objects in under-sampled regions,
particularly in least-developed countries. The need to evaluate the growing corpus of RSI datasets for
representativeness, heterogeneity and geodiversity is therefore high; yet scalable methods for measuring
these concepts are absent in the remote sensing domain. This paper introduces the first dataset analysis
methods for detecting and assessing geodiversity problems in large RSI datasets, based on geospatial
adaptations of the Fréchet InceptionDistance and Inception Score in the deep learning framework. Geospatial
Fréchet Distance is proposed as a dissimilarity measure for image features of an object class across
geographic regions – useful for comparing differences in object class appearance in different locations
and/or spatial scales. A complementary Geospatial Inception Score is proposed to quantify heterogeneity
of geographic context present in dataset labels within particular regions/locations, taking into account the
labels themselves as well as their immediate surroundings. Rigorous tests of these methods on simulated
RSI datasets demonstrate their stability, sensitivity, and the broad range of dataset analyses to which they
can be applied.

INDEX TERMS Big geodata, deep convolutional neural networks, explainable ai, geographic domain shift,
GIS-remote sensing fusion, imagery interpretation, spatial data analysis.

I. INTRODUCTION
The appearance of common types of geographic phenomena
(natural or of human origin) can exhibit a tremendous amount
of variation not only from place to place but also over time.
For example, a building or set of buildings categorized as
a ‘secondary school’ located in an urban community in the
USA can appear quite different than one located in a rural
community in Liberia (see Fig. 1). The ubiquity of spatiotem-
poral variation in appearance within an object class (i.e., a
distinct category of geographic objects) is in fact thought to
exert some influence on human cognitive development [1],
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perception and processing of visual stimulus [2], conceptual-
ization of distinct locations and regions [3], [4], organization
of social systems within space [5], wayfinding capability [6],
sense of place [7], and, of course, object recognition and
ontological classification [8], [9]. The first law of geogra-
phy – Waldo Tobler’s assertion that ‘everything is related to
everything else, but near things are more related than distant
things’ [10] offers an implicit theoretical explanation for the
often complex relationship between geographic regions and
the appearance of objects found therein [11].

An overhead view of visual variation in landscape features
over geographically expansive areas has evolved consider-
ably over the last 50 years given advances in the field of
remote sensing (RS). Increased spatial, spectral, radiometric
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and temporal resolution of air and space-borne RS systems
have made fine scale physical characteristics of increas-
ingly smaller objects observable and available for analysis
by the scientific community as well as the general pub-
lic [9]. Almost concurrently, methods for image processing
and computer vision have matured to exploit pixel, object
and region level features of images [12], [13] in increasingly
sophisticated classification algorithms, contributing to the
widespread usage of deep learning (DL) classifiers based
on convolutional neural networks (CNNs) [14]. Recently,
extensive efforts at geospatial data labeling and indexing,
channeled through open-source annotation platforms such
as OpenStreetMap [15], fee-based labelling services such
as Amazon Mechanical Turk [16], as well as other annota-
tion campaigns in industry [17] and government [18], have
resulted in a large number of public and proprietary remotely
sensed imagery (RSI) datasets. Many of these datasets con-
tain thousands or millions of examples of object classes as
varied as bridges [19], coconut trees [20], sea lions [21] and
damaged buildings [22], to name a few.

The confluence of data availability, pervasive dataset cre-
ation and readily deployable models has helped usher in
the era of big geospatial data [23]–[27] and the mobiliza-
tion of RSI to address complex problems in areas such as
humanitarian assistance and disaster response (HA/DR) [28],
public health surveillance [29], precision agriculture [30],
mapping social inequities [31], wildlife tracking [32], among
others. An understanding of the actual content of these
datasets, particularly the level of meaningful and representa-
tive variation in how objects appear visually as well as where
(i.e., geospatial context) they might be situated, is essential
to effectively address geospatial problems. However, a main
problemwithin the remote sensing domain is that elements of
geodiversity of object classes within the current corpus of RSI
datasets have been largely unexamined in efforts to vet these
sources for operational use [33], [34]. This oversight is not
entirely surprising given the source of the data: a persistent
downlink from a constellation of multimodal satellites with
global coverage and daily reimaging at submeter resolution or
better. Thus, the assumption that datasets derived from such
sources might contain extremely high levels of object class
heterogeneity and comprehensive representation of objects’
geographic contexts is quite reasonable. However, there is
a need for tools and techniques for empirically testing such
assumptions and for characterizing and analyzing geodiver-
sity of appearance within the object classes in a dataset.

In this paper, the importance of addressing geodiversity
in RSI datasets is established through a review of simi-
lar forms of data bias identified by other disciplines as
well as recent calls for action from industry and govern-
ment. A conceptual framework for measuring geodiversity
of specific RSI object classes is then outlined. This frame-
work relates the often-subjective concepts of equitability,
fairness, heterogeneity, representativeness, and inclusivity,
and allows for project-specific data diversity requirements.
Finally, deep-feature RSI dataset analysis methods are

introduced to fill the most basic gap – the need to quantify
diversity of dataset object class representations within and
among geographic regions, taking into account heterogeneity
of the object’s spatial context. These methods are applied to
a simulated RSI dataset to test for stability, sensitivity, and
scale dependence.1 Whereas this paper’s primary focus is on
testing the spatially-explicit characteristics of the proposed
methods, the results demonstrate both their efficacy and the
rich and relatively untapped RSI dataset analyses to which
they can be applied. To our knowledge, this research provides
the first training dataset geodiversity analysis methods in the
remote sensing literature (see Table 4) and represents the
beginning of the academic conversation regarding represen-
tational bias in large overhead imagery sources. Hopefully,
the insights provided here will spur the development of
a wider variety and deeper complexity of diversity-related
spatial dataset analysis methods and tools to enable better
decision making in the era of big geospatial data.

II. BACKGROUND
A. CURRENT CHALLENGES
RSI datasets are just one subset of a much broader phe-
nomena of large dataset creation for deep learning applica-
tions in the scientific and commercial domains. They have
be used in a variety of contexts, ranging from text-based
genomic analysis [35] and natural language processing [36]
to image- and video-based vision tasks for media scraped
from the web [37] or captured from distributed sensors like
smartphones and traffic cameras [38], [39]. Given the sheer
size and complexity of such multimodal, multidisciplinary
data sources, it might be expected that models trained on
these datasets contain finely-discriminative, highly-diverse,
and inclusive features suitable for any number of uses world-
wide. However, recent research on analysis of big datasets
suggests that this is not the case. Serious problems of rep-
resentational bias, often related directly to undersampling
of distinct geographic regions and/or demographic groups,
have been uncovered in gold-standard genomic databases
used throughout the biomedical sciences [40]–[42], in speech
and facial/gesture recognition services [43], [44], in pop-
ular cloud-based object detection and classification ser-
vices [45], [46], and in benchmark computer vision training
datasets [47]–[49]. Importantly, these studies show that mod-
els trained on datasets with pronounced Amerocentric and
Eurocentric bias can perform poorly for artificial intelligence
applications in least-developed countries (i.e., the Global
South [33]) as well as the rural and low-income commu-
nities prioritized by international security and development
goals [50]–[53].

There is little literature in which the presence and/or reper-
cussions of geographic representation bias in RSI datasets

1Here, we follow the tradition in computer vision, remote sensing and
image processing of first internally validating a spatially-explicit model with
simulated data derived from known parameters to better understand the
model’s likely performance on real-world data, including any limits of model
reliability due to spatial effects [121]–[127].
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FIGURE 1. An example of visual variation in the ‘secondary school’ object
class in Texas, USA (left) and Liberia (right) as seen in satellite
imagery [102], [103].

is either mentioned [54]–[56] or investigated [33], [34].
Descriptions of new RSI datasets often reference the need
for object class samples to be sufficiently heterogenous and
representative to support generalizability of trained models
and report basic object class spatial statistics such counts
per region and label density/distribution as evidence of gen-
eralizability [22], [57]. However, attempts to quantify the
extent and/or spatial characteristics of geographic variation
in learnable image features of object classes in such datasets
are absent in the remote sensing literature. As such, forceful
concerns have been raised by industry about RSI dataset geo-
diversity problems [58] including the lack of tools to measure
RSI feature diversity or predict the effect of biased data on
trained model generalizability [59]. Interestingly, the U.S.
Department of Defense, a main producer and consumer
of RSI-based data and analyses, included a call to detect,
understand and mitigate problems of dataset bias within its
Artificial Intelligence Ethics Framework for the Intelligence
Community [60]. Hence, image-content-based evaluation of
RSI dataset bias remains a key gap in the academic literature
as well as a priority for industry and government.

B. DIVERSITY AND GEODIVERSITY
Academic discussions related to diversity in datasets have
used terms such as ‘inclusive’, ‘equitable’, ‘heterogenous’,
‘fair’ and ‘representative’, with varying agreement on the
meaning of these concepts [61], [62]. Here, the overall con-
cept of geodiversity in the context of RSI datasets is defined
as ‘the extent to which the observed heterogeneity of repre-
sentations in sampled object class labels reflect the expected
heterogeneity of the real-world object of interest.’ This def-
inition allows for an application-specific conceptual frame-
work for evaluating dataset diversity that takes the target
object(s) and project goals into account. From this starting
point, it is argued that RSI training datasets achieve sufficient
geodiversity for a given classification problem (and therefore
equitability and representativeness) when the heterogeneity
in the morphological and contextual representations of its
object class(es) reflects that of the real-world object(s) in the
target domain. This leaves room for datasets to be consid-
ered sufficiently geodiverse even if they consist of relatively
homogenous, location-invariant object classes as long as

a) there is also relatively little morphological and contextual
variation in the real-world objects of interest, or b) if a
detection/classification task requires very specific image fea-
tures (e.g., rare object detection with few and relatively sim-
ilar training examples not expected to deviate in appearance
or context).

Theoretical and practical obstacles exist for assessing geo-
diversity of RSI datasets which relate to the uniqueness of
RS phenomenology and the nature of Earth observation.
First, subtle but important differences in the way humans
and overhead sensors perceive and process the features of
geographic objects can create equally subtle mismatches in
the data models of such objects [63], [64], leading to potential
differences in how humans and machines detect and interpret
variation in object appearance [65]. Theoretically, this can
cause humans to expect more (or less) visual variation for
certain object classes in RSI data than warranted. Second,
the extent of true object class variation may be unknown, and
assumptions of geodiversity in image features of some object
classes for certain regions may be untenable. Thus, there is
a need for methods to empirically evaluate feature variation
over the landscape. However, manual methods for this assess-
ment in large RSI datasets can be impractical with thousands
or millions of examples per class. As such, scalable quan-
titative metrics to support these types of tasks are required.
Simply analyzing the coordinate locations of dataset samples
(e.g., dispersion or clustering of points) would provide insuf-
ficient insight due to lack of information of the actual feature
content of the images (and the untenability of any presump-
tions of local object diversity).

C. PRACTICAL AND SCIENTIFIC REQUIREMENTS FOR
RSI DATASET GEODIVERSITY ASSESSMENT
Despite the above concerns, a growing need for RSI dataset
geodiversity analysis tools exists in the scientific community
as well as in industry and government. Depending on the
goals and complexity of the operational use case, answers
to increasingly complex questions concerning dataset geo-
diversity may be required, which until now have relied on
manual or presumptive answers (e.g., those based on label
location and point patterns). The following types of practical
geodiversity-related questions may be encountered:

1. Binary – Is there detectable geographic variation in
image features of object classes in a particular dataset?

2. Continuous – To what extent does image feature
appearance vary over the study area?

3. Exploratory – What locations or regions have the high-
est (or lowest) diversity in the appearance of a particular
object class or its immediate spatial context?

4. Comparative – Which locations or regions have the
most similar (or dissimilar) image feature representa-
tions for an object class?

5. Explanatory –What factors contribute to the prevalence
of particular image features detected in certain loca-
tions or regions?
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6. Prescriptive – To what extent must more RSI data
collection be done for a particular location or region
to address trained model bias problems for an object
class?

Answers to the above questions are not just required at
the point of dataset usage; continuous triage of the dataset
creation phase is needed, particularly for large-scale and
complex imagery annotation campaigns (e.g., online volun-
teer annotation). Project managers have an unaddressed need
to know what exactly is being collected, and if client or end
user expectations for the dataset are being met.

Additionally, other basic scientific questions related to the
geographic nature and statistical properties of RSI dataset
geodiversity have largely gone unexplored. These include:

1. Train-test set parity/complementarity – What geo-
graphic differences in image feature geodiversity exist
for the training and test split for a particular dataset?

2. Geographic bias – What specific image feature biases
might a model trained on a certain dataset contain?
For example, what characteristics of an object class has
the model learned for locations in the training set, and
would these generalize to locations present in the test
set?

3. Scale dependence of geodiversity measures – At what
smaller spatial scales, if any, does apparent heterogene-
ity in global image features for an object class become
more homogenous?

4. Spatial dependency of object class geodiversity – To
what extent does the geodiversity of object represen-
tations in a region influenced by that in neighboring
regions?

5. Spatial nonstationarity of image feature variance –
How smooth is the spatial transition of object class
appearance across a study area?

Whereas measures to assess the above aspects of
geodiversity in large training datasets are absent in the remote
sensing domain, a variety of measures of general, nonspatial
data diversity have been proposed in the broader computer
science and machine learning literature. The following sec-
tions review research which model concepts such as hetero-
geneity, representativeness, and fairness for categorical and
continuous data, highlighting methods with high potential for
adaptation to RSI data.

D. CATEGORY-BASED MEASURES OF DATA DIVERSITY
A measure of fairness in ML classification, in terms of miti-
gating ML algorithm reliance on group- and individual-level
protected attributes (e.g., race, ethnicity) during the classifi-
cation process, was developed by [66] to obfuscate attributes
which may identify a record as belonging to a protected
subgroup. Reference [48] posits fairness and diversity as the
degree of categorical bias present in a dataset, and applies
a distribution rebalancing technique to ImageNet image
annotations to achieve statistical parity among representa-
tions within dataset categories. Reference [66] explores the

theoretical relationship between fairness and diversity and
argues that metrics for data category separation, indepen-
dence, and sufficiency are needed to fully model dataset
fairness. There have been attempts to measure the complexity
or variety of whole-scene images in terms of the number and
type of discriminable phenomena detected in the image. For
the most part, these entail algorithms which model the uncer-
tainty inherent in assigning an image to a single object class
based on the apparent number of object classes present in the
image. For example, [67] propose a method for image com-
plexity assessment for generic, nongeotagged images based
on Shannon entropy of handcrafted image features. More
recently, interest in assessing the quality of synthetic images
created by deep (i.e., CNN-based) generative models has
increased, especially with respect to generative adversarial
network (GAN) output. Along with this trend has come key
implementations of measures of whole-image content variety
for generative models trained on multicategory datasets.

One of these measures, the Inception Score (IS) [68],
posits that the quality of generated images increases as a)
the certainty of object class membership within individual
synthetic images increases (i.e., each generated image for a
certain object class contains a distinct and easily distinguish-
able example of the object class), and b) as the categorical
variety of generated object classes in a batch of synthetic
samples increases (i.e., the number of object classes detected
by a classifier approaches the total number of object classes
learned by that classifier). Both criteria can be extracted from
the softmax function output of a CNN pre-trained on j ∈ J
classes arrived at by passing a batch of generated images xi ∈
X through the network. This output can be conceptualized
as an |X | × |J | matrix, each row i containing numeric class
membership probabilities (conditional label distribution) that
sum to 1.0 for each respective image. Object class certainty
criteria can then be modeled as the Shannon entropy of the
conditional label distribution p(y = j|xi), (where p denotes
the probability of correctly predicting the label y ∈ Y of an
image given training sample xi), and the categorical variety
criteria can be modeled as the Shannon entropy of the inte-
gral of the conditional label distribution

∫
p(y = j|xi) = p(y).

Given these assumptions, a batch of images can be passed
through a pretrained CNN [68] to compute the conditional
and marginal distributions. The IS is then computed as a
measure of the magnitude of the difference between the two
distributions as in (1).

IS = exp
(
(1/X)

∑
i∈X

DKL (p(y = j|xi)||p(y))
)

(1)

Kullback-Leibler divergence DKL is used to assess the
difference between the distributions and the exponential of
the average DKL over all images x ∈ X can be computed
to ensure IS falls within the range [1, |J |] [69]. An ‘ideal’
result (i.e., IS = |J |) is reached when: a) minimum
entropy/uncertainty exists in the conditional distribution, and
b) maximum entropy/uncertainty exists in the marginal dis-
tribution. The effect on IS of less than perfect divergence
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between the conditional and marginal distributions is illus-
trated in Fig. 2. Importantly, the detection of multiple objects
per image and/or imbalanced class representation between
images results in lower IS scores, to be interpreted as ‘low
quality’ synthetic images.

FIGURE 2. An illustration of resulting IS values as divergence between
the conditional (blue) and marginal (orange) distributions increases.

E. FEATURE DISTANCE-BASED MEASURES
The concept of similarity of data samples has a long history
of usage in data mining and pattern recognition [70], often
measured in terms of relative distance of data points within
the space of their attributes. The compactness (clustering)
or evenness (dispersion) of data points makes classification
possible [71] and directly relates to conceptualizations of
entropy, information content, and diversity. Less distance
among clusters (or individual points) equates to more sim-
ilarity, less entropy, and less diversity, whereas more dis-
tance equates to less similarity, more entropy, and more
diversity [72], [73]. Algorithms to summarize dissimilarity
among clusters of high-dimensional points using ‘diversity
maximization’ are described by [74], [75] for datasets of
arbitrary type in the context of data mining in multime-
dia internet databases. Pairwise feature distance dissimi-
larity metrics are detailed by [76], [77] in the context of
assessing nongeotagged image dataset task suitability and
crowd-sourced worker opinion diversity, respectively, out-
side of the DL framework. Data collection-phase assess-
ment of feature diversity which takes into account data
noise by applying average distance to probability density
transformations of feature space are proposed by [78] and
applied to ImageNet. Besides directly analyzing datasets to
measure feature diversity, image features contained within
trained models can be the focus of analysis. For example,
[79] addresses the problem of redundant image features in
CNNs by applying a cosine similarity-based feature diver-
sity regularization term to the objective function. Some
approaches have sought to characterize the representativeness
of sampled RS-derived measurements relative to a ‘global’
representation (e.g., a reference dataset) using feature dis-
tance metrics at the pixel level [51], [80]–[82]. However, such
methods have not been applied to object or whole image
analysis of feature similarity (or dissimilarity) in RS datasets
in the DL framework.

In addition to IS, other metrics for assessing GAN
quality have recently been developed to directly compare

high-dimensional image features present in an ‘actual’ train-
ing dataset with those in synthetic GAN output. For instance,
the Fréchet Inception Distance (FID) involves comparing
learned image features between a training set and a batch
of GAN output, extracting these from feature vectors con-
tained in the final pooling layer of the Inceptionv3 CNN
architecture [83]. The model can contain pre-trained features
from a comparable dataset (e.g., ImageNet) or the features
can be constructed from scratch directly from the input data.
Specifically, FID is an adaptation of the Wasserstein-2 dis-
tance (d2) [84] between the multivariate Gaussian G(µa,Ca)
created from the mean µa and covariance Ca of feature
vectors of the ‘actual’ image data a and the multivariate
GaussianG(µs,Cs) created from the meanµs and covariance
Cs of the synthetic GAN output s. FID is the minimum linear
divergence of the first and second order moments (mean and
covariance) of the real and synthetic images arrived at by
adding the Euclidean norm of means µa and µs(||µa−µs||22)
with a trace operation (Tr) of matrices Ca and Cs as in (2):

FID = d2G(µa,Ca)G(µs,Cs)

= ‖µa − µs‖
2
2 + Tr(Ca + Cs − 2(CaCs)1/2) (2)

If the image sets are identical, there will be no distance
between the two, resulting in a FID = 0.0. Conversely,
if the image sets contain completely dissimilar image fea-
tures, the FID score approaches the total length of the feature
space (e.g., an upper limit of ∼768.0 for the 8-bit, 3-channel
images commonly used in deep learning applications). How-
ever, the interpretation of a ‘good’ FID score (in the context
of measuring synthetic image quality) is somewhat subjec-
tive and with no universally accepted threshold score. GAN
results for benchmark datasets such as CIFAR-10, LSUN, and
Celeb-A [85], [86] demonstrate that synthetic samples can
become visually indistinguishable from real samples when
FID scores are less than ∼50.0. Feature dissimilarity and/or
image distortions become more pronounced as FID scores
increase from∼50.0 to∼300.0, and the fidelity and structure
of objects in synthetic images can become difficult to visually
discern as FID scores increase past ∼300.0.
Both FID and IS are promising candidates for scalable

spatial exploration of the multiple facets of object class geo-
diversity in present and future RSI datasets. The next section
introduces geospatial extensions of IS and FID tailored to the
remote sensing domain.

III. METHODS
A. GEOSPATIAL INCEPTION SCORE
The Geospatial Inception Score (GeoISr ) is proposed as a
triplet of indices (ϕ,µ, β) for evaluating the number and
variety of co-occurring objects and background contexts sur-
rounding object class labels in a geographic region r ∈ R
within a RSI dataset (see Fig. 3 for an illustration).

In situations where regional changes in density of
co-occurring objects is the focus of the geodiversity analy-
sis, GeoISϕr can be calculated for region r ∈ R given the
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FIGURE 3. Extraction of image chips of an object class within an arbitrary
region of interest and computation of the three GeoIS indices
representing different facets of contextual geodiversity: co-occurring
object density, co-occurring object variety and the magnitude of
divergence between density and variety.

conditional distribution fi = p(y = j|xi) as in (1). GeoISϕr
can be structured as the Hill number of the average Shannon
entropy of fi over samples xi ∈ X as in (3).

GeoISϕr = exp
(
(1/X)−

∑
i∈X

p(ϕi) log p(ϕi)
)

(3)

GeoISϕr can be interpreted as the average number of
co-occurring objects/contexts (i.e., object density) near the
target label in region r . In situations where regional changes
in the number of distinct classes of co-occurring objects
around the target label is the focus on the geodiversity anal-
ysis, GeoISµr can be calculated for region r ∈ R given the
marginal distribution mi = p(y) as in (1). GeoISµr can be
structured as the Hill number of the average Shannon entropy
of the marginal distribution as shown in (4).

GeoISµr = exp
(
(1/X)−

∑
i∈X

p(mi) log p(mi)
)

(4)

GeoISµr can be interpreted as the average number of dis-
tinct classes of co-occurring objects/contexts (i.e., ‘object
variety’) near the target label in region r . Given the max-
imum number of distinct classes is equal to the |J | classes
on which the CNN model was pre-trained, the output index
of GeoISµr can be further scaled by the number of classes
(e.g., GeoISµr /|J |) such that the final score is the proportion
of possible co-occurring object variety allowed by the CNN.

In situations where the total bias of co-occurring object
density versus co-occurring object variety is the focus of the
dataset geodiversity analysis, GeoISβr is proposed as in the
original IS algorithm (1) for an arbitrary region r as shown
in (5).

GeoISβr = exp
(
(1/X)

∑
i∈X

DKL(ϕi||mi)
)

(5)

Optionally, (5) can be scaled as (GeoISβr /|J |) so that the
final score is the proportion of possible divergence between
the conditional ϕ and marginal µ distributions.
Whereas the IS algorithm integrates the concepts of within

image object class certainty (conditional distribution) and
between image object class variety (marginal distribution)
into a single index (via K-L divergence), GeoISr allows for
the separate evaluation of both components depending on
the type of geodiversity analysis required. This is necessary
because the original IS tends to penalize similar distribu-
tional patterns in the conditional and marginal with low
scores, whereas in the RSI context these patterns could some-
times signify greater geodiversity and warrant higher scores.

Fig. 4 illustrates two such situations in which a low IS index
score can mask high levels of contextual geodiversity in
RSI datasets based on object co-occurrence. The components
of GeoISr (GeoISϕr , GeoIS

µ
r , and GeoISβr ) can be applied

individually or together to any georeferenced image dataset
which links a class label for a geographic phenomenon
(e.g., object, land cover, activity, etc.) to a specific location
on the Earth. This includes popular benchmark RSI datasets
that combine overhead imagery swaths with text annotations
of georeference and metadata (e.g., [19], [87]) as well as
datasets created on-the-fly from queries to geodata APIs pro-
vided by online services such as OpenStreetMap or Google
Maps.

FIGURE 4. Expected result (A) of applying the original IS computation
toward the RSI geodiversity analysis problem versus the desired result
(B) for GeoIS.

Spatial analysis of how GeoISr changes across dataset
subregions can reveal patterns of relative heterogeneity or
homogeneity in the locations chosen for an object classes’
samples. Therefore, it can be useful in reasoning about a) the
diversity of geographic contexts in which a particular object
class is situated, b) changes to this diversity throughout the
spatial extent of an RSI dataset, c) the density of associated
(co-occurring) objects near the target label, and d) changes to
this density throughout the spatial extent of an RSI dataset.

The following describes the general workflow to apply
GeoISr to a locally-stored RSI dataset which includes text
files (e.g., json format) that reference X-Y coordinate loca-
tions within georeferenced image files (e.g., geotiff format).
First, the component(s) of the GeoISr computation are deter-
mined based on the requirements of analysis. Then, a CNN
backbone pretrained on j object class labels is selected to
detect the co-occurring objects/contexts of interest near the
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target label locations.2 Image chips within a prescribed dis-
tance of label locations are then extracted to be fed into the
CNN for co-occurring object detection. The desired unit(s)
of spatial aggregation for binning chipped images is then
determined and created, which can be single or multiple
geographic regions within the spatial extent of dataset labels,
or a tessellation of the entire extent (e.g., gridded overlay of
the minimum bounding geometry of the dataset). For each
region r , the desired GeoISr components are calculated for
the set of image chips x located within that region (e.g., those
whose centroids fall within polygon r) by way of Eq. 3-5. The
resulting scores are appended as attributes to each polygon r
for follow-on spatial analysis.

B. GEOSPATIAL FRÉCHET INCEPTION DISTANCE
The Geospatial Fréchet Inception Distance (GeoFIDkrq) is
proposed to compare image features (e.g., texture, shape,
association, etc.) of an object class k ∈ K learned in two
geographic subsets of RSI datasets (see Fig. 5 for an illus-
trative example). As the FID algorithm directly compares
image features learned in two ‘bins’ of images (i.e., actual
and synthetic), its adaptation to comparing spatial bins of
RSI label samples is straightforward and, like GeoISr , can
be applied to any georeferenced image dataset which links a
class label for a geographic phenomenon to a specific location
on the Earth.

FIGURE 5. Illustration of GeoFID workflow for computing the dissimilarity
of appearance of samples of an object class between two geographic
regions.

Specifically, the GeoFIDkrq takes as input a batch of image
samples xi ∈ X kr of class k from region r and a batch of image
samples vi ∈ V k

q of class k from region q and outputs the
dissimilarity between the two as shown in (6).

GeoFIDkrq = d2G(µkr ,C
k
r )G(µ

k
q,C

k
q )

=

∥∥∥µkr−µkq∥∥∥22+Tr(Ck
r +C

k
q − 2(Ck

r C
k
q )

1/2) (6)

This is accomplished through comparison of the multi-
variate Gaussians G(µ,C) of samples X from region r and
samples V from region q as in (2). Specifically, instead of
comparing image features learned in bin a of actual images
and bin s of synthetic images as in (2), spatial regions r ∈ R

2Care should be taken to choose a CNN model which reflects the goal
of the geodiversity/bias analysis. For narrow-scope analysis attempting to
account for a small number of specific co-occurring objects of interest,
a CNN trained on only those object classes would be appropriate. For more
comprehensive analysis, a CNN trained on a large number of object and land
cover classes may be warranted.

and q ∈ R are compared. As with the FID, GeoFIDkrq values
range from 0.0 (signifying identical image features for the
object class between the two geographic regions) to a limit
value equal to the length of the feature space (signifying
maximum dissimilarity of image features for the object class
between the two geographic regions).

For example, the image features of samples within a small
local subregion can be compared to the ‘global’ class dis-
tribution, or subregions of similar scale can be compared to
each other. Spatial analysis of pairwise region-level compar-
isons of an object class’ appearance can reveal locations in
which the object class appears significantly different from the
global distribution, ‘feature boundaries’ in which object class
appearance changes abruptly in space, and other insights.
Thus, the GeoFIDkrq could be used to provide insight as to
a) the magnitude of visual variation in the target label
throughout the spatial extent of the dataset to detect homo-
geneity / representational bias, b) differences in target label
appearance between two regions to empirically test assump-
tions of that difference, and c) visual outlier locations with
unexpectedly high dissimilarity in the target label vis-a-viz
the global distribution.

The following describes the general workflow to apply
GeoFIDkrq to a locally stored RSI dataset which includes
text files (e.g., json format) that reference X-Y coordinate
locations within georeferenced image files (e.g., geotiff for-
mat). First, an appropriately pre-trained CNN backbone is
selected to extract image features. Depending on the format
of the dataset labels (i.e., point or polygon labels), as well
as the goal of the analysis, additional image context within a
prescribed distance of the target labels can be included. Alter-
natively, image chips of only the label extents themselves
can be extracted. The desired unit(s) of spatial aggregation
for binning chipped images and comparing regions is then
determined and created; this could simply be two regions,
or a tessellation of the entire extent (e.g., gridded overlay of
the minimum bounding geometry of the dataset) to facilitate
comprehensive pairwise, focal, or zonal comparisons. For
each intended pairwise region comparison rq, GeoFIDkrq is
calculated between the set of image chips xi ∈ X kr of class k
from region r (those whose centroids are within polygon r)
and the set of image chips vi ∈ V k

q of class k from region q
(those whose centroids fall within polygon q) as in Eq. 6. The
resulting scores are relations defining the visual dissimilarity
of class k between r and q and can be appended as attributes to
each polygon r or q for follow-on spatial analysis, or they can
be stored in digraph matrix format for further computation.

IV. APPLICATION
A. SYNTHETIC DATASET
GeoFIDkrq and GeoISr are applied iteratively over several
spatial scales on a synthetic dataset with image features that
vary geographically according to known parameters. This is
done to evaluate the methods for stability, scale dependence
(i.e., effects of Modifiable Areal Unit Problem), sensitivity,

VOLUME 9, 2021 100285



A. M. Wesley, T. C. Matisziw: Methods for Measuring Geodiversity in Large Overhead Imagery Datasets

and any model-specific sample size requirements. Two sets
of 1000 samples of 3 synthetic object classes representing
simple shapes (ellipse, star, polygon) were created using
the pycairo Python package so that image features for each
object class, including size, shape, color, rotation, translation
(x-y displacement), ellipse ratio (for ellipse features), number
of sides (for polygon features), and number of points (for
star features), can be controlled parametrically. Both sets of
shape classes are assigned a random geolocation over the
latitude/longitude domain with bounds of (+90.0, -90.0) for
latitude and (+180.0, -180.0) for longitude to simulate the
GCS 1984 coordinate system. One set of shape objects is
created with image features that are randomized (i.e., location
independent). The other set of shape objects is created with
image features that vary isometrically inmagnitude according
to their assigned (x, y) coordinate location (i.e., location-
dependent). All datasets are available in a figshare reposi-
tory (https://doi.org/10.6084/m9.figshare.13318271.v1). An
example of the polygon object class’ feature variation over the
geospatial domain for the random and controlled sets is illus-
trated in Figs. 6 and 7, respectively. To facilitate application
of GeoFIDkrq and GeoISr at different geographic scales, the
study area is partitioned into 4, 9, and 16 equal area subregion
grids as geojson polygon objects using the shapely Python
package (see Figs. 8A-D). Synthetic images are then indexed
to these grids based on their location.

FIGURE 6. Example of random image features for the polygon class. The
location of each sample (green dots) is assigned an image with randomly
generated polygon features (for size, number of sides, displacement,
rotation, skewness, and color attributes).

All experiments are performed in Python 3.5 using Google
Cloud Services with a Linux virtual machine allocated
1x Tesla P100 GPU, 25.51GB RAM and 147.15GB HDD
storage.

B. EXPERIMENTAL SETUP FOR GEOFID
The task of comparing an arbitrary subregion of images with
those in the entire study region is simulated by calculating
the GeoFIDkrq for the entire region R (Fig. 8A) relative to
itselfGeoFIDkRR (to ensure unity) as well as to each subregion
GeoFIDkRr∀r ∈ R in order to analyze variations in those
values within and between scales. In the following experi-
ments, the Inception v3 CNNnetwork pretrained on the 1000-
class ImageNet dataset is used and the learned features on the
synthetic dataset are fine-tuned. Finally, the learned features
are extracted from the final pooling layer of the CNN to be
used as inputs to the GeoFIDkrq index.

FIGURE 7. Example of geographically controlled image features for the
polygon class. Each location (green dot) is assigned an image with
polygonal features having isometrically constrained magnitudes.

FIGURE 8. The ‘global’ region (A) of the WGS 1984 coordinate plane,
along with subregions evaluated in the synthetic dataset experiments:
(B) 4 subregions, (C) 9 subregions, and (D) 16 subregions.

Criteria for measuring stability, scale dependence, and
sensitivity of GeoFIDkrq in the experiment series are now
established. For the set of shape objects constructed with
random image features, it is known that the region as a
whole and each subregion have features drawn from the same
(random) distribution and should be visually indistinguish-
able. Therefore, any variation in GeoFIDkRr values in the ran-
dom feature set between the region as a whole and subregions
of the same scale is an indicator ofGeoFIDkRr stability within
that scale. Stability is measured and reported by the standard
deviation of GeoFIDkRr values within subregion grids (e.g.,
9 values for the 3× 3 grid and 16 values for the 4× 4 grid).
Likewise, any variation in GeoFIDkRr values in the random
feature set between the global distribution and subregions
of different scale is an indicator of the MAUP’s effect on
GeoFIDkrq across scales. Scale dependence is measured and
reporting by noting changes in average GeoFIDkRr across the
3 subregion grids of the random-feature set. Finally, for the set
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of shape objects constructed with geographically controlled
features, it is known that visual variation should exist between
the global distribution and any subregion, with the magnitude
of that variation directly related to the scale of the subregion
(because image features aremore homogenouswithin smaller
subregions). Therefore, it is expected that GeoFIDkRr values
in the controlled feature set increase as smaller subregions
are compared to the region as a whole, with characteristics
of this trend being an indicator of GeoFIDkRr sensitivity to
small changes of feature variation. Sensitivity is measured
and reported by the trend in average GeoFIDkRr across the
3 subregion grids of the controlled feature set.

Some expectations and criteria for success in a GeoFIDkrq
experiment series could include:

1. Unity – the GeoFIDkRR value between any region and
itself (in this case, the region as a whole and itself) is
at or near 0.0 for all object classes, signifying identical
image statistics and near-perfect similarity (subject to
small perturbations due to stochastic nature of CNN
model training).

2. Stability – The standard deviations ofGeoFIDkRr values
within subregion grids in the random feature set are low
(e.g.,≤10.0% relative standard deviation) AND signif-
icantly different than their control-feature counterparts
at the same scale (as measured by two-tailed F-test).

3. Scale dependence – Following the observation that
the strength of multivariate image statistics tends
to degrade with smaller spatial scales due to the
MAUP [88], [89], it is expected that GeoFIDkRr will
increase as spatial scale decreases (signaling increas-
ing visual differences between the region as a whole
and smaller subregions). However, for GeoFIDkrq to be
considered a reliable discriminator, the effects of the
MAUP on GeoFIDkRr at smaller scales for the random
synthetic shape set should not exceed the qualitative
threshold considered as ‘visually similar’ in the litera-
ture (i.e., the two random distributions being compared
are not misclassified as distinct distributions solely
because of the MAUP).

4. Sensitivity – Whereas higher GeoFIDkRr values
(i.e., dissimilarity) are expected between the region as
a whole (R) and smaller subregions r therein, a limit
exists in the detected dissimilarity (though distant or
of different scale, regional samples of the same object
class have some underlying similarity that justifies
membership in the same class).

C. EXPERIMENTAL SETUP FOR GeoIS
In the next set of experiments, the bias property of GeoISr
(GeoISβr ) is tested on the same synthetic shapes dataset. The
Inception v3 network pretrained on the 1000-class ImageNet
dataset [90] is again used to calculate GeoISβr for each sub-
region grid of the random and control feature sets. Given
that the dataset was constructed with one shape object per
image, high entropy in both the conditional and marginal
distributions is expected and should result in low GeoISβr

scores for any region across all 3 shape classes. However,
analyzing the extent of score variation within and between
scales permits assessment of criteria such as stability, scale
dependence and sensitivity for GeoISr , much like GeoFIDkrq.
Because only one set of image samples is used in GeoISr ,
stability of the measure is evaluated on a per-region basis
with 10-fold cross-validation (on the random feature set).
Scale dependence is measured by noting changes in average
GeoISr across the 3 subregion grids of the random feature set.
Sensitivity is measured by noting the trend in averageGeoISr
across the 3 subregion grids of the controlled feature set.
Some expectations and criteria for success in the GeoISr

experiments series include:
1. Stability – For the random feature set, 10-fold

cross-validation GeoISr values for subregions at the
same scale are expected to be very similar (low standard
deviations between scores as measured by≤10.0% rel-
ative deviation from the mean GeoISr value), because
each spatial bin of images at the same scale has very
similar distributions.

2. Scale Dependence – Following the same MAUP
assumption asGeoFIDkrq (that the strength of multivari-
ate image statistics tends to degradewith smaller spatial
scales), it is expected that for the random feature set,
GeoISr will decrease as spatial scale decreases.

3. Sensitivity – For the controlled feature set, the global
sample should contain the highest object variety
(marginal distribution), and this variety should dimin-
ish at smaller spatial scales due to a combination of
MAUP effects and an increasing homogeneity of the
objects at smaller scales.

V. RESULTS
A. GeoFID
Table 1 shows unity tests for the synthetic shape datasets
where the values are the GeoFIDkRR reflecting a compari-
son of the region as a whole to itself for each of the three
shape classes. Scores were consistently below -1.0E−4 for
all classes in both the randomized and geographically con-
trolled feature image sets, sufficiently close to the expected
score (0.0) and demonstrating reliable unity of the model.

Table 2 shows percent RSD of GeoFIDkRr scores within
subregion grids across the synthetic shape classes for the
random and control set. RSD of scores for the random
set within subregions remained consistently <10.0% of the
means, demonstrating stability of measurements within the
same scale. Additionally, F-tests comparingGeoFIDkRr scores
of the random and control sets for each subregion grid show
a significant difference between scores for the two sets, indi-
cating that the model has successfully discriminated the low
variance random images from the higher variance control
images. Together, these findings indicate that GeoFIDkrq may
be confidently used to detect even small differences in visual
appearance between regions of the same scale.

Fig. 9 shows the GeoFIDkRr score curves for the random
set across the three subregion grids, demonstrating a linear,
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TABLE 1. GeoFID calculation between the global region of samples and
itself for each of the 3 synthetic shape classes. Values close to 0.0 are
expected.

TABLE 2. Relative standard deviation (%) of GeoFID scores within
subgrids for each synthetic shape class showing (A) low RSD for
each sub-scale of the random-feature set and (B) higher RSD
of each sub-scale of the controlled-feature set.

increasing effect of the MAUP on GeoFIDkRr across scales.
As discussed previously, there is no true difference (i.e.,
dissimilarity) between the random images from the region as
a whole and any subregion therein, therefore we extrapolate
the effect of the MAUP on all three synthetic shape classes
to determine the scale at which GeoFIDkRr degrades past
the qualitative threshold of 50.0 (the threshold of noticeable
visual dissimilarity). This threshold is reached at or near the
6th level subgrid (6 × 6 division of the WGS84 coordinate
system in this case), suggesting that GeoFIDkRr measures
of dissimilarity for features of class k between a global
region R and one of its subregions r may become unreliable
when r is at a scale smaller than a 6 × 6 division of R.
The nature and magnitude of scale dependence of GeoFIDkrq
is therefore as expected and permits confident usage of
GeoFIDkrq to compare regions of moderately different scale.

Conversely to the random set, degrees of visual dissimilar-
ity between the control images from the region as a whole and
its subregions clearly exist, and smaller-scale spatial subsets
of the control set will have increasingly distinct features
compared to those in the region as a whole. Therefore, it is
expected thatGeoFIDkrq will be sensitive to these distinctions.
Fig. 10 shows the GeoFIDkrq score curves for the control

set of synthetic shape classes, demonstrating a logarithmic
increase which exceeds the qualitative threshold of visual
dissimilarity ofGeoFIDkRr = 50.0 at the first level of division
(2 × 2 subregion). Importantly, extrapolating the increas-
ing trend of GeoFIDkrq scores at smaller scales shows that
the qualitative threshold of ‘extreme visual dissimilarity’ of
GeoFIDkRr ≥ 300.0 (i.e., breakdown of features indicating

FIGURE 9. Random feature GeoFID results on the synthetic shapes
dataset. GeoFID values between subregions and the global region are not
expected to exceed the threshold associated with ‘noticeable visual
dissimilarity’ (GeoFID ≥ 50.0, red shaded region).

FIGURE 10. Control feature GeoFID results on the synthetic shapes
dataset. GeoFID values are expected to remain above the threshold
associated with ‘noticeable visual dissimilarity’ (GeoFID ≥ 50.0, lower red
shaded region) yet below the threshold associated with ‘extreme visual
dissimilarity’ (GeoFID ≥ 300.0, upper red-shaded region).

shared class membership) is not reached until the global
sample of control shapes of class k in R is compared with
subregions r smaller than the 11th level subgrid (11 × 11
division of the WGS coordinate system in this case). These
findings indicate that GeoFIDkrq is sufficiently sensitive to
true differences in image features between regions, even
when those regions are of highly different scale.

B. GeoIS
Table 3 shows results of GeoISβr stability tests as relative
standard deviation (RSD) of values computed for regions
within the same scale on the random feature dataset. RSD of
values within subregions remained consistently below 7.0%
of the means for all synthetic shape classes, demonstrating a
very high level of stability of GeoISr measurements within
the same scale.

Fig. 11 shows results for GeoISβr scale dependence on
the random feature set (dark-colored lines) across the three
shape classes of the synthetic datasets. As expected, diver-
gence between ϕ and µ is very low at all spatial scales,
resulting in low GeoISβr values. The MAUP tends to have
a linearly-degrading effect on calculated GeoISβr values at
smaller spatial scales, extrapolated to reach the minimum
score (1.0) between the 9×9 and 10×10 subscales across the
three shape classes. This suggests that only small deviations
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TABLE 3. GeoIS stability test results showing percent relative standard
deviation (% RSD) of GeoIS values per subgrid region for the random
feature synthetic shapes dataset.

FIGURE 11. GeoIS (β) results for (A) star, (B) ellipse and (C) polygon
synthetic shapes showing scale dependence (dark lines) and sensitivity
(light lines). Low values were expected at all scales due to a combination
of low-dimensional features and low object variety.

in GeoISβr values for the same distribution can be expected
when repeating the computation at smaller scales, except for
very small spatial divisions of the region as a whole.

Sensitivity tests, in the case of GeoISβr , measure the effect
of the baked-in feature variation in the control dataset on
resulting GeoISβr across spatial scales. Results (Fig. 11,
light-colored lines) show a rapid, exponential decline in
certainty-variety divergence at smaller spatial scales, extrap-
olated to reach the minimum score (1.0) between the 6 × 6
and 10× 10 subscales across the three shape classes.

Interestingly, the highest amount of divergence detected
across the three shapes classes occurred in the ‘polygon’
class. This could have been due to a larger number of
object categories detected in the polygon dataset given it
contains triangles, squares, pentagons, octagons, and other
common shape patterns. Therefore, those shape patterns may
have been associated with multiple classes present in the
1000-class ImageNet dataset on which the GeoISr CNN is
pretrained. This result demonstrates that even a synthetic
image dataset specifically constructed with singular object
classes may be interpreted as having multiple, distinct
classes, depending on the characteristics of the dataset on
which the backbone CNN model is pretrained.

VI. DISCUSSION
Results of tests for unity, stability, scale dependence, and
sensitivity ofGeoFIDkrq on synthetic data bode well for its use
as a tool for geospatial analysis of diversity of object class
appearance in RSI datasets. Importantly, tests demonstrate
that GeoFIDkrq can confidently be extended beyond the use
case simulated in the previous experiments (comparing global
object class appearance to subregional appearance) and
into more holistic and comprehensive pairwise comparisons
of object class representation within and between scales.

This includes geostatistical modeling of GeoFIDkrq compu-
tations at sample locations in a study area (e.g., estimating
the effect of geographic distance, direction and/or spatial
covariates on image feature similarity as computed by the
model), making a range of predictive analyses feasible.

Likewise, tests of the bias/divergence component of
GeoISr demonstrate a high level of stability within scales
and low levels of between scale variation due to the MAUP.
These results indicate GeoISr is a reliable tool for geospatial
analysis of contextual diversity of object classes over the
extent of RSI datasets. Key toGeoISr utility in the RS domain
is its disaggregation of the original Inception Score into com-
ponents to measure co-occurring object density (GeoISϕr ),
co-occurring object variety (GeoISµr ) and the bias/divergence
between the two (GeoISβr ).

As a result of the rigorous battery of experiments to verify
the reliability of GeoFIDkrq and GeoIS

β
r , it can be stated that

both algorithms clearly performwithin the criteria for success
(as noted in Sections IV and V) as spatial dataset analysis
methods.

Whereas the FID and IS algorithms as initially introduced
in the literature are often applied unaltered to the evaluation
of synthetic image quality, thoughtful model choices will
be required for GeoFIDkrq and GeoISr to be appropriately
applied to geodiversity related analyses in the RS domain.
This includes the choice of CNN architecture as well as the
dataset on which the architecture is pre-trained. For example,
image features and object classes transferred from overhead
imagery training datasets may be more appropriate than those
found in ImageNet or similar generic image datasets [84].
Additionally, spatial size and shape of image chips around
target labels will control the amount of geographic context
that is learned by the model. In the case of GeoFIDkrq,
this parameter choice should reflect the spatial footprint of
the object class/phenomena of interest, and in the case of
GeoISr , it should reflect a spatial extent congruent with the
co-occurring objects of interest. Moreover, in the case of
GeoFIDkrq, extraction of feature vectors from layers other
than the final pooling layer of the chosen CNN architecture
may be warranted if the focus of analysis is on low-level
image features (e.g., edges, textures, colors) or if comparison
of a comprehensive set of high- and low-level features is
desired. Finally, the components of geodiversity modelled by
GeoISr and GeoFIDkrq can also be modelled by other types
of algorithms that deserve exploration, especially in light
of the recognized shortcomings of both IS and FID [86],
[91]–[93]. For example, CNN-based object detectors could
be used to quantify co-occurring object density and
variety, whereas different feature comparison measures
(e.g., topology- [94] or geometry-based [95] distance met-
rics) could quantify changes in object class appearance over
the landscape. The pros and cons of applying these related
methods to the RS domain have yet to be tested.

Although this paper focuses on the utility of the proposed
methods for exploratory geodiversity analysis to uncover and
understand geographic bias in RSI datasets in the context of
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TABLE 4. The novelty of deep learning-based geodiversity metrics for RSI data is apparent in the multidisciplinary geoscience and remote sensing
literature. Here, attributes of the most closely related works are compared to the current manuscript.

improving discriminative modeling, applications to genera-
tive modeling and geospatial simulation are apparent. Gen-
erative modeling in the RS domain is in its infancy, yet the
consequences of using datasets and/or models with uneval-
uated geographic bias for tasks such as RSI dataset aug-
mentation, style transfer and image interpolation/ completion
can be as problematic as those uncovered in discriminative
applications. The extent and characteristics of visual variation
and contextual diversity in RSI datasets, discoverable using
the methods introduced here, can be used for geographically
informed generative modeling and lead to more realistic
and un-biased RSI data synthesis. Similarly, the prospect of
extending image-based deep feature geodiversity measures
to analyze attribute geodiversity of nonimage geodata types
(i.e., attributed points, polylines, and polygons) may prove
fruitful.

VII. CONCUSION
This paper argues that a gap of understanding exists in the
level of meaningful and representative geographic variation
present in the growing corpus of large RSI datasets, and that
this gap risks perpetuation of biased data and models and
undermines the application of AI-based vision systems to
geospatial object detection and classification tasks. Methods
were introduced for measuring various facets of geodiversity
in RSI dataset object classes (spatial comparison of object
class appearance in the case of GeoFIDkrq, and measures
of contextual heterogeneity in the case of GeoISr ). Sev-
eral experiments were devised to explore the stability, scale
dependence, and sensitivity of GeoISr and GeoFIDkrq. To this
end, synthetic random and control datasets were developed to
benchmark the ability of these metrics to discriminate among
regionalized phenomena. It was found that both metrics were
stable, sensitive to small feature changes and not overly
affected by the Modifiable Areal Unit Problem.

Given the analytical characteristics of GeoISr and
GeoFIDkrq, they have tremendous practical utility in appli-
cation to large RSI datasets, including those containing
labels for discrete objects [18], [19], [87], land cover
patches [96], [97], activity/change annotations [22], [98] and
other observable phenomena. Providing baseline feature geo-
diversity metadata for RSI datasets with metrics like GeoISr
and GeoFIDkrq would add significant interpretative and diag-
nostic value and would help develop reflexive and transparent
data practices [99], [100] in the remote sensing domain. How-
ever, further work will be needed to refine both GeoFIDkrq
and GeoISr considering the shortcomings of FID and IS
algorithms referenced earlier. More methodologies will also
be needed to fully model the concept of geodiversity in RSI
data, including those that take into account temporal variation
and/or exploit radiometric and spectral properties of different
imaging systems. Moreover, computational solutions to other
diversity-related RSI dataset analyses are needed to help
researchers understand biases in both input data and trained
models. For example, visualization of CNN-extracted fea-
tures for an object class’ samples aggregated on a per-region
basis (country, administrative unit, etc.) could reveal the
‘average’ appearance of that class within each region, thereby
detecting collection bias before any final models are trained
and deployed. Above all, multidisciplinary perspectives as
well as input from a variety of stakeholders in academia,
government and industry will be required to guide future
directions of geodiversity research in the geoscience and
remote sensing domains.
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