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ABSTRACT Databases and warehouses are experiencing workload of different types such as Decision
Support System (DSS), Online Transaction Processing (OLTP) and Mixed workloads. Handling variety of
workload in autonomic systems is a critical task. After self-configuring the workload, the next challenge
is workload performance tuning that motives towards self-predictive systems. Existing studies provide
performance modeling solutions on small-scale data repositories of Database Management System (DBMS)
and DataWarehouse (DWH) using either classical eager or lazy learning approaches. However, in real-world
problems, we normally have to deal with large-scale data repositories. Therefore, there is a need to
develop performance models that provide data augmentation to solve large-scale data repositories that are
not publicly available. In this study, deep learning approaches have been investigated for performance
tuning of large-scale data repositories. We propose a performance prediction model called Optimized
GAN-based Deep Learning (OGDL) model. For data augmentation, Conditional Generative Adversarial
Networks (CGAN) is applied. For autonomic perspective, we incorporated MAPE-K model to manage the
workload autonomically. Different deep learning models are applied, and it was observed that Deep Belief
Network (DBN) performed better as compared to other deep learning models such as Deep Neural Network
(DNN). We performed a number of experiments and from results it is observed that deep learning models
performed the best in comparison with classical machine learning and lazy learning and a 6− 8% increase
in accuracy is recorded in our experiments using DBN. The proposed OGDL model performed the best in
workload performance predictions in an optimized way.

INDEX TERMS Autonomic computing, generative adversarial networks, stacked genetic algorithm, deep
belief network, large-scale data repositories.

I. INTRODUCTION
Existing studies have provided solutions for recognizing and
configuring workload autonomically in autonomic databases.
Large-scale data repositories such as databases and data ware-
houses are experiencing large volume of data with complexity
and heterogeneity. Workload management of these reposito-
ries are becoming difficult for the database and warehouse
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administrator, which ultimately, leads to system performance
degradation [1]. Performancemodeling can play an important
role in performance tuning. Existing studies have proposed
performance prediction models and frameworks [2], [3].
As humans have limited capacity to manage parameter tuning
for the large volume and complicated tasks in large-scale
data repositories. Therefore, developing a workload perfor-
mance prediction model for autonomic Database manage-
ment systems (DBMSs) and Data warehouses (DWHs) is a
challenging task that must deal with larger data sets. One of

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 97603

https://orcid.org/0000-0002-3010-2150
https://orcid.org/0000-0001-6711-2363
https://orcid.org/0000-0002-7520-6770
https://orcid.org/0000-0001-5569-5629
https://orcid.org/0000-0002-0945-2674


N. Shaheen et al.: Autonomic Workload Performance Modeling

the challenges is that small data sets are available and training
on small data results in poor test accuracy of predictionmodel
for large-scale data. However, training on large data sets entail
higher complexity and consume more compute cycles.

Many researchers are involved in searching the solutions
for building autonomic performance prediction frameworks,
models, techniques, and approaches while addressing limited
data availability and using various machine learning tech-
niques. Research is being carried out not only to present the
framework but also to define the steps prior to performance
prediction framework which involves understanding the
nature of data. To understand the nature of data, researchers
presented various contribution with respect to workload char-
acterization and dynamic behavior of data [4]–[6]. The study
regarding the behavior and type of data is very important
because it provides the basis for any data-oriented autonomic
systems [7], [8].

Workload entering the system is varying in nature with dif-
ferent characteristics. So, workload handling systems with-
out any workload monitoring mechanism cannot predict
about the workload requirements and workload performance
that can result in lack of efficient resource utilization and
lack of efficient implementation of performance improve-
ment techniques. Research regarding the workload mon-
itoring and performance prediction supports the idea of
designing an autonomous system which can perform all
tasks related to workload management with least amount of
human intervention. These tasks include workload monitor-
ing, type identification, performance prediction and resource
planning. A system which can act as autonomous sys-
tem must comprise of the Autonomic Computing technol-
ogy [9] which is incorporation of various self-management
characteristics such as self-inspection, self-prediction, and
self-optimization.

Many tools, frameworks and algorithms have been
developed by different researchers for autonomous workload
management [10], [11]. Many research studies presented
workload performance prediction framework to help the data
handling systems in performance improvement [2]. By using
these performance prediction outputs, a system can man-
age to achieve better resource allocation, scheduling, self-
adaptation, and optimization. These performance prediction
studies are using various performance parameters, prefer-
ably those which have high impact on system performance,
according to the nature of data, these systems are dealing
with. The selection of suitable performance metrics is still
a considerable research area.

Existing studies provide performance modeling frame-
works using either lazy or eager learning. These frameworks
were built to work on small-scale data repositories. Data vol-
umes are exponentially increasing with variable data behav-
iors, so solutions provided by these performance prediction
frameworks cannot provide required accuracy when incor-
porated with large data repositories. Lack of availability of
testing and training data tomodel large-scale data repositories
is also an issue. There is need to increase the volume of testing

and training data for developing workload management mod-
els and frameworks.

Data augmentation is frequently employed to resolve
the issue. Generative Adversarial Network (GAN) is being
increasingly used for this purpose by the deep learning com-
munity. In this study, we are using Conditional Generative
Adversarial Networks (CGAN) for data augmentation. With
the increase in volume of testing and training data machine
learning models such as Lazy learners or eager learners faces
the performance degradation.

Deep learning techniques have potential to provide bet-
ter solutions for performance tuning frameworks with large
amount of data. In this study, we present the Deep belief
network (DBN) based performance predictionmodel. Results
show improvement in accuracy as compared to already exist-
ing models while working with large-scale data repositories.

The objectives of this study are as follows. To develop
an optimized model that can manage the workload of
large-scale data repositories having limited amount of train-
ing data. To handle large volume of data using deep learning
approaches. To develop a model that incorporate autonomic
characteristics towards self-managing systems. The contribu-
tions of the study are as follows:
• We proposed an autonomic workload performance tun-
ing model for large-scale data repositories named as
Optimized GAN-based Deep Learning (OGDL) model.
We have investigated the existing studies [2], [3] that has
proven to be good for small-scale data repositories using
lazy learning approaches such as CBR. For large-scale
data repositories, CBR performance degrades in terms
of case retrieval and searching from data repositories
such as case-base. Our proposed OGDL model predicts
the performance of OLTP, DSS and Mixed types of
workloads. It deals with large-scale data repositories
using deep learning such DBN model and overcome
the problems of lazy learning-based performance tuning
models.

• Since for large-scale data repositories we have to deal
with huge data however, limited data is available pub-
licly. Further, deep learning models requires more data
for deeper learning. Therefore, we artificially generated
data using CGAN model that has been used in many
studies in different domains. Therefore, we developed a
CGAN-based model for data augmentation to overcome
limited data availability without compromising the data
accuracy.

• In comparison with lazy learning, we have applied
three different deep learning models that are Deep Neu-
ral Network (DNN), DBN and CGAN. For network
parameter optimization Genetic Algorithm (GA) is used
and for further improvement in optimization Stacked
Genetic Algorithm (SGA) is also applied. Results show
that our proposed OGDL model (GAN+DBN+SGA),
based on deep learning is proved to be the best solu-
tion for large-scale data repositories of database and
data warehouse and a 6 − 8% increase is observed as
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compared to existing studies that are using lazy learning
approach.

• We provided an Artificial Intelligence (AI) based sys-
tem by enabling autonomic characteristics. To make our
system autonomic, the proposed OGDL is based on
basic architecture of autonomic computing consisting of
Monitor, Analyze, Plan and Execute (MAPE-K) model
and a feedback loop.

Organization of the study is as follows. Section II presents
related work. Section III provides the proposed method-
ology for this study. Section IV provides proposed Opti-
mized GAN-based deep learning (OGDL) model. Section V
describes experiments performed for proposed study and dis-
cusses its results. Section VI concludes the study with its
limitations and provides the future direction.

II. RELATED WORK
The basic focus now a days regarding management of the
database workload is on achieving the autonomic solution.
The aim of an autonomic solution is to build an intelligent
systemwhich canmanage the workload without much human
intervention. The intelligent systems with incorporation of
Autonomic Computing (AC) technology should be capable of
self-management. To show that how existing databases sys-
tems are autonomic, various studies are presented [12]–[14].
Few studies also investigates autonomic aspects in different
DBMS like DB2 [15], and Oracle [16]. These studies high-
lighted different processes which are controlled and operated
in an autonomic manner.

AC technologies are good at providing solutions for perfor-
mance prediction and workload behavior monitoring. A CBR
based approach is presented in [17] which predict the change
is workload behavior. Various studies presented work on
providing predictions related to workload performance such
as query arrival times [17], [18]. However, more performance
parameters can be used to reflect the workload behavior dur-
ing execution for better workload management and resource
utilization. In [20], authors presented the Fuzzy Inference
System (FIS) based model to predict three performance
parameters: buffer hit ratio, database size, and the number of
users. Only one performance parameter is predicted, which
is not able to completely model the performance of work-
load. The study [21] presented the modular approach for
estimation of SQL query execution time. SQL query exe-
cution plan was predicted in [22], [23] and they proposed
prediction of accurate estimation of disk visits and CPU
time for large data size. For performance prediction of CPU,
different studies proposed performance models such as query
execution prediction model [24]. To monitor, control, ana-
lyze and predict the configuration of database configuration
parameters, the framework namelyMAG is presented in [25].
This proposed approach mainly focuses on the root causes
of database performance problems. They are using ANN for
prediction. A framework for performance and resource anal-
ysis is presented in [26] that predicted throughput, resource

consumption and bottleneck. An approach for self-tuning
database system performance based on Fuzzy logic is pre-
sented in [27]. In this study, Fuzzy rules are designed by
assuming the values of parameters. A plan-structured neural
network is crafted for predicting the latency of query exe-
cution plans in relational DBMSs [28]. For a single query,
it builds tree structured network to predict query latency.
Tracking every query executed in the DBMS increases the
computational cost of model construction. An AWPP frame-
work is presented in [2] that predicts the performance of
database workload using different performance parameters.
It used lazy learning CBR approach for performance pre-
diction. This study doesn’t specify any mechanism to revise
the missing solution. The system performance can decrease
with the increase in the size of case-base. A cluster-based
performance prediction framework for data warehouse is pre-
sented in [3]. This study presented the CBR-based approach
and achieved the improvement in retrieval efficiency using
clustering. However, solution finding in revised phase of CBR
is not optimized. Our work is different from other existing
frameworks because it uses deep learning approach, DBN,
for database performance prediction. Our proposed model
is based on large-scale data repositories, so we required
large amount of training data. The studies that are dealing
with large data repositories are facing the lack of sufficient
amount of data available for model training. To solve this
issue different studies are focusing on deep learning based
data augmentation techniques like GAN [29].

The study [30] presents performance modeling of big data
and to address the issue of non-availability of sufficient
training data, they augment the data using GANs. To find
the optimal solution in the search space they used Genetic
Algorithm (GA). A GAN based framework to solve class
imbalance problem in building the classifier for credit card
fraud detection is presented in study [31]. For the credit card
data fraudulent class has a smaller number of samples which
creates biasness in data. So, to increase the data of fraudulent
class they are using GAN. An algorithm is presented in study
[32] for the prediction of students’ performance under sup-
portive learning via school and home tutoring. As academic
data set is low in sample size, so to increase the data it
uses a variant of GAN as data augmentation technique. This
study claims that after implementation of proposed technique
they get 8 − 29% increase in terms of different performance
indicators. Deep learning-based techniques are more popular
in image processing. A GAN based study is presented in [33]
for the fusion of multi- resolution images.

After increasing the data set, machine learning approaches
can meet with performance issues in handling such data.
So deep learning solutions can be more suitable for large
data sets. Various studies are using different deep learning
solutions for the improvement of results in different fields.
The studies [34], [35] presented the botnet detection systems
using deep learning. Evaluation of effectiveness of shallow
and deep networks is presented in [36]. Deep learning tech-
niques are also helpful in attack detection in Networks [37].
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A study for time series prediction is presented in [38].
This study presented DBN based methods which is using
3 stacks of RBM to overcome the limitations of MLP and
ANNs. Another study [39] presented Optimally Configured
and Improved Deep Belief Network (OCI-DBN) approach
for heart disease prediction. After implementation and com-
parison with different feature selection techniques, this study
selected Ruzzo-Tompa technique. This approach gets 94.6%
accuracy in predicting heart diseases. A fault diagnosis model
for gearbox fault diagnosis is proposed in study [40]. This
model integrates grasshopper optimization algorithm (GOA)
with DBN. GOA is for network parameter optimization for
DBN. This study claims to achieve 99.5% diagnosis date.
We are presenting OGDL model which is based on DBN and
for deep network parameter optimization we are using SGA.
For data augmentation we are using CGAN.

III. PROPOSED METHODOLOGY
In this section, we describe the proposed methodology to
conduct this study. We discussed the details of data set
that is being used in our experiments, the selection of
important workload performance related features through
well-known features selection techniques, and evaluation
metrics that are used for experiments. To overcome the limita-
tions of available data set, data augmentation using CGANs is
described.

A. DATA SET
In this study, we have used benchmark data sets that have
been used by other researchers in their studies and is available
at http://tpc.org/. We are dealing with two main types of
data which are OLTP and DSS. For these two types of data,
in many studies, same data sets were used such as TPC-E
and TPC-H for OLTP and DSS respectively. We have used
the standard benchmark workloads/queries available online
[41] that includes standard 22 queries for TPC-E and TPC-H
each. For the data set used in our experiments, we have
also extended data by designing TPC-E and TPC-H like
queries for database and data warehouse workloads. Regard-
ing training and testing of machine learning based models,
there is need of sufficient amount of data for good learning.
Moreover, sufficient amount of data is also required to avoid
the issues related to overfitting of machine learning models.
Therefore, we have designed TPC-E and TPC-H like queries
to extend our data set for better training of our models.

We executed all the queries and obtained status variable
values that are 500 in total. A careful observation of the
relationship between workload and performance parameters
is done. If any performance parameter reflects considerable
change during workload execution, then this parameter can
be the candidate of workload performance metric vector. And
all those parameters which are not affected or less affected by
workload execution, are eliminated from the list of influenced
parameters. We obtained 25 workload performance related
parameters as shown in Table 1.

TABLE 1. Workload performance related candidate parameters.

TABLE 2. Selected performance metric vector (PMV).

B. FEATURES SELECTION
For features selection, out of 25 performance parameters,
we applied features selection techniques to find the best
contributing features. For performance features selection,
we applied six feature selection methods. After applying
different feature selection methods, we get different features
selected by eachmethod. Features selected by RandomForest
method shows higher prediction accuracy. So, we selected
all performance features which we get by applying Random
Forest. These selected parameters are 11 and represented
in Table 2. These performance parameters can be represented
as Performance Metric Vector (PMV). For workload input
feature extraction, we are using Workload Feature Vector
(WFV). The WFV consists of 7 parameters which are pre-
sented in Table 3.

C. EVALUATION METRICS
The formulae for precision, f-measure, recall, and accuracy
are shown in the following equations 1-4.

Precision =
TP

TP + Fp
(1)
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TABLE 3. Workload feature vector (WFV).

FIGURE 1. Data augmentation using CGAN.

Recall =
TP

TP + FN
(2)

F−Measure =
2 ∗ precision ∗ Recall
precision+ Recall

(3)

Accuracy =
TP + TN

TP + TN + FN + TN
(4)

where TP are the number of true positives, FP are the number
of false positives, FN are the number of false negatives, and
TN are the number of true negatives.

D. CONDITIONAL GENERATIVE ADVERSARIAL
NETWORKS (CGAN) ARCHITECTURE
Due to availability of limited data and to provide a solu-
tion that performs reasonable well on large volumes of data,
We proposed the performance model using the Conditional
Generative Adversarial Networks (CGAN) [29], [30]. CGAN
can work well with limited data without sacrificing accuracy.
There are two main components of CGAN: namely, Genera-
tor denoted byGen and theDiscriminator denoted byDis with
class label condition on it. The working of CGAN is shown
in Figure 1.

The aim of CGAN is to generate fake data which is as close
to the real data as possible. Data generation is performed by
the generator and the discriminator identifies if it is closer to
real data or not.

E. TRAINING PROCESS USING CGAN
First, we prepared training data set.We trained Dis to increase
the probability of s with real cases that maximize the Dis(s),
so that it can identify fake cases frequently that are generated
by the Gen. The purpose of Gen is to deceive Dis by generat-
ing fake cases just like real cases. When Dis identifies a fake

Algorithm 1 Data Augmentation Using Conditional Genera-
tive Adversarial Networks
1: Input: Data set, Labels, Classes.
2: Output: New generated features of all classes.
3: Procedure = CGANAUGMENTATION(Data

set,Labels,Classes)
4: Labels=OneHotEncodede(Labels)
5: Dataset=MinMaxNorm(Dataset)
6: NumFeatures=FindFeatures(Dataset)
7: NumSamples=FindSamples(Dataset)
8: for Each class in Classes do
9: for Number of training iterations do

10: Update the Discriminator using Dataset(Class) and
Conditional Values Set C

11: Generates samples set S using Vector Z Conditional
Values Set C

12: Update the Discriminator by ascending its gradient
13: Update the Generator by descending its gradient
14: end for
15: end for
16: for Each class in Classes do
17: GeneratedFeatures = GenertaeFeatures (Generator,

class, nsamples)
18: end for
19: return GeneratedFeatures

case, a loss is also generated.We also trainedGen tominimize
loss log(1− Dis(Gen(t))) synchronously. As the concept is
taken from game theory where we reach at Nash equilibrium
point the convergence point [42]. Therefore, training of Gen
and Dis continues till convergence point. The gradient opti-
mization of Gen is based on information provided from Dis.
The process of training in CGAN is two-fold process so the
gradient optimization of Gen performed better in comparison
with neural network models. The learning based on gradient
becomes stronger. The algorithm of data augmentation using
CGAN is shown in Algorithm 1. As discussed above it takes
data set, classes and labels as input and outputs the generated
features. The labels are converted to one hot representation
and data set is normalized using MinMax normalization.
After pre-processing the CGAN is trained on the data and
after training the features of each class are generated sepa-
rately from generator.We have generated 400 features of each
class.

F. DEEP BELIEF NETWORK (DBN)
DBN is a generative graphical model which is based on
Restricted Boltzmann Machine (RBM) and consists of ANN.
RBM is the unsupervised network and its structure is com-
posed of hidden layers and visible layers. The connectivity
between layers is strong but the connectivity between neurons
on the same layer is weak, which means that there are con-
nections between visible and hidden layers. RBM is the gen-
erative energy-based model with good connections between
input and hidden layers but not between the nodes within
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the layers. The standard RBM consists of binary-values in
hidden and visible layers. Pre-training in DBN is done using
greedy learning algorithms. In greedy learning algorithms,
learning is done using layer-by-layer approach for generative
weights. These weights determine about the dependencies
of variables of one layer on the variables of another layer.
As DBN is multi-layered structure having different layers of
RBM machines. This divides the network in different layers
and each layer is trained separately hence divides the training
process. It is easier to train a shallow network as compared to
deep complex network.

IV. PROPOSED OPTIMIZED GAN-BASED DEEP
LEARNING (OGDL) MODEL
We proposed an optimized GAN-based deep learning model
for workload performance tuning. The flowchart of method-
ology is shown in Figure 2 in three phases. In phase 1, the data
set is pre-processed using the normalization technique. After
that, we performed data augmentation using GAN to gen-
erate the number of instances which would be helpful in
improvement of classifier performance. Next, we extracted
the workload feature vector and selected important features
using feature selection techniques. After selection of impor-
tant features, the data is split into train, test, and validation
set. In phase 2, we use SGA and GA for parameters selec-
tion based on natural selection process. After selection of
best hyperparameters that would give better performance,
different deep learning models such as deep belief network
is trained on these parameters in phase 3. After training of
the model, it is evaluated on the test data set. The process is
executed and stopped on completion of all the folds. After
completion of all training process, the performance evalua-
tion is performed on the validation data.

A. MATHEMATICAL FORMULATION OF PROPOSED OGDL
MODEL
In the data preparation phase, we used CGAN for data
augmentation for which target optimization function can be
derived [30]–[33] as follows. CGAN is a type of GAN in
which generator and discriminator are conditioned by adding
extra information. In our case, we have added extra informa-
tion on class labels for generating targeted data. Loss function
for CGAN can be derived from binary cross-entropy loss
function formula, which can be written as shown in equation
5.

Loss(r̂, r) =
[
r · logr̂ + (1−r) · log

(
1− r̂

)]
(5)

where r = real data and r̂ = generated data
At discriminator during training label of data which is

coming from real data distribution Prdata(s) is r = 1 and for
generated data r̂ = Dis(s, c), where s is data and c is the class
label condition. Loss for real data at discriminator is shown
in equation 6.

Loss(Dis(s), 1) = log(Dis(s, c)) (6)

For the generated data Pgendata(s) coming from generator,
data label is r = 0 and r̂ = Dis(Gen(t, c)) where t is
random noise and c the class label condition. CGAN Loss
for generated data is shown in equation 7.

CGANLoss(Dis(t), 0) = log (1− Dis (Gen (t, c))) (7)

Total loss at discriminator is equal to both loses. Both
equations (6) and (7) can be combined to calculate the total
CGAN Loss of discriminator is shown in equation 8.

CGANLOSSDis = log Dis(s, c)+ log (1− Dis (Gen(t, c)))

(8)

The main objective of the discriminator is to correctly clas-
sify real and fake data. For this objective equation 8 should
be maximized and for discriminator loss final function can be
shown in equation 9.

CGANLOSSDis = max [log Dis(s, c)+ log

× (1− Dis (Gen(t, c)))] (9)

As the generator is working in competition with discrim-
inator to generate the data near to real data. So, objective
of generator to minimize the generator loss. So, at gener-
ators’ end the equation 9 will be minimize as shown in
equation 10.

CGANLOSSGen = min [log Dis (s, c)+ log

× (1− Dis (Gen (t, c)))] (10)

According to Goodfellow et al. [29] the generator (Gen)
and discriminator (Dis) both players play a min-max game
with value function V (Dis, Gen). So, we can combine equa-
tion 9 and 10 to get complete GAN function for discriminator
and generator as shown in equation 11.

CGANLOSS = GenminDismax[log Dis (s, c)+ log

× (1− Dis (Gen (t, c)))] (11)

The loss function from equation 11 is valid for single data
point. The target optimization function for complete data set
can be written as shown in equation 12.

GenminDismaxV (Dis, Gen)

= GenminDismax(E s∼Prdata (s) [log Dis (s, c)]+ Et∼pt (t)
× [log(1− Dis (Gen (t, c)))]) (12)

In equation 12 Dis(s,c) shows the probability of s that
are derived from real cases of workload performance metric
vector (PMV) instead of random generation from Generator
Gen, t represents the random noise the random noise and
Dis(Gen(t,c)) is the discriminator’s output for generated sam-
ple. Where s represents training sample and c is class label
condition.

Deep learning requires large amount of data to learn com-
plex features mapping and understand it better. In our study,
we have used conditional GAN (CGAN) where the model
have to generate data from each label conditionally. The Gen
learns to map latent space points to new features. In our study
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FIGURE 2. Flowchart of methodology of the proposed OGDL model.

we have used 200 dimensional latent space vector of random
numbers from a uniform distribution. Let the latent space be
represented as t so, t ∼ U [0, 1]. To make learning better,
the data is normalized using MinMax normalization.

Our Dis architecture of CGAN model consists of input
layers with features and labels as input. To encode the class
labels, we have used the embedding layers, which transform
the labels into dense vector representation. The embedding
layer consists of two parameters, label index and the size
of output. In our case, the size of output is the number of
features. The Adam optimizer is used with 2e−4 learning rate
and beta value of 0.5. A dropout between 0.4 and 0.7 is used
between the layers to prevent overfitting and LeakyRelu with
alpha value of 0.2. The idea behind Gen is to generate realistic
data. The training process and feedback by Dis enables Gen
to generate more realistic data. Similar to Dis, Gen also
takes labels as input with noise generated from latent space
t. Then the input layer is followed by embedding layer. The
purpose of embedding layer is same as discussed above.
Batch Normalization layers are used within different layers
to make learning stabilize. CGAN is based on the minmax
concept also means zero-sum game which means that if one
wins other looses. In CGAN, we try to decrease the loss of
Gen and increase the loss of Dis which means that the Dis
classify generated data as real and Gen generates realistic
data.

For network parameter optimization, we applied SGAwith
two stacks. Chromosome is the set of parameters which
defines a proposed solution to the problem that we are inter-
ested to solve using GA. In this study the chromosome is the
collection of network parameters, for those we need to find

optimized setting and can be shown in equation 13.

ch (Fi) = (f1, f2, f3, . . . . . . fn) (13)

where i = 1, 2, 3, . . . . . .m
Here n is the number of network parameters and m is

the population size. Population is randomly generated which
assigns values to the performance parameters. Each individ-
ual of population will be considered as a candidate solution.
Only those individuals will be considered as solution that
qualify a certain criterion. So, every individual will undergo
a testing process to find the best optimized solution. For
mutation we setup 0.2 mutation rate. The fitness function is
shown in equation 14.

Fitness (fitfun) = network accuracy

≥ Maximum(network accuracy) (14)

For workload performance prediction, we are using DBN
which consist of stacks of RBMs. Energy function for RBM
is shown in equation 15.

E (v, h) =
n∑
i=1

aivi −
m∑
j=1

bjhj −
n∑
i=1

m∑
i=1

viwijhj (15)

In equation 15, the state vector for visible layer is denoted
by v = (v1, v2, v3, . . . ., vn) and state vector for hidden
layers is denoted by h = (h1, h2, h3, . . . ., hn). The bias
weights (offsets) for visible layers are denoted by a =
(a1, a2, a3, . . . ., an) and bias weights for hidden layers are
denoted by b = (b1, b2, b3, . . . ., bn). The wij represents the
weights between visible layer i and hidden layer j fromweight
matrix.

∑n
i=1 a

ivi represents energy in the visible layer i,
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∑m
j=1 b

jhj represents the energy in the hidden layerj, and∑m
i=1 v

iwijhj represents the energy between the visible and
hidden layers. We are using 200 hidden layers and initial
weights are setup by unsupervised training. RBM defines a
joint probability distribution function over the hidden layers
and visible layers which is as shown in equation 16.

p (v, h/θ) =
exp− E ((v, h/θ))

l (θ)
(16)

where θ = (wij, ai, bj) and l(θ ) is partition function.

B. AUTONOMIC PERSPECTIVE
We used MAPE-K model with feedback loop of auto-
nomic architecture for incorporating autonomic perspective.
Figure 3 presents the overall architecture of proposed feed-
back control loop.

C. WORKLOAD KNOWLEDGE-BASE
The knowledge base consists of data, which can be shared
among the four phases of MAPE-K.

D. SENSORS AND EFFECTORS
The Sensors and Effectors are the essential supporting com-
ponents of any autonomic system. Sensors collect the infor-
mation which the system receives continuously. Sensors after
collecting the information, provide it to different components
of the system for the necessary actions. In our study, Sen-
sors are Workload Feature Vector (WFV) and are receiving
the incoming workload as the information. This information
circulates through the system. After receiving the workload,
Sensors forward this information to the monitor phase for ini-
tial monitoring of the workload. Effectors are the components
which reflect the system’s final state after completely pro-
cessing the information. Effectors can also be referred as the
set of operations that are employed by autonomic managers.
In our study, Effectors are represented by PerformanceMetric
Vector (PMV) which contain the information regarding the
performance prediction of the incoming workload by the
autonomic manager.

E. WORKLOAD MONITOR
The Monitor phase is the first phase in autonomic man-
ager. The information captured by the Sensor enters into
the monitor phase. This phase monitors the incoming
information and starts with preprocessing of information.
In our system, the monitor phase takes the workload and
extracts the input feature vector which is sent to the next
phase.

F. WORKLOAD ANALYZE
The analyze phase provides the ways to observe and ana-
lyze the information to determine if any change is required.
Workload Analyzer analyses the workload by analyzing the
workload performance parameters.

G. WORKLOAD PLAN
Plan phase works on to find the ways to respond to the change
detected by the analyze phase. In our study, plan phase creates
a procedure to handle and address the detected change. This
phase implements the procedures which contains the opti-
mization algorithm SGA and deep learning algorithm DBN
for performance metric prediction.

H. WORKLOAD EXECUTE
The execute function finally executes to provide the ways
to perform the necessary changes. This phase executes the
plan generated by the plan phase. In this study, execute phase
predicts the performance of the workload according to the
shift in workload.

I. FEEDBACK CONTROL LOOP
The implementation of Feedback control loop is to monitor
the system continuously and to report the changes detected
in the workload so that it can be responded accordingly.
Autonomic control loop consists of two major components; a
controller which implements all phases of autonomic system
and a knowledge base as a managed resource. The controller
captures the workload information continuously using Sen-
sors. This information goes to the monitoring step where
extraction of relevant features is carried out on the basis of
query features. Similar workload patterns are considered sta-
ble, however, for different workload patterns we can observe
the change which can be called as workload type change. The
extracted feature vector then enters the analyze phase. In this
phase workload change detection is computed. If significant
change is detected then the control loop enters the plan phase.
Here with the help of optimization search and deep belief
network the performance prediction can be planned according
to the workload type. Finally, the execute phase predicts the
performance of workload. Starting from monitoring phase to
the execute phase there is a continuous looping state which
remains active and listens and responds to workload shift.

J. DEEP LEARNING USING DEEP BELIEF NETWORK
For making the prediction, the training model’s goal is to
generate the hypothesis, which means model learns the fitting
function after analyzing the training data. In DBN, the work-
load performance prediction model is built in two stages. The
first stage involves in the upward training and second stage
is downward adjustments. RBM is based on unsupervised
greedy layer-by layer training. Training is carried out in first
stage, which is greedy in nature, and initial weights are set by
continuous unsupervised training. During training no back-
propagation is performed to analyze errors. The backpropa-
gation algorithm is set up after calculating the initial weights
by training stage. After that backpropagation is performed
for parameter tuning and performance optimization. The next
task is to address the optimization problem for network by
computing the number of layers, number of nodes and num-
ber of hyperparameters needed for best performance.
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FIGURE 3. Proposed feedback loop for OGDL.

Selection of number of layers and nodes affects the perfor-
mance of a network. However, finding this optimal number
is a major problem as it depends on the nature and charac-
teristics of data set. To solve this problem, we used Stack
Genetic Algorithm (SGA) which consists of two stacked
GAs. Figure 4 shows the proposed approach for optimization
of DBN using SGA. After optimization of network param-
eters, these parameters will be provided to the DBN model.
For DBN configuration, a two-step method is followed: one
is upward training and second is downward adjustments by
utilizing the generative weights for fine tuning process. DBN
is constructed by stacking of more than one RBMs. Number
of stacks depend on the system requirement. A DBN can be
trained in a greedy unsupervised way by training each RBM
separately from it, in a bottom up manner. Hidden layers of
previous RBM will be used as input layer for the next RBM.
Initially pre-training is required for getting better optimiza-
tion which starts by initializing weights of all layers. In the
first step, pretraining initial weights are setup by performing
unsupervised training using greedy learning approach. Initial
weights determine the dependencies of variables from one
layer to the other layer.

First RBM layer which is visible layer comes in state v1
after receiving data for training. The initial weight which
can be represented as w1 is responsible for generating the
hidden layers state h1. Initial weightw1 is also responsible for
reconstructing the initial v1 state by hidden layer state. After
completing the training of first RBM, RBM2 and RBM3 is
also trained in sameway. After initial weights are determined,
backpropagation algorithm is used for fine tuning of param-
eters and performance optimization. This fine tuning helps
us for the weight adjustments regularly with slight feature

modifications. DBN training is completed after two-step
method.

K. GA AND STACK GA (SGA) FOR OPTIMIZATION
For better performance prediction, selection of optimized
setting for DBN is very important. These settings include the
number of network layers, the number of nodes in each layer,
and the number of hyper parameters. Heuristic algorithms
such as GA can give considerably good solutions for opti-
mization problems. The GA works with randomly generated
population. Each individual of population can be represented
as a candidate solution of the optimization problem. This
candidate solution is referred to as the chromosome, where
the length of a chromosome is equal to the total number of
parameters. For these parameters, all values have to find for
perfect or suitable solution. Only that candidate solution will
qualify as suggested solution which fulfills the criteria set by
the objective function. After finding a solution, GA under-
goes mutation and crossover steps for creating variations in
the next generation. We use GA to find the optimized setting
for our network. GA is good in providing best results with
properly controlled setting but sometimes they are less accu-
rate to fine-tune the parameters near local optimum points.
So, we are using SGA for finding optimized setting for our
network parameters.

Usually in GA, the optimal result is obtained after the
mutation step. We implement local search operation after
getting the result and for feature subset this result will be
sent back to compute the fitness values again. For SGA when
replacement is required, the feature subset has a chance to
improve itself locally, the result is sent back for computation
which help to gain its fitness value. This step is performed
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FIGURE 4. Visualization of proposed approach used for optimization of DBN using SGA.

repeatedly until SGA obtained desired optimal value. It pro-
vides the optimized values for DBN parameters. The optimal
values solve the problem of optimization and increase the
efficiency of the system. The algorithm for optimization of
DBN using GA and SGA is shown as Algorithm 2. This
procedure takes data sets, classes, labels, and the number
of generations as input and outputs results on DBN trained
on best parameters. At first, the pre-processing is done on
data by normalizing the data and converting the labels into
one-hot representation. After that, the number of samples
and features from data set are retrieved. Then the genetic
algorithm generates different numbers of networks based on
the network parameters such as number of layers, epochs,
iterations, and the data set. After initializing the population,
the network generates different generation and based on the
natural selection criteria (mutation and crossover) it selects
the best individual (parameters) that gave good performance.
Algorithm 2 shows Deep Belief Network using GA and SGA.

V. EXPERIMENTS AND RESULTS
We performed extensive experiments for the assess-
ment of proposed Optimized GAN-based Deep Learning
model (OGDL) using 10-Fold cross validation. We compared
the proposed approach with previously proposed [2], [3]
autonomic system and other deep learning based algorithms.
We implemented all of the following approaches and com-
pared their results with the proposed OGDL (DBN+SGA)
approach as shown in Table 7 and Table 8. Table 7 shows
the accuracy using selected feature selection methods using
different methods on Sensors. Table 8 shows the accuracy on

Algorithm 2Deep Belief Networks Parameters Optimization
Using Stacked Genetic Algorithm
1: Input: Data set,Labels,Classes,Generations.
2: Output: optimized parameters.
3: Procedure = OPTIMIZEDBN(Data

set,Labels,Classes,Generations)
4: Labels=OneHotEncodede(Labels)
5: Dataset=MinMaxNorm(Dataset)
6: NumFeatures=FindFeatures(Dataset)
7: NumSamples=FindSamples(Dataset)
8: for Each Layer in Hidden Layers do
9: for Each Epoch in Epoches do

10: for Each Iteration in Iterations BackProps do
11: network = CreateIndividual(Layers, Epoch, Iter-

ations, Dataset, Labels, Classes)
12: Networks.Add(network)
13: end for
14: end for
15: end for
16: for Each gen in Generations do
17: GeneratedFeatures = GenertaeFeatures (Generator,

class, nsamples)
18: end for
19: accuracy = TrainNetworks(Networks)
20: Networks = Crossover(Netwroks, accuracy)
21: Networks =Mutate(Netwroks, accuracy)
22: Networks = EvolveNetworks(Netwroks, accuracy)
23: bestnetworks = SortNetworks(Netwroks)

selected feature selection methods using different methods on
Effectors.
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FIGURE 5. Training loss of CGAN.

TABLE 4. Details of parameters used for the training of CGAN for
augmentation.

A. COMPARISON WITH STATE-OF-THE-ART MACHINE
LEARNING AND DEEP LEARNING APPROACHES
1) GENERATIVE ADVERSARIAL NETWORKS (GANs)
We performed data augmentation for generating data. The
details regarding parameters used to perform this study are
shown in Table 4 that contains details about different stages of
hyperparameter settings and their values along with selected
model parameters. We initially used default settings in train-
ing of GAN for data augmentation. We also set default for
the activation function for Discriminator and Generator. Total
epochs executed were 5,000 in our experiments with batch
size 64. For getting better results, Binary Cross Entropy is
used as the GAN loss function and Adam optimizer was
selected for optimization.

Figure 5 shows the training loss curves of CGAN used for
generation of features. The green curve represents the loss
of GAN which shows that as the number of epoch increases
the loss of GAN increases, making it difficult for GAN to
discriminate between real and generated features and as a
result it treats them as same. On the other side, the loss of
G represented as fake-features in orange curve decreases and
the G generates features similar to the real ones.

Table 5 shows the results of Effectors before and after
augmentation using GAN. The results clearly show the

FIGURE 6. Elbow method for optimal k.

improvement in performance after adding the augmentation
data using GAN.

We also observed that before augmentation the perfor-
mance of deep learning approaches (proposed DBN+SGA,
DNN) is low as compared to lazy learning approaches, how-
ever, after augmentation they outperform the lazy-learning
approaches which means the performance of deep learn-
ing algorithms is directly associated with size of data and
features.

2) CASE-BASED REASONING (CBR)
We have performed experiments on traditional CBR [2]
and Cluster-based CBR[3] for comparison of results. The
Figure 6 shows the optimal values of clusters using k-means
clustering for fetching cases from case-based repository.
It shows the optimal value at the curve bend is 7.
Figure 6 shows the Elbow method for optimal value of k.

We plotted the data point after generating the features
through GAN. Figure 7 presents the clusters of features that
show the generated features using GAN for seven classes
that is class 0 to class 6. The data points of different
classes are visualized in different colors. Fake generated

VOLUME 9, 2021 97613



N. Shaheen et al.: Autonomic Workload Performance Modeling

TABLE 5. Results of effectors on before and after augmentation using CGAN (*Before augmentation (B Aug) *After augmentation (A Aug)).

FIGURE 7. Optimal number of Data clusters.

features are shown in red color. The graph shows the gen-
erated features are close to the actual classes that means
that the generated features are identical to the actual class.
The results show that CBR achieves accuracy score of 91%
on RF features selection, 95% on GA features selection,
96% on Chi-square, 85% on RFE, 84% on info-gain and
84% on Ruzzo-Tompa. Results shows that CBR performs
best on features selected using Chi-Square features selection
technique.

3) DEEP NEURAL NETWORK (DNN)
We also performed experiments using Multi-Layer Percep-
tron (MLP) with 5 hidden layers using log-like loss func-
tion with learning rate of 1e-5. Experimental results on
different selected features achieved accuracy score of 80%
using Random forest features selection, 76% using genetic
algorithm, 73% using chi-square, and 69% using RFE, IG
and RT.

4) DEEP BELIEF NETWORK (DBN)
DBN is a generative graphical model that is composed ofmul-
tiple layers. They are composed of unsupervised networks
such as Restricted Boltzmann Machines (RBM). We used
hidden layer size of 200, learning rate of 0.1, number of
epochs as 80 and batch size of 60. Accuracy scores using
different features selected using feature selection techniques
were evaluated. The evaluation results showed that 95% accu-
racy score is achieved using GA, 94% using RF, 92% using
Chi-square, 82% using RFE, 87% using IG and 87% using
RT. General parameter setting for DBN network is shown
in Table 6.

TABLE 6. Parameter setting for DBN network.

5) DBN+GA
As in deep learning, hyperparameters plays a crucial role in
model training and improvement in performance. For this
purpose, we used GA for the hyperparameters optimization
of DBN. Accuracy results showed that by optimizing DBN
using GA the performance of DBN is increased. By using
different features selection techniques, it achieves accuracy
results of 94% using RF feature selection, 95% using GA,
96% using Chi-square, 90% using RFE, and 88% using RT.

6) PROPOSED OGDL (DBN+SGA) MODEL
We performed experiments using proposed OGDL model.
For parameter optimization we used SGA. By using the
local optimization of new individuals generated using
natural selection, it adopted to have better individuals
which leads to better classification results. The exper-
imental results showed that it achieved 97% accuracy
using features selection techniques GA, RF, Chi-Square,
and RFE, 96% using IG and 89% using RT. The results
show that our proposed OGDL model outperformed other
techniques.

Figures 8 and 9 show the F1-Scores of techniques with dif-
ferent features selected on Sensors and Effectors respectively.
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TABLE 7. Accuracy on selected feature selection methods using CBR, DNN and DBN on sensors.

TABLE 8. Accuracy on selected feature selection methods using CBR, DNN and DBN with CGAN on effectors.

FIGURE 8. Comparison of F1-Scores with different features selection
techniques on Sensors using different classification techniques.

It can be seen that for Sensors it achieved best F1-Score
using RF features selection. For Effectors it achieved good
F1-Score using features selected by chi-square and RF.
According to Table 7, prediction accuracy is high for parame-
ters selected by RF on Sensors. According to Table 8, predic-
tion accuracy is high for parameters selected using GA and
RF for Effectors. So, for our proposed (DBN+SGA) model,
we selected RF as feature selection technique. The results
show that optimization of parameters is an important aspect
in deep learning.

Figure 10 shows the loss curves for the Deep Belief Net-
work. The loss till the 5th epoch shows no convergence
towards minimum loss but after 25 epochs the loss reduces to
0.2 from 1.8 and then the convergence became slow. We per-
formed experiments for observing actual vs predicted accu-
racy. Figure 11 and 12 shows the values of actual vs predict
values for a few performance parameters. We have selected
11 performance parameters for workload performance pre-
diction. We are showing two performance parameters here
with their actual and predicted values for three types of work-
load. Figure 11 – 13 shows the predictions for OLTP, DSS and
Mixed workloads on INNODB_PAGES_READ performance

FIGURE 9. Comparison of F1-Scores with different features selection
techniques on Effectors using different classification techniques.

FIGURE 10. Deep belief network loss curves.

parameter. Figure 14 - 16 shows the predictions for OLTP,
DSS andMixedworkloads onHANDLER_READ_KEYper-
formance parameter.

Figure 17 shows the confusion matrix of the performance
measure INNODB_BUFFER_POOL_READ_REQU
ESTS with Chi-Square feature selection using DBN clas-
sifier. Figure 18 shows the confusion matrix of proposed
OGDL (DBN+SGA).
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FIGURE 11. Queries testing results on proposed OGDL model using
INNODB_PAGES_READ performance parameter for OLTP Queries.

FIGURE 12. Queries testing results on proposed OGDL model using
INNODB_PAGES_READ performance parameter for DSS queries.

FIGURE 13. Queries testing results on proposed OGDL model using
INNODB_PAGES_READ performance parameter for Mixed queries.

B. VALIDATION THROUGH POST-HOC TESTS
We have performed post-hoc tests for validation of results.
In these tests all pairwise comparisons are performed between
different classifiers to identify the significance of pairwise
difference for the proposed solution [43]. For hypothesis
testing parametric and non-parametric tests can be per-
formed. Non-parametric tests are also called distribution free
because they do not assumed homogeneity of normal dis-
tribution. Hypothesis tested by the non-parametric test may
be more appropriate for the research investigation. We are

FIGURE 14. Queries testing results on proposed OGDL model using
HANDLER_READ_KEY performance parameter for OLTP queries.

FIGURE 15. Queries testing results on proposed OGDL model using
HANDLER_READ_KEY performance parameter DSS queries.

FIGURE 16. Queries testing results on proposed OGDL model using
HANDLER_READ_KEY performance parameter for Mixed queries.

more interested in significance test rather than info about
population. So, we performed non-parametric test such as
Friedman on PMV using KEEL software [44]. A set of
pairwise comparison can be mapped to set of associated
hypotheses. Any of post-hoc tests which can be used for
non-parametric tests, works on this set of hypotheses. Test
statistics for comparing the ith and jth classifiers is shown in
equation 17 [45].

z =
(Ranki − Rankj)√

n(n+1)
6M

(17)
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FIGURE 17. Confusion matrix using DBN.

FIGURE 18. Confusion matrix results of proposed OGDL model.

where z is used corresponding probability from the value
of normal distribution, that is compared with value of α.
Ranki is the average rank computed through the Friedman
test for the ith classifier, n is the number of classifiers to
be compared and M is the number of data sets used in the
comparison. Difference between the tests is only the way
they adjust the value of α to satisfy for multiple compar-
isons. We also consider post-hoc tests like Shaffer, Holm and
Nemeyi. We have conducted Friedman test n ∗ n which tests
all hypotheses in n ∗ n comparison having logical relation
among them. Table 9 shows the ranking obtained for algo-
rithms using Friedman procedure. Test ranks the proposed
OGDL model as best classifier. For results the corresponding
probability (p-value) with confidence α level is computed,
and p-value is returned for α = 0.05 and α = 0.01. For PMV,
the Table 10 shows the p-value for Holm and Shaffer proce-
dures with α = 0.05 which shows the p-value and adjustment
of through these procedures. From the normal distribution
table, the z value is used to determine the p-value that is com-
pared with the level of significance and adjusted for various
comparisons. We have tested and formulated the null hypoth-
esis. Assumption for null hypothesis is that all the algo-
rithms are equal and there is no significant difference between
algorithms. In this work, we have considered PMV and five
approaches DDN, CBR, DBN, DBN+GA, and proposed
OGDL that we compared and evaluated for hypothesis test-
ing using p-values and adjusted p-values (APVs) [45]–[47].
Significance of a hypothesis test can be found using p-value.
The p-value will serve as the probability of observing the two
samples on the basis of basic hypothesis (null hypothesis).

TABLE 9. Algorithms and their ranking by using Friedman procedure.

The p-value can be interpreted on the basis of pre-selected
significant level called Alpha (α). For α a common value is
5% or 0.05. If p-value lies below the selected significant level,
then test rejects the null hypothesis.

p− value ≤ α rejects the null hypothesis

p− value > α fails to rejects the null hypothesis

Nemenyi’s procedure rejects those hypotheses that have an
unadjusted p-value ≤ 0.005. Holm’s procedure rejects those
hypotheses that have an unadjusted p-value ≤ 0.007143.
Shaffer’s procedure rejects those hypotheses that have an
unadjusted p-value ≤ 0.005.
Bergmann’s procedure rejects the following hypotheses:
• CBR vs. Proposed OGDL (DBN+SGA)
• DNN vs. DBN+GA
• DNN vs. Proposed OGDL (DBN+SGA)

These results show that performance of all approaches is sim-
ilar but with slight difference. P-value within multiple com-
parisons reflects the probability error for some comparisons
and does not considers the remaining comparisons from same
family. To solve this issue, APVs can be used because they
consider all multiple tests that are conducted. Table 11 shows
APV values obtained through Shaffer, Holman, Bergman and
Nemenyi for PMV. Different post-hoc procedures used in
analysis compute APVs in different ways [46] which are
shown in the equations18- 21:

Holm APVi : min {v; 1},where v = max { (m−j+ 1)

pj : 1 ≤ j ≤ i)} (18)

min{v; 1}, where v = m · pi.

Nemenyi APVi

= min {v; 1} ,where v = m · pi (19)

Shaffer static APVi

= min {v; 1},where v = max {tjpj : 1 ≤ j ≤ i} (20)

Bergmann−Hommel APVi : min {v; 1} ,where

v = max
{
|I | ·min

{
pj, jεI : I exhanstive, i ε I

}}
(21)

Our proposed OGDL is suitable for workload management
in large-scale data repositories. Already existing methods are
working with small data sets and with that data sets their per-
formance is good. However, they degrades the performance
on large volume data. The proposed OGDL model helps to
predict the performance of workload better than the exist-
ing models because existing models are based on machine
learning or lazy learning. However OGDL model is based on
deep learning and produce better results. Our proposed model
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TABLE 10. The P-values for α = 0.05 for Holm and Shaffer.

TABLE 11. The APV-values obtained for Holm and Shaffer.

overcome the non-availability of large-scale data publicly
available by artificially generating data through CGAN. That
is required for modeling of large-scale data repositories for
better training and testing of data.With the increase in volume
of data, existing methods show less accuracy in comparison
with their accuracy with limited data. So, for large-scale
data, our proposed solution is efficient. Results show that our
proposed model’s accuracy is higher as compared to already
existing methods.

VI. CONCLUSION
This study proposed a performance prediction model
OGDL for large-scale data repositories using deep leaning
approach. To overcome the issue of non-availability of large
data sets, CGAN is proposed for data augmentation that
generated better augmentation results. Among different fea-
tures selection techniques, Random Forest feature selection
remained the best in our experiments. Different deep learn-
ing approaches are examined through experiments and it is
observed that the deep learning approach DBN with SGA
optimization performed the best. We compared our proposed
OGDL model results with state-of-the-art eager learning
and lazy learning approaches. The comparison showed that
deep learning approaches are better for solving the work-
load performance prediction in large-scale data repositories.
Results shows that proposed OGDL model outperformed
the existing approaches. On average, 30% increase in data
size is observed after augmentation. An increase of 6-8%
in accuracy is observed after augmentation in comparison
with existing studies as shown in Table 5. With respect to
autonomic perspective of our model, our results on Sensors
and Effectors are also promising. The proposed model is a
step forward towards performance modeling in autonomic
systems for large-scale data repositories.

Limitation of the proposed model is that it is experimented
and tested using MySQL database. Other well-known com-
mercial databases such as ORACLE by Oracle Corporation
and DB2 by IBM can be investigated for workload man-
agement and perform tuning. Data preparation is done for
workload features and performance features extraction by
executing various workloads. However, for making it more
autonomic it could be done detecting the database and data
warehouse workload/ queries using Natural Language Pro-
cessing (NLP) techniques.

Future work includes proposing a framework that can
perform workload characterization and its performance pre-
diction autonomically. Handling adaptiveness of changing
behaviour of workload can be of further interest. Machine
learning, lazy learning and deep learning mechanism could
be further investigated to understand how learning can be
improved by performing calibration of the learnt model.
Further, to improve performance and speed, the concepts of
parallelism could be introduced. Moreover, other autonomic
characteristics could be incorporated moving towards fully
autonomic systems.
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