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ABSTRACT Key requirements for a better performance of multimedia applications typically include
lower latency, improved security, faster content retrieval, and adjustability to the traffic load. However,
the current Internet often fails to meet the requirements due to the drawbacks of the host-oriented commu-
nication architecture. Those drawbacks can be overcome by a well-recognized networking paradigm, called
Information-Centric Networking (ICN), that offers name-based and information-centric communication
rather than host-oriented communication. This paradigm uses an in-network caching policy and may provide
enhanced security along with user mobility. Therefore, the ICN architecture can outperform the current
Internet in many aspects, including, but not limited to, content transfer time, traffic load control, mobility
support, and efficient network management. Most of the existing research validating the ICN paradigm’s
superior performance compared to the current Internet is based on simulation. In this paper, we propose a
novel ICN-based testbed, where we used several modified functions for naming, routing, and caching and
developed two new functions that provide mobility support and auto-playing of the retrieved content so that
the performance of the ICN network is enhanced even more in terms of content delivery time or response
time. The proposed testbed architecture is based on Content-Centric Networking (CCN), a prominent
branch of the ICN concept. We present the testbed development procedures and the functions in detail and
demonstrate that the testbed-based architecture outperforms the current Internet architecture and the basic
CCN-based environment.

INDEX TERMS Content-centric networking, information-centric networking, testbed development.

I. INTRODUCTION
Internet data traffic usage has increased rapidly in recent
times as the number of people who access the Internet grew
massively. Similarly, the number of wireless and mobile
devices to access the Internet to watch or download streaming
contents is on a remarkable rise. Several applications keep the
users busy surfing the web and entertaining themselves via
mobile devices evenwhile they are on themove. Accordingly,
the demands on faster content access and seamless video
streaming have increased tremendously. Users interact with
video data traffic more often than the other forms of data
traffic, including audio data and text data. The CISCO fore-
cast of Global Internet Growth and Trends predicts that by
2022 there will be approximately 4.8 Billion Internet users
connected with 28.5 billion different devices [1]. Those users
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will be able to access the Internet with an increased aver-
age broadband speed of 75.4 Mbps, and it is estimated that
most of the exchanged IP traffic will consist of video data.
The basic features of video data typically include massive
volume and high bandwidth. The video data can be live
or pre-recorded streaming video contents, various video-
on-demand contents such as movie files and video clips.
CISCO also predicts that this enormous number of people
with a vast number of connected devices and higher connec-
tion speed will exchange approximately 400 Exabytes per
month, and the percentage of video data traffic among all
other application types will be more than 82%.

This rapid increase of users and usage of different online-
based technologies were not foreseen during the develop-
ment of the original Internet architecture primarily based
on immobile wired devices. Besides, the communications
in the current Internet are based on location-oriented host-
to-host data transmissions. Subsequently, the current Internet
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confronts several downsides, including data traffic conges-
tion, higher content delivery time, and connection failure
due to user mobility. A novel networking paradigm was pro-
posed to eliminate these stumbling blocks, shifting the com-
munication strategies from host-centric to content-centric.
This new networking paradigm is called Information-Centric
Networking (ICN) [2]. In this approach, the communicating
host machine becomes less focused than the expected data,
and as the requested content is fetched based on the name of
the content itself instead of the host’s location where the con-
tent is available, the delivery process becomes faster. In this
information-centric architecture, the security of the requested
content and user mobility are also addressed and improved.
As this concept is becoming popular, several distinctions
were proposed that are discussed briefly in the following
section. Although these approaches vary in terms of actual
implementation, they have an identical principle to improve
the end-user experience, which provides the desired contents
faster using the name of the contents rather than utilizing
the host’s location that contains the contents. Among them,
Content-Centric Networking (CCN) [3] is one of the most
prominent variations.

ICN and CCN both emphasize name-based communica-
tions as opposed to host-based communications. Features of
the CCN paradigm are briefly described in the following sub-
section. In contrast, an IP-based system called content deliv-
ery network (CDN) or content distribution network (CDN)
deploys geographically distributed proxy servers and delivers
the requested contents from a data center located at an optimal
distance from the end-user. The optimal distancemay bemea-
sured based on the number of hops, latency, server resource
availability, or cost-efficiency. Albeit being a location-based
service, the benefits of CDN may include an increase in
performance due to having cached contents nearby the end-
users, a reduction in operating costs, and high scalability.
Interested readers can find more information in [4]. Both
CCN and CDN have the advantage of cached contents.
However, the CCN paradigm handles various other concerns
not covered by CDN and provides additional benefits. This
includes controlling network congestion, performing active
forwarding strategies, supporting user mobility, securing the
content itself, multicasting, and higher performance caching,
and others.

Historically, researchers focused on using various tools to
simulate and validate their proposals and theories. There are
several popular simulation tools available, such as NS-3 [5],
MATLAB [6], and ndnSIM [7]. Nevertheless, the present
advanced technology era allows the researchers to authenti-
cate and verify their proposals in a configuration that is as
close to the real world as possible using a real testbed archi-
tecture. As a testbed architecture consisting of real machines
allows to test the system in reality, testbed-based experi-
ments and performance evaluations can be more pragmatic
and complement the simulation-based experiments. Thus,
we chose to develop a testbed based on the ICN concept and
provide performance results of several experiments on the

developed testbed architecture in terms of content delivery
time or response time. As of late, various testbeds have
been depicted in research articles while just some are open,
and even less are accessible, which are based on the ICN
paradigm. Among the few available alternatives for develop-
ing the testbed architecture from scratch (one, for example,
CCN-LITE [8]), we have picked the CCNx Distillery Soft-
ware Distribution 2.0 [9] as the base to prepare the proposed
testbed. The rationale behind using this software is that it
offers solutions to experiment with the ICN architecture as
closely as possible, and it can be configured extensively.
We have modified and updated several functions that han-
dle the naming, routing, and caching features. Additionally,
we added two newly developed functions into the testbed
architecture, one of which provides mobility support, and
the other auto-plays the downloaded contents automatically.
All these functions contribute to the enhancement of the
performance of the basic ICN network.

Therefore, the main contributions of this paper are to
develop an ICN-based testbed architecture utilizing the
CCNx Distillery Software Distribution 2.0, which can work
as the base framework for many future research based on
testbed-based performance evaluations for the ICN networks
and implement the developed functions, naming, routing,
caching, mobility support, and auto-play, which enhances
the performance of the basic CCN paradigm. In summary,
the following are the main contributions of our work:
• Unlike the customary tradition of relying on perfor-
mance results based on simulation, we proposed a
novel testbed-based performance evaluation for the ICN
paradigm.

• We introduced an ICN-based testbed architecture and
provided details of the development procedures. This
testbed architecture can provide the base platform for
future research.

• We enhanced the performance of some of the existing
functions such as naming, routing, and caching, and we
also implemented new functions such as mobility sup-
port and auto-play functions in the testbed architecture.

• We demonstrated that the testbed-based architecture
with the developed functions outperforms the basic CCN
and the current Internet significantly in terms of the
content delivery time or response time for various sizes
and different types of contents.

The rest of the paper is organized as follows. In Section 2,
the related state-of-the-art technologies are addressed.
Section 3 then introduces and describes the testbed devel-
opment process and the procedures executed by the added
functions. After that, we examine the diverse performance
outcomes in Section 4 before concluding the paper with
Section 5.

II. RELATED WORK
Our research work is related to two fields: Information-
Centric Networking and existing ICN-based testbed archi-
tectures. In this section, we introduce various ICN concepts
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and describe the features of CCN. We also describe existing
work closely related to our proposal. Additionally, we briefly
describe the basic software that was used to build the
proposed testbed architecture.

A. VARIETY OF ICN
The first name-based information communication theory was
introduced by TRIAD [10], and since then, researchers have
proposed multiple architectures. In 2006, researchers at UC
Berkeley proposedDONA [11], which uses a name resolution
system to authorize the content storage points and update the
mobility information. It was mostly an improved version of
TRIAD in terms of security and architecture. Then, funded
by the EU Framework 7 Program (FP7), PSIRP [12], [13]
was proposed that replaces the IP protocol stack with a
publish/subscribe protocol stack. This project was continued
further by the name PURSUIT [14], [15]. NetInf [16]was also
based on a name resolution service like DONA, and it sup-
ported content searching based on meta-data. This concept
was initially proposed by the FP7 project 4WARD [17], and
further development was made by SAIL [18]. Additionally,
Content-Centric Networking (CCN) [3] was proposed by
PARC in 2007, and the performance of this architecture was
enhanced by Named-Data Networking (NDN) [19] project.

The CCN paradigm is considered the most notable one
among the proposed ICN concepts. In this paradigm, for
efficient delivery of the requested content, the name of the
content itself is focused on rather than the location or address
of the content repositories. A consumer requests a specific
content by sending an Interest packet, including the name of
the requested content, to all appropriate neighbor nodes. The
serving node sends back a Data packet containing the desired
content. In the basic CCN, all contents that pass through a
node are cached in that node. Therefore, the requested content
can be provided from an intermediate node instead of the
original remote server. Furthermore, the CCN architecture
provides packet-level security and incorporates a basicmobil-
ity support mechanism as well. Nevertheless, the basic CCN
has a few critical drawbacks. For example, it may flood the
network with the Interest packets as it looks for the nearest
content source. As a result, congestion may still occur in
the network. Furthermore, the basic CCN concept is not
focused on a sophisticated caching mechanism that accounts
for inefficient caching results in the real environment. Owing
to these, several duplicate contents may coexist in a particular
topology, and cache overflow may happen often.

B. RELATED WORK ON ICN-BASED TESTBEDS
Although a considerable amount of research is already going
on to evaluate and validate the ICN concepts, most of them
revolve around either simulation or emulation strategy to
prove this paradigm’s efficiency. From the realization of the
requirement of a scalable, configurable, and low-cost testbed
for fast prototyping, a ‘‘Control andManagement Framework
for a scalable CCN testbed’’ was proposed and developed
in [20] that includes controlling and management of multiple

CCN nodes scattered across different places. The authors
hoped that other researchers could expand their experiments
without being bothered regarding the tiresome procedure of
setting up the network itself. The core purpose is to let other
experimenters utilize the authors’ framework to validate and
evaluate the experimenters’ ideas promptly. However, this
approach’s drawbacks include a limited number of parame-
ters to experiment with, such as the number of publishers,
routers, and subscribers. Furthermore, this testbed does not
consist of real machines; instead, virtual machines are used.
Therefore, this approach may be limited in providing an
absolute perception of the real-world environment.

Video traffic transmission over the Internet is showing a
brisk upsurge in recent years. The current Internet, which
uses the Internet Protocol (IP), was predominantly meant for
the stationary machines exchanging mostly time-insensitive
text or audio data. This architecture is rather quickly becom-
ing inadequate to meet the demands and requirements of
future Internet users who demand lower latency, improved
security, faster content retrieval, and adjustability to the traf-
fic load while using multimedia applications. As the ICN
paradigm gained popularity, significant research work based
on ICN is going on. Thus, deploying ICN on the radio access
network (RAN) and validating the concept with a testbed
can strongly complement theoretical and simulation-based
works. Inspired by this idea, a testbed that provides testament
for the ICN-RAN using 4G was presented in [21]. The exper-
iments demonstrated that in the cases of real-time applica-
tions and video distributions, the proposed testbed achieves
a lower-latency result than presently available options.
Nevertheless, the absence of accelerated hardware and failure
to optimize the codes limited the bit rate that could have
been achieved in real-time situations. Despite being a viable
option as a testbed for the ICN network, a few limitations
in this paper need to be addressed, including the incapability
of taking different paths for the content that would allow
the evaluation of multicast routing benefits into account.
Moreover, adding more eNodeBs would increase the accep-
tance of this testbed, which is missing in this paper, giving a
better evaluation of the mobility events.

C. THE BASIC SOFTWARE
The CCNx Distillery Software Distribution 2.0 [9] is referred
to as basic software from hereafter, and it can be easily re-
configured. This project’s evolution was driven by the ICN
Community [22], and its scope was based on implementing
CCNx 1.0, a software release based on the CCN architecture,
by a harmonization effort. The primary purpose of the basic
software is to pull together all the necessary modules to build
a full CCNx software suite. The modules can be used for
various requirements, and each of the modules is independent
by itself. Furthermore, each of those modules may come from
a different author or institution and may have its own set
of requirements. The basic software provides features for
building CCNx software and tools for writing, testing, and
evaluating code. Although it can run on several OS platforms,
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this software is most stable while using the Ubuntu 14 OS,
and therefore, we have used that OS platform. This software
is the most promising tool based on the CCN paradigm
that allows developing various testbed-based topologies and
experiment with the CCN network architecture as closely as
possible. However, it needs vigorous modifications, as we
did, to be used as a standard platform for sophisticated
experiments.

III. ICN-BASED TESTBED DEVELOPMENT
This section provides the implementation architecture and
the development procedure of the proposed testbed from the
basic software and then presents the detailed descriptions of
the testbed development and the execution procedures of the
developed functions. We proposed the preliminary ideas on
a testbed-based performance evaluation of the ICN in [23].
This paper is a continued and significantly extended work
where we added more details of the testbed development
process as well as the newly added functions. Furthermore,
we added the algorithms using pseudo codes of the functions
and introduced a new function to support mobility in this
paper.

A. OVERVIEW OF THE TESTBED DEVELOPMENT
The testbed development procedures involve two parts. First,
the basic software had to be installed on all the testbed
machines, and then some of the existing functions were mod-
ified and improved, and other new functions were added. The
primary responsibility of the basic software is to assemble the
requiredmodules for building an ICN architecture. Therefore,
it brings together several independent modules from different
developers to build the complete ICN architecture, and that
can be configured and customized using the CCNx software.
The essential modules used for performing the experiments of
the testbed are LongBow - a C language software framework
to combine the fail-fast philosophy of an offensive-stance of
program development and xUnit style unit testing, Libparc - a
C runtime library developed by PARC that provides an array
of features and capabilities for C programs and programmers,
Libccnx-common - a set of functions and data structures for
CCNx, Libccnx-transport-rta - is a CCNx networking base
stack used with a forwarder running underneath it and a set of
APIs above it, Libccnx-portal - a simple API to communicate
via Interests and Content Objects connected to a transport
stack, and Athena - a CCNx Forwarder. These modules are
used to execute the content exchange experiment. However,
the major drawback of the basic software is that it can be used
within one machine only. By default, it is configured to rec-
ognize content requests from a machine’s folder and deliver
them to another folder. Thus, the basic software does not
need to create a routing table with other machines, although
it supports the ICN routing mechanisms. Therefore, the basic
software is not adequate to create a testbed architecture of
several machines by itself and evaluate the performance of
the ICN networks realistically in terms of content delivery
time.

B. DEVELOPED FUNCTIONS AND THEIR TASKS
The primary design objective of the testbed is to accomplish
multimedia applications requirements such as faster, secure,
seamless, efficient, and reliable content retrieval and deliv-
ery. Therefore, we modified the existing naming, routing,
and caching functions and added newly developed mobility
support and auto-play functions within the proposed testbed
architecture. All the machines of the testbed architecture,
clients and servers, are featured with the naming function.
This is an enhanced function from the existing one within
the basic software and handles two tasks, allocating names
to all the machines that comprise the testbed architecture and
providing unique names to all the available contents. Then,
the routing function is implemented within all the server
machines. Considering that the basic software does not create
any routing table, the existing routing function needed to
be modified and updated. Routes among all the connected
server machines are created by utilizing this routing function.
Moreover, this function aids in mapping the names of all the
machines with their IP addresses so that the machines outside
of the testbed architecture can recognize these machines, and
it is also helpful when experiments are performed with the
current Internet environment instead of employing the ICN
paradigm. Subsequently, the existing caching scheme that
caches all the flying contents at all the in-network server
machines adopted by the basic CCN and the basic software
is replaced by an enhanced caching scheme developed for the
proposed testbed architecture. This scheme selectively caches
some of the contents that go through a server machine, and
some of the contents are discarded.

Similarly, while removing a content when there is a lack
of space, a set of updated algorithms are followed by the
modified caching scheme. Next, an auto-play function is
added along with all the client machines of the testbed archi-
tecture to allow thosemachines to auto-play the retrieved con-
tent as soon as the download is completed. Finally, another
new function was developed and implemented within the
testbed client machines that provides seamless mobility sup-
port while the clients are moving away from one server
to another server during an active download process. The
primary responsibility of this function is to locate an appro-
priate server that can continue to deliver the requested content
as quickly as possible when the hand-off is necessary. The
architectural framework of the testbed and the task table of
the functions are given in Fig. 1.

C. CONTENT REQUEST AND RETRIEVAL PROCEDURE
We propose to use a real testbed architecture to show that the
ICN-based environment delivers a requested content faster
than the current Internet, and we developed several functions
to enhance the performance and reduce the content delivery
time even more than the basic CCN paradigm. Experimental
procedures involving content requests and retrievals follow a
similar flow to that of the basic CCN paradigm. The exper-
iment begins with a client sending a request for a particular
content to its connected server. As soon as the server receives
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FIGURE 1. Architectural framework of the testbed along with the tasks of
the functions.

the content request, the naming function operates and iden-
tifies the desired content. The server checks its local content
store (CS) if the content is readily available. If the content
exists in the CS, the server directly sends back the file, and
the content delivery time is measured after the retrieval is
completed. Responsibilities and the relative positions of the
functions, naming, auto-play, and mobility support during the
content request and retrieval procedure are shown in Fig. 2.

FIGURE 2. Content request and retrieval procedure using the developed
functions; Part – 1.

However, if the requested content is not available in the
CS, it has to fetch that content from another server that might
have it. Before forwarding the content request, the server
first cross-checks the pending interest table (PIT) if it has
prior request(s) of that same content. The PIT keeps track of
all the content requests that could not be satisfied with the
CS; hence it had to forward to another server. Accordingly,
if there is already a request for that content and the server
is waiting to receive the requested content, it only updates
the PIT list with the latest client’s request. Otherwise, it has
to consult the forwarding information base (FIB) for the
information regarding where that content is available. The
routing function comes in handy in this step as the FIB
table is built up with the help of this function. Following
the FIB table, the connected server locates the proper target
server, forwards the content request to that server, updates
the PIT information, and waits for the response. However,
if there is no routing information available for the requested
content, the server has no other option but to discard the

content request. Although the basic CCN paradigm floods the
network with the content request at this step, we consider this
rare circumstance as a failed attempt to download the content,
and the client continues to request other contents as the
experiment keeps going on. In our graphical representation
of the experimental results, delivery times are shown only for
the successful content retrievals. Moving on to the next steps,
and after receiving the requested content, the server has to
decide whether to keep the content in the CS or not. Unlike
the basic CCN paradigm, which always caches the requested
content, the updated caching scheme implemented in the
testbed architecture helps the server make smart decisions.
The contents are ranked in terms of content popularity, and
based on that, the server either stores or discards that content.
Finally, the content is delivered to the requesting client by
the connected server, and the responsibility of the server
ends here. Responsibilities and the relative positions of the
functions, routing, and caching during the content request and
retrieval procedure are shown in Fig. 3.

FIGURE 3. Content request and retrieval procedure using the developed
functions; Part – 2.

As soon as the client starts to receive the requested con-
tent, the mobility support function comes into motion and
maintains a seamless and continuous connection with a
server. This function locates the next best server that can
continue to deliver the requested content if the client moves
away from the currently connected server and sends a request
for the desired content in advance to the target server. On the
contrary, if the client is not on the move, this function does
not have any further responsibility. At last, after the retrieval
process is completed, the auto-play function takes over the
program and starts auto-playing the audio or video file using
appropriate software installed on the client device, and if the
retrieved content is a text file, the auto-play function opens up
that file for the client to read. Responsibilities and the relative
positions of these two functions are shown in Fig. 2 earlier.
The whole procedure keeps on repeatedly running as long as
the experiment is not finished.

D. DEVELOPED FUNCTIONS FOR NAMING
One of the distinguishing features of the ICN paradigm is
identifying the contents using a unique name. Assigning
unique names to all the available contents is essential for
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the content request and retrieval process. Therefore, new
functionswere developed and implementedwithin the testbed
architecture, which performs the tasks described below.

The naming function in the basic CCN can name the
contents. However, the machines of the testbed architecture
also need to identify and recognize each other for exchang-
ing various control information. Therefore, we propose to
assign distinguishable names to the machines of the testbed
architecture. The function NAME_MACHINES () shown in
Algorithm 1 assigns unique names to all the machines of
the testbed architecture as soon as they become available.
These machines initially broadcast their assigned names to
neighboring machines so that each of the machines can
identify the other machines for exchanging various control
information. We call this name the DisplayName, as this
name provides a way to recognize the MAC addresses of
the testbed machines by a human-readable name. The names
are generated by mapping the physical MAC address with
an alphabetically ordered name when a machine joins the
network. For example, a machine with the MAC address of
94-M2-05-B9-37-F5 can be assigned the DisplayName of
client-A. Similarly, the machines can have various names,
including server-Y, server-AC, and client-ZX. Therefore, the
server machines can identify each other using their Display-
Names. Then, Algorithm 1 invokes Algorithm 6 and executes
the function MAP_NAMES (DisplayName) that maps the
DisplayNames of the server machines with their IP addresses
so that machines outside of the testbed architecture can
recognize them.

The second function for naming creates and provides
distinct alias names to the given names of the contents
uploaded in the server machines. This function is called
NAME_CONTENTS (), and it is presented in Algorithm 2.
Each content uploaded to the server repositories gets a unique
name assigned by the naming mechanism of the basic CCN.
We call these names the given names. The testbed archi-
tecture uses the same naming mechanism for assigning the
given names. Additionally, the developed function takes these
given names of the cached contents as an input and gen-
erates related alias names using the longest prefix match-
ing algorithm for quick identification whenever requested
by the client machines. Blank spaces between the words,
capitalizations of the alphabets, and special characters from
the given names are not considered while creating the alias
names. For example, the same content may have diverse given
names when it is uploaded to different server machines such
as Movie 1, movie_1, or Movie - 1. However, the server
machines create an alias for all these names of the same
content as movie1. This alias name is then mapped with the
given name of the content in the server repository. Hence,
whichever name the client uses when requesting that content,
the servers can always identify the desired content using the
naming function and the alias name. The developed functions
NAME_MACHINES () and NAME_CONTENTS () for the
naming purpose are shown using the pseudo code below in
Algorithm 1 and Algorithm 2.

Algorithm 1 Algorithm for Naming the Machines Using
Function NAME_MACHINES ()

INPUT: MAC-addresses

OUTPUT: DisplayNames

1. DETERMINE machine_type (server | client)

2. GETMAC-address

3. CREATE a DisplayName

4. SET DisplayName: = machine_type-

incrementing_alphabets

5. MAP DisplayName←MAC-address

6. CALL MAP_NAMES (DisplayName)

Algorithm 2 Algorithm for Naming the Contents Using
Function NAME_CONTENTS ()
INPUT: given names

OUTPUT: alias names

1. GET given name

2. Content name assigned by the basic CCN

3. IF given name CONTAINs blank spaces

4. DISCARD blank spaces

5. ELSE IF given name CONTAINs capitalizations

6. DISREGARD capitalizations

7. ELSE IF given name CONTAINs special characters

8. REMOVE special characters

9. END IF

10. CREATE alias name from the updated given name

11. USE longest prefix matching algorithm

12. MAP alias name← given names

E. DEVELOPED FUNCTIONS FOR ROUTING
After understanding the name of the server machine and the
names of the available contents at the local storage, the server
machine requires the information regarding its connected
neighbor servers and the list of accessible contents at those
servers to locate and deliver a requested content that is not
available at the CS. For that reason, the routes among the
connected servers needed to be created, and this information
is stored in the FIB. New functions were developed and
implemented within the testbed architecture so that the tasks
performed by the functions developed for naming can be
recognized and complemented in addition to supporting the
operations of the developed testbed architecture.

Albeit the basic software supports the CCN-based rout-
ing mechanisms, it does not create any routing information
as it performs the content exchange procedure within one
machine only. Therefore, one of the functions developed for
routing, CREATE_ROUTES (), creates random connections
with the available neighboring servers shortly after a new
server machine enters the network. This function is presented
in Algorithm 3. It creates FIB tables and makes routes among
random servers using the same algorithms as in the basic CCN
for all the machines that comprise the testbed architecture.
For example, if a new server machine, server-Y, becomes
alive, it broadcasts its name so that other servers can identify
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the server-Y. In return, the existing servers, such as server-A
and server-AC, adds new routing information to reach the
new server machine. On the other hand, the existing server
machines periodically update their FIBs by exchanging con-
trol messages with the neighboring server machines. When a
server machine drops out of the network, it cannot respond
to those control messages. Therefore, all the routing infor-
mation concerning this machine can be removed, and the
FIB is updated accordingly. Moreover, new routes may need
to be formed among the existing servers in some cases to
complete the networking routes. Another function for routing,
REMOVE_ROUTES () presented in Algorithm 4, handles
these tasks. For example, if the server-Y from the earlier
example becomes unavailable within the network, a direct
connection between server-A and server-AC may be cre-
ated after removing all the routing information to and from
server-Y from the FIB of server-A and server-AC.
Additionally, the list of all the available contents in

the CS of each server machine is renewed by another
developed function for routing whenever there is any
change in the network topology. This function is called
UPDATE_CONTENTS_LIST (), and it is shown in
Algorithm 5. Whether a new server with loads of contents
comes into the network or some of the contents become
unavailable due to an existing server leaving the network,
FIBs of all current server machines will always remain up
to date with the help of this function. For example, if a
new server, server-Y, becomes available, existing servers,
such as server-A and server-B, will update the list of newly
available contents and include movie_1, which is available
in server-Y. The lists of contents are continually updated by
control message exchange using this routing function. Using
the function, the number of the same contents can also be
managed efficiently.

Furthermore, we have created a resolution server with a
name resolution database to store several necessary and help-
ful information. The IP addresses of all the server machines
within the testbed architecture are mapped and stored with
their DisplayNames in the resolution server by a developed
function called MAP_NAMES (name) given in Algorithm 6.
As mentioned before, Algorithm 1 invokes this function in
Algorithm 6. This feature of the developed function for rout-
ing can be utilized by the machines outside of the testbed
architecture in order to recognize the testbed servers and exe-
cute the content exchange procedure without a hitch. Addi-
tionally, this feature was also helpful when we conducted
the content delivery experiments using the current host-based
Internet environment without further ado. TheAlgorithms 3-6
followed by the developed functions for the routing purpose
are shown using the pseudo code below.

F. DEVELOPED FUNCTIONS FOR CACHING
The caching scheme has a vital role in maintaining net-
work performance as it can be simultaneously responsible for
network congestion and faster content distribution. Caching
the contents at a nearer hop can reduce the delivery time

Algorithm 3 Algorithm for Creating Routes Among the
Server Machines Using Function CREATE_ROUTES ()

1. IF server-Y JOINs the topology

2. CREATE FIB for the new server

3. ADD random routes to the neighbor servers

4. USE basic CCN mechanism

5. UPDATE FIB of the neighbor servers

6. ADD random routes to the new server

7. USE basic CCN mechanism

8. END IF

Algorithm 4 Algorithm for Removing Existing Routes
Between the Server Machines Using Function REMOVE_
ROUTES ()

1. IF server-Y LEAVEs the topology

2. FOR each server-X having server-Y in the FIB

3. DELETE FIB entry to server-Y

4. IF server-Y was an intermediate server between 2 other

servers

5. UPDATE FIB of the neighbor servers

6. ADD direct connection between them

7. END IF

8. END FOR

9. END IF

Algorithm 5 Algorithm for Updating the List of Available
Contents Using Function UPDATE_CONTENTS_LIST ()

1. IF server-Y JOINs the topology

2. FOR each server-X in the FIB of server-Y

3. FOR each content in server-Y

4. GET given name

5. ADD new content info to the FIB of

server-X (server-Y→ server-X ← given

name)

6. END FOR

7. END FOR

8. ELSE IF server-Y LEAVEs the topology

9. FOR each server-X having server-Y in the FIB

10. FOR each content entry via server-Y

11. REMOVE content info from the FIB

12. DELETE entry (server-X → server-Y←

given name)

13. END FOR

14. END FOR

15. END IF

and network resource consumption as well. On the con-
trary, a poorly organized caching scheme may cause recur-
rent cache overflow and cache-miss. The basic software
uses the same caching schemes for content caching and
content removal used by the basic CCN paradigm. For a
faster content delivery procedure, the basic CCN uses an
in-network caching policy where Leave Copy Everywhere
(LCE) caching scheme is used, and all intermediate machines
cache all the contents that transit via those machines.
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Algorithm 6Algorithm forMapping theDisplayNamesWith
the IP Addresses Using FunctionMAP_NAMES (Name)

INPUT: DisplayNames, IP Addresses, Server Locations

OUTPUT: Information uploaded to the name resolution database

1. SET DisplayName: = name

2. GET IP address of the server

3. MAP DisplayName← IP-address

4. UPLOAD to the name resolution database

5. DisplayNames mapped with the IP addresses

6. Server locations that will be used by the

TARGET_SERVER() function

Therefore, an intermediate machine can speed up the sub-
sequent content delivery process by providing the requested
content from its CS. Simultaneously, the basic CCN uses
the Least Recently Used (LRU) caching scheme to replace
contents whenever there is a lack of space. According to this
scheme, the least active content in recent times is removed
from the CS. However, both these caching schemes, LCE and
LRU, have their drawbacks and bear pitfalls causing cache
overflow and cache-miss. The LCE scheme replicates all the
accessed contents at all the machines, resulting in several
duplicate contents that may quickly fill up the repository
spaces of the servers. On the other hand, the LRU scheme
removes the contents based on its access time, which is expen-
sive in keeping track of which content was requested when
and may result in an inefficient content replacement scheme.
As a result, the basic CCN network may often face both
cache overflow and cache-miss disadvantages. Therefore,
we improved the existing ICN-based caching mechanism by
developing functions that execute an entirely different set of
algorithms for content caching and cache removal. The details
of the caching functions used in the testbed architecture will
be included in our future work. In this paper, we briefly
introduce them below.

The developed functions for caching are based on a new
algorithm developed for the testbed architecture, and we
named this algorithm the content popularity ranking (CPR)
algorithm. The details of this algorithm will be presented as
a separate proposal in our future work. The CPR algorithm
follows an updated and improved mechanism of our previous
work published in [24] that essentially tries to identify the
content popularity based on various labels assigned to the
contents. The efficiency of the previous mechanism was eval-
uated in NS-3, where different contents were distinguished by
their labels that were allocated during the content registration
process. For the testbed architecture, the algorithms are made
more precise, and in summary, the CPR algorithm takes
into account the number of times a content is requested and
delivered, the file type of that content, and the duration since
the content was published to calculate the popularity ranking
of each content. Then, it sorts the available contents at the
CS of each server in real-time and chooses the appropriate
content to either cache or discard based on its popularity
ranking. A PopularityThreshold is calculated for each server

individually that holds the edge to determine whether the
incoming content falls on the safe side of the boundary or on
the other side to be removed. Individual content popularity
of all the available contents at a server is calculated, and the
average popularity value of the available contents at a server
is considered the PopularityThreshold of that server. After a
server fetches a requested content that was not available at the
CS beforehand, the caching function runs in the background,
uses the CPR algorithm to rank and sort the incoming content,
and utilizes the PopularityThreshold value to conclude the
fate of that content. A content is cached if its popularity is
higher than the PopularityThreshold of the server machine;
otherwise, it is discarded. If the content needs to be cached,
but there is not enough space in the CS to store it, then
the caching function removes as many existing contents as
necessary using the content removal feature of the CPR algo-
rithm. This time, the existing contents are sorted in terms of
their popularity ranking, and the content having the lowest
popularity ranking is removed from the repository one by one
until there is enough space for caching the new content. The
research work conducted so far indicates that the servers can
select more popular contents for caching and less popular
contents for erasing when necessary by following this CPR
algorithm. In this way, all contents are not duplicated at
all the machines; instead, repeatedly requested contents are
cached at the machines that are nearer to the clients, and
they are stored for a longer time than the rarely requested
contents. This benefit also impacts the overall content deliv-
ery time and improves the performance of the network
topology. The developed functions for the caching purpose,
CACHE_CONTENTS () and REMOVE_CONTENTS (),
are shown briefly in Algorithm 7 and Algorithm 8 using the
pseudo code below.

G. DEVELOPED FUNCTIONS FOR MOBILITY SUPPORT
These days, people are using wireless devices a lot more
than before, and they are surfing the Internet while on the
move. Therefore, a client may move closer towards a dif-
ferent server than the currently connected one from which
it is downloading the requested content. If the client keeps
moving for a certain amount of time at a vehicular speed,
a scenario may arise where the client gets disconnected from
the serving server before completing the content retrieval
process. Hence, the client needs to connect with another
server to continue receiving the previously requested content
as quickly as possible. Mobility support is a process that
creates a connection with a target server seamlessly without
disrupting the continuity according to the clients’ perception.
Although the basic CCN supports user mobility, the basic
software does not include any mobility support function as
the content exchange procedure is done within one machine
only. Therefore, we developed new functions for providing
mobility support that is implemented within the testbed archi-
tecture. These new functions locate a target server in advance,
send a request for the same content to the target server, make
a quick connection with the target server shortly before the
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Algorithm 7 Algorithm for Caching a New Content Using
Function CACHE_CONTENTS ()

INPUT: CPR, PopularityThreshold

OUTPUT: Decision on whether to cache or not a new content C at a

server-N

1. CALCULATE CPR of each content at the server-N

2. USE download_counter, file_type (video | audio | text),

age_of_content

3. SET cpr: = CPRC
4. CALCULATE PopularityThreshold of the server-N

5. AVERAGE CPR value of all the available contents at

the server-N

6. SET pt: = PopularityThresholdN
7. IF cpr ≥ pt

8. CACHE the content C at the server-N

9. ELSE IF cpr < pt

10. DISCARD the content C

11. END IF

Algorithm 8 Algorithm for Removing an Existing Content
Using Function REMOVE_CONTENTS ()
INPUT: CPR of all the contents at the server-N

OUTPUT: Selection of a content Z for removal from the server-N

1. FOR all the contents at the server-N

2. CALCULATE CPR of each content

3. END FOR

4. SORT all the contents at the server-N

5. in terms of their CPR

6. WHILE (lack of space)

7. REMOVE a content Z

8. having the lowest CPR

9. ENDWHILE

handover, and help the client machines continue receiving the
requested content seamlessly. All the ICN nodes are initially
provided with information about the name resolution server,
and the information about the content servers can be obtained
from the name resolution database.

The functions developed for providing seamless mobil-
ity support begin to execute after the client starts to
receive the requested content from the server. At first,
MOBILITY_SUPPORT () function determines whether it is
necessary to execute the rest of the functions or not. Because
if the client device is a fixed desktop computer or even if
the device is a wireless one but not in motion, it is not
worth keeping running this function as there is no possibility
of a handover. Additionally, when the client device moves
away at a vehicular speed and a significant portion of the
requested content is yet to be received, a new target server
may be needed to be located at that time. Therefore, this
function is not triggered if the clients are fixed machines
or wireless machines that are not moving, and the content
is almost downloaded. Procedures followed by this function
are shown in Algorithm 9. On the contrary, if a handover

is necessary, the TARGET_SERVER () function described
in Algorithm 10 looks for a proper target server that can
seamlessly provide the requested content by creating a quick
connection with the client machine. As the client moves on,
if this function can locate only one target server, it directly
goes to the function HANDOVER (new_server) that executes
a seamless handover after the handover decision is triggered,
which is expressed byH . However, if multiple potential target
servers are found, it executes several more steps in order to
select a target server.

The procedures followed by the TARGET_SERVER ()
function are a reformed version of the procedures presented
in one of our previous works [25]. It is modified to fit with
the context of the experiments carried out using the testbed
architecture. This function collects the necessary information
such as locations of the current server and nearby potential
target servers, the location, speed, and direction of movement
of the client machine. The potential target servers are those
machines that already have the content requested by the
client in their CS. As mentioned before, the routing function
UPDATE_CONTENTS_LIST () allows the server machines
to share the lists of available contents, so it is possible to
identify which server machines can act as the potential tar-
get servers. Additionally, since the current content server
can inform the target server of the current content being
served, the client device can continue receiving the previously
requested content without interruption. It is preferable if the
potential target server is in a similar direction as the direction
in which the client is moving. The position information of
the content servers, which was uploaded using the func-
tion MAP_NAMES (name), can be obtained from the name
resolution database, and the client device can also get the
location of itself. These locations are used by the function
TARGET_SERVER () explained in Algorithm 10. Assuming
that the locations of the client, the connected server, and
the potential target server are, (XC , YC ), (XS , YS ), and (XT ,
YT ), respectively. The distance between the client and the
currently connected server and the distance between the client
and a potential target server are calculated according to (1)
and (2), respectively, expressed by DS and DT . The handover
decision is triggered if the value ofH becomes bigger than 0.5
in (3).

DS =
√
(XC − XS)2 + (YC − YS)2 (1)

DT =
√
(XC − XT )2 + (YC − YT )2 (2)

H =
(DS − DT )

DS
(3)

The current server sends out IPERF messages to the
potential target servers to find the performance of the net-
work by measuring the throughput and assigns a value for
the server_priority variable to each of the potential target
servers. The motive behind this is to prioritize a target server
with the highest throughput at the time of handover. The
server_priority variable is expressed by p, and its value is
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taken from (4).

p =


0.9, if through put is high
0.5, if through put is average
0.1, if through put is low

(4)

Finally, one target server is selected among the available
potential target servers that achieves the highest value of the
server_preference variable, S from (5).

S = δ ∗ H +8 ∗ p (5)

where, δ = 0.8 and8 = 0.2, and they are tunable parameters.
The target server is selected such that it has the shortest
distance from the client and the highest throughput among
the other potential target servers. As soon as a target server is
picked, the HANDOVER (new_server) function is invoked,
and the steps followed by this function are described in
Algorithm 11. This function sends a new request to that target
server to prepare the desired content of the client in advance
for delivering it. After that, when the handover is triggered,
the client is disconnected from the currently connected server
after quickly connecting with the target server. The target
server begins to deliver the requested content spontaneously,
and as a result, the client keeps on receiving the requested
content seamlessly. The Algorithms 9-11 followed by the
developed functions for the mobility support purpose are
shown using the pseudo code below.

Algorithm 9 Algorithm for Determining Whether Han-
dover Is Necessary or Not Using Function MOBILITY_
SUPPORT ()

INPUT: Clients’ information (device_type, speed, download_status)

1. IDENTIFY device_type (wired or wireless)

2. IF device_type = wired

3. BREAK

4. ELSE IF device_type = wireless

5. GET speed (vehicular | non-vehicular)

6. IF speed = non-vehicular

7. BREAK

8. ELSE IF speed = vehicular

9. CHECK download_status (over 70% | at or

below 70%)

10. IF download_status = over 70%

11. BREAK

12. ELSE IF download_status = at or below 70%

13. CALL TARGET_SERVER ()

14. END IF

15. END IF

16. END IF

H. DEVELOPED FUNCTION TO AUTO-PLAY
Another new feature was implemented within the testbed
architecture that gives the client machines the capability to
auto-play the retrieved contents automatically after receiv-
ing the requested contents completely. A new function was
developed for this purpose. The content delivery times are

Algorithm 10 Algorithm for Selecting the Target Server for
the Handover Using Function TARGET_SERVER ()

INPUT: Clients’ information (location, requested_content)

INPUT: Servers’ information (target_servers (using info from function

UPDATE_CONTENTS_LIST () - requested content by the client is avail-

able), locations (from the name resolution database))

1. GET location, requested content name

2. GET number_of_target_servers and the locations of

current_server and potential target_servers

3. IF number_of_target_servers = 1

4. CALL HANDOVER (target_server)

5. ELSE IF number_of_target_servers > 1

6. CALCULATE distances (DS , DT )

7. DS = distance between client and current

server (using (1))

8. DT = distance between client and potential

target servers (using (2))

9. DECIDE handover_trigger decision

10. CALCULATE H (using (3))

11. ASSIGN values to the server_priority variable

12. SEND IPERF messages

13. SET p = (0.9 | 0.5 | 0.1) (using (4))

14. FOR each target server having H > 0.5

15. CALCULATE server_preference variable, S

(using (5))

16. END FOR

17. SORT target servers in terms of S

18. SELECT the server with the highest value of S as the

target_server

19. CALL HANDOVER (target_server)

20. END IF

Algorithm 11 Algorithm for Executing the Handover Using
Function HANDOVER (New_Server)

1. SET target_server: = new_server

2. RESEND request for requested_content to target_server

3. CONNECT with the target_server

4. START receiving the requested_content

5. DISCONNECT from the current_server

already measured, and this function is not a part of the graph-
ical results. However, we deduce that the content auto-play
function can be highly convenient for the clients who have
requested a content, whether it is an urgent situation or
even just for entertainment. This function enables the client
machines to distinguish various file extension categories,
including text, audio, and video, from the miscellaneous
retrieved contents. Then, it helps the client machines to select
the appropriate software for running the retrieved content.
Therefore, the client machines can automatically open a
text file and auto-play an audio or video file right after
downloading the expected content from the server machines.
Fig. 4 illustrates that a client machine is auto-playing a video
content right after retrieving it from the server without any
manual intervention from the user. The developed function
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FIGURE 4. Auto-play of a video content by a client machine.

called AUTO_PLAY () for auto-playing a retrieved content
is shown in Algorithm 12 using the pseudo code below.

Algorithm 12 Algorithm for Auto-Playing a Retrieved Con-
tent Using Function AUTO_PLAY ()
1. IDENTIFY the retrieved content type

2. text | audio | video

3. FIND software to run the content

4. AUTO-PLAY the retrieved content

IV. PERFORMANCE ANALYSIS
This section presents the testbed configurations, explains
the topology setup procedure, illuminates the experimental
scenario, and demonstrates that in terms of content delivery
time. The proposed testbed-based architecture outperforms
the current Internet architecture and the basic CCN-based
environment by utilizing the developed functions.

A. TESTBED CONFIGURATIONS, TOPOLOGY SETUP,
AND THE EXPERIMENT
The primary purpose of developing the testbed architecture
is to provide a framework where content request and retrieval
experiments can be performed in a real ICN-based environ-
ment. Therefore, we built a network topology that resembles
the real world as closely as possible. Although the developed
testbed architecture can be used in a multitude of scenarios,
in this paper, we analyzed the performance of the ICN-based
testbed architecture assisted by the developed functions in
terms of content delivery time, as it is a primary and the most
crucial performance indicator from the user perspective.

The testbed architecture consists of five server machines
that are regular desktop computers. Among them, three are
considered remote servers, and two of them acted as cloud
servers. These five machines were placed in different geo-
graphical locations at a distance so that they fall under two
different cellular base stations. The base stations are needed
for the handover of themoving client devices. Otherwise, they
do not have any impact on the testbed operations. We used
10 different client devices that include desktop computers
and laptops. All these devices had access to the Internet via
Ethernet, Wi-Fi, or 4G cellular connection. Additionally, all
these devices were equipped with the basic software and
the developed functions as well. The basic software runs
best on the OS platform Ubuntu 14. Therefore, the operating
system of all the machines of the testbed architecture was
Ubuntu 14. Various random contents were used that are of

TABLE 1. The testbed configurations.

different types and sizes as well. We used 50 text files that
ranged from 100 Kilo-bytes (KB) to 4000 KB, 20 audio files
that ranged from 1 Megabyte (MB) to 15 MB, and 15 video
files that ranged from 1 MB to 200 MB. The cache size of
the repository was fixed initially for each of the servers, but
that size varied throughout the experiment in order to eval-
uate the performance of the caching function using various
cache sizes. The cache size of the repository started from
10 MB, and the maximum size was 250 MB. The testbed
configurations are summarized in Table 1. Although we used
five server machines only, the testbed architecture is entirely
scalable, and it is possible to add more server machines and
client machines if available. The testbed architecture can be
configured in different topologies easily, and it can also be
extended by adding more machines. Additionally, the testbed
architecture can be developed using different hardware than
what we used.

The contents were stored randomly within the two cloud
servers at the beginning of the experiment. Each client
device was randomly attached to a server machine and can
request 100 times for random contents. Besides containing
the names of the available contents, the generated names of
the requested contents also included names of contents that
are not available, misspelled names, and names spelled with
different capitalizations. Therefore, requests for the unavail-
able contents were unsuccessful, requests for the mismatched
names of the contents needed the help of the naming function,
and some of the content requests needed to be forwarded
by the routing function, as they were not readily available
in the connected server. For those requests which needed
the contents to be fetched from other servers, the caching
function was executed and decided whether to cache the
retrieved contents or not. We took the client devices in a car
and requested various contents while the car wasmoving. The
client devices used the cellular network in order to connect
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with the Internet while they were on the move. As a result,
the physical locations of the content servers and the client
devices are utilized only in the mobility support function
when a target server was searched and selected. Hence the
mobility support function was needed, and it helped maintain
a seamless connection with the server machines. After a
content request is successfully completed, the auto-play func-
tion auto-played the downloaded contents. The servers and
clients are dispersed, and therefore it is quite challenging to
capture and draw the whole picture and topology. Therefore,
we illustrated a testbed topology in Fig. 5 to better inform the
possible scenarios of utilizing the testbed architecture. The
testbed servers are in the fixed locations; however, the client
devices can move.

FIGURE 5. A Depiction of the testbed architecture.

The content delivery time is measured when a client
sends a content request and receives that content completely.
However, if the requested content is not available and the
client does not receive the content, it is considered a failed
attempt, and the delivery time for this attempt is not stored
in the result output file. The available contents are of various
types and sizes. The content request and retrieval process con-
tinued until each client requested various contents 100 times,
making it one complete experiment, and the performance
evaluation graphs are given based on the average result of
the whole process. However, we separated the performance
results into two different graphs as the ranges of both the
axes were very high. Additionally, we intended to make the
performance trend in terms of content delivery time clearer
using the two different graphs. In the 1st graph, we plotted
the delivery times of the contents: all text files and audio
and video files below 7 MB. In the 2nd graph, we plotted the
delivery times of the audio and video files only and no text
files. All the content delivery times were initially measured
in milliseconds (ms). However, in the 2nd graph, the unit is
shown in seconds (s) as most of the delivery times were over
1000 ms. The performance in terms of the content delivery
time of the proposed testbed architecture assisted by the
developed functions was compared against the performance
of the current Internet and the basic CCN. Although the con-
tent delivery times increased in all the network architectures
as the size of the contents increased, the proposed testbed
architecture outperformed the two other architectures in terms
of content delivery time, as shown by the following graphs.

B. EXPERIMENTAL RESULTS WITH MISCELLANEOUS
SMALLER CONTENTS
This section provides the results of content exchange exper-
iments where diverse types of contents were used. The con-
tents include all the 50 text files of size from 100 KB up to
4000 KB and some audio and video files under 7 MB in size.
As the units of the contents are different, we normalized the
unit by converting them into MB. Fig. 6 summarizes the 1st

part of the outcome of the experiments.

FIGURE 6. Experimental results with small-sized miscellaneous types of
contents.

Initially, the content delivery times were similar for all
the networks as it does not take much time to deliver a
short amount of data. However, as the content size increased,
the basic CCN environment required more time to deliver the
requested contents than the proposed testbed architecture, and
the current Internet environment took an even longer time.
To deliver a requested content of size 1.25 MB, the server
machines from the testbed architecture, basic CCN paradigm,
and current Internet environment required 320 ms, 365 ms,
and 400 ms on average, respectively. They needed as much
as 1050 ms, 1250 ms, and 1500 ms on average to deliver a
content of size 6.25 MB.

The purpose of Fig. 6 is to show the trend in performance in
terms of the content delivery time for all the three networks.
A longer time was required to deliver the requested contents
as the size of the contents increased. The main takeout is
that, even though the proposed testbed architecture also took a
longer time to deliver the requested contents when the size got
bigger, the required time is still much less than the other two
architectures. The experiment continued, and we collected
further data that shows the time required for delivering con-
tents of even bigger size than 6.25 MB. From the graph, the
trend is that the testbed-based architecture enhanced by the
developed functions will continue to outperform the two other
networks in terms of content delivery time.

C. EXPERIMENTAL RESULTS WITH LARGER-SIZED
AUDIO AND VIDEO CONTENTS
We present another graphical demonstration of content deliv-
ery time from the same continued experiment. We plotted
the delivery times for the contents, which were audio and
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FIGURE 7. Experimental results with larger sized audio and video
contents.

video only. This graph’s primary purpose is to show the
performance trend for the three architectures in terms of
content delivery times for larger-sized audio and video con-
tents. The size of the contents ranged from 1 MB up to
200 MB. Although the content delivery times were initially
measured in milliseconds, the unit shown in the graph is
seconds, as most of the delivery times were over 1000 ms.
Fig. 7 shows that the requested contents were delivered
faster when the server machines used the developed functions
within the testbed architecture than when the server machines
used the current Internet environment and the basic CCN
architecture.

Like the previous experimental results, servers from the
testbed architecture with the developed functions outper-
formed the servers from the basic CCN architecture and the
servers from the current Internet environment in terms of the
content delivery times. Figuratively speaking, on average,
respectively 3 s, 5 s, and 6 s were needed to deliver the
contents of 50 MB size. As soon as the requested contents
grew to 200 MB, they took 15 s, 20 s, and 25 s to complete
the delivery process of the requested content.

This graph also shows the performance trend in terms of
the delivery time needed for the requested contents in all
the three architectures. It indicates that the testbed-based
architecture enhanced by the developed functions delivers the
requested contents faster than the basic CCN and the cur-
rent Internet. Furthermore, the client machines automatically
played all the received audio and video contents in the testbed
architecture right after retrieving those contents. Therefore,
a few more seconds can be saved to complete watching the
requested contents in real life.

V. CONCLUDING REMARKS
This paper has introduced a novel ICN-based testbed archi-
tecture and presented several functions added to the testbed
in order to improve the performance of the basic CCN net-
work in terms of content delivery time. The rationale behind
choosing a testbed-based approach is to provide a framework
for evaluating the ICN-based networks, representing the real
world as closely as possible. The primary design objective of
this testbed architecture is to achieve various requirements,

such as fast, secure, seamless, efficient, and reliable content
delivery and retrieval for multimedia applications. To accom-
plish that, several functions were implemented within the
testbed architecture. We modified the existing naming, rout-
ing, and caching functions and provided new functions
such as mobility support and auto-play capability. We have
described the testbed development procedure and the opera-
tions of the functions in detail. We believe that this testbed
architecture will provide the base for many future researches
in similar areas. We have presented the testbed configura-
tion, explained the topology setup procedure and the experi-
mental scenario, and provided the performance results. The
illustrated results prove that the testbed-based architecture
outperforms the basic CCN and the traditional Internet in
terms of the content delivery time/response time for various
sizes and different types of contents. Additionally, the testbed
architecture can be extended, and various other performance
metrics can be evaluated. As future work, we will continue to
work on updating the testbed architecture and developing the
functions.
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