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ABSTRACT Prostate cancer is the commonly diagnosed cancer worldwide, and there were 1,276 thousand
new prostate cancer cases and 359 thousand deaths in 2018. Prostate-specific antigen (PSA) blood level
is often elevated in men with prostate cancer, so PSA testing can detect prostate tumours when they are
small, low-grade, and localized. The PSA testing is hard to apply on the less developed and poor areas
without sufficient medical funds, so the early accurate PSA level prediction by statistical machine learning
models is significant to avoid later stages of prostate cancer that spread outside the Prostate. In this literature,
we compare three linear model selection and regularization methods (shrinkage, subset selection, dimension
reduction) and nine candidate models (OLS regression, Ridge regression, Lasso regression, Elastic net,
best subset selection, forward subset selection, backward subset selection, PCR, PLS) based on leave-one-
out-cross-validation (LOOCV) prediction error. As the selection criteria leave-one-out cross-validation is
sensitive to outliers, Mahalanobis distance is used for outlier detection and deletion before running each
model. The shrinkage method (only lasso and elastic net models) and subset selection method (based on
adjusted R2, BIC, Cp, and cross-validation prediction error) can select the variables out. The feature selection
results show that prostate weight, cancer volume, amount of benign prostatic hyperplasia, and whether
seminal vesicle invasion is necessary variables must include predicting PSA. Age and capsular penetration
are the least important variables. The variables of Gleason score, a percent of Gleason scores 4 or 5 are
essential sometimes. All the diagnostic figures and results are coded by R, open access, and published on
IEEE Xplore Code Ocean.

INDEX TERMS Machine learning, linear model selection and regularization, prostate-specific antigen
prediction, prostate cancer screening, R programming.

I. INTRODUCTION
An adenocarcinoma is a type of cancer that arises in the
cells of glands. Most prostate gland cells are of the glandular
type, so adenocarcinoma is the most common cancer type in
the prostate [1]. Prostate cancer is a commonly diagnosed
cancer worldwide and crucial challenges in developed and
developing countries [2]. Statistical results show that there
were 1,276 thousand new prostate cancer cases and 359 thou-
sand deaths in 2018 [3]. However, the prognosis for prostate
cancer is relatively good if it is detected early. Prostate-
specific antigen (PSA) is a protein that is produced in the
glandular epithelium of the prostate. It is secreted into the
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prostatic acini lumen and has an important physiological role
in prostatic fluid [4]. As The blood level of Prostate-specific
antigen is often elevated in men with prostate cancer [5],
PSA has profoundly affected the diagnosis and treatment of
prostate cancer, and prostate tumours can be detected by PSA
testing when they are small, low-grade, and localized [6].
Some doctors and professional organizations suggested that a
man has to take PSA examinations every year from age 50 [7],
but most medical testing, including PSA testing, is hard
to apply on the less developed and poor areas without
sufficient medical funds [8], so the early accurate PSA
prediction by statistical learning models is meaningful to
avoid later stages of prostate cancer that spread outside the
prostate. In recent years, plenty of machine learning classifi-
cation models have been proposed and published for Prostate
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TABLE 1. Description and statistics summary of all nine attributes for PSA prostate cancer dataset.

cancer monitoring as well as detection, such as decision
tree (DT) [9], Logistic Regression (LG) [10], and Random
Forest [11]. Besides, some literature has been proposed
computer-vision models to predict and detect Prostate cancer,
such as Fully Convolutional Neutral Network (FCNN) [12],
Near-infrared (NIRF) [13], and Artificial Neural Networks
System (ANNS) [14]. However, few papers predict Prostate-
specific antigen for Patients with Adenocarcinoma of the
Prostate.

We compare three linear model selection and regulariza-
tion methods (subset selection, dimension reduction, and
shrinkage) and eight models (forward selection, backward
selection, exhaustive selection, PLS, PCR, ridge, lasso, and
elastic net) to find their optimal tuning parameters and leave-
one-out cross-validation prediction error from the pre-process
prostate cancer dataset. Besides, lasso, elastic net, and subset
selection did variable selection to choose the necessary three
predictors and not important predictors for PSA prediction.
All the diagnostic figures and results are coded by R, open
access, and IEEE Xplore Code Ocean. The framework of the
remaining paper is as follows: Section II describes the dataset
and proposed methodology. Finally, the experimental results
are reported with the interpretation and concluded with a
discussion in section III.

II. DATA AND METHODS
This section focuses on the data and methodology used for
the literature. Subsections II-A, II-B, and II-C respectively
explain the dataset, background of a PSA test and proposed
framework.

A. DATA DESCRIPTION
The linear Machine Learning models were trained and tested
on a pubic source prostate-specific antigen dataset [15] of
97 male patients before radical prostatectomy. The surgical
operation that removes the entire prostate gland along with
some surrounding tissue.

Table 1 shows the descriptions and brief statistical sum-
mary of the attributes, where the set of svi and gleason are
discrete numerical variables only with two and four values.
The Gleason grading system divides the two largest tumour
areas in a tissue sample into (1-5) levels, where 1 is the least

aggressive and 5 is the most aggressive, then add these two
levels together to get a Gleason score. The BPH and capsular
penetration variables originally contained zeros, and a small
number was substituted before the log transform was taken.
The original paper did not declare why the log transform was
taken though PSA varies over a wide range, probably aiming
for the variable’s linearity. Besides, it is also not clear why
the variable pgg45 was constructed.

Fig. 1 shows the bar plots for gleason and svi and density-
histogram plots for other variables. Fig. 2 shows the density
correlation plots and Pearson correlation, calculated as (1),
for the other six variables.

r =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)
2
√∑

i (yi − ȳ)
2

(1)

The left-bottom correlation plot between a log of cancer
volume and a prostate-specific antigen log shows a high pos-
itive Pearson correlation of 0.734. Besides, a log of prostate
weight, a capsular penetration log, and percent of Gleason
scores 4 or 5 are also positively correlated with a log of
prostate-specific antigen with Pearson correlation equal to
0.433, 0.549, and 0.422. Fig. 3 shows the box plots of vari-
ables of svi and gleason with outliers. The outliers are data
points x that do not fall within the distances as (2).

x /∈ [Q1 − 1.5× IQR,Q3 + 1.5× IQR] (2)

B. PSA TESTING
Prostate-specific antigen is a protein generated by normal and
malignant prostate cells. In the PSA test, the laboratory analy-
sis blood samples usually reported nanograms of PSA per mL
of blood. In the past, most doctors thought that PSA levels
of 4.0 ng/mL or lower were normal [16]. However, recent
studies have shown that some men with PSA levels below
4.0 ng/mL have prostate cancer, while many men with higher
PSA levels do not have prostate cancer [17]. For instance,
if a person has prostatitis or a urinary tract infection, his PSA
level will usually rise. In contrast, some drugs used to treat
benign prostatic hyperplasia can reduce men’s PSA levels,
such as finasteride and dutasteride [18]. However, generally
speaking, the higher a person’s PSA level, the more likely he
is to develop prostate cancer.
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FIGURE 1. The population distribution of all attributes in the PSA prostate cancer dataset.

C. PROPOSED FRAMEWORK
In this literature, the proposed framework has been illustrated
in Fig. 4. Transfer numerical variables to Factor variables,
data standardization, and outlier detection are applied in data
pre-processing. There are ten candidate models (OLS regres-
sion, Ridge regression, Lasso regression, Elastic net, best
subset selection, forward subset selection, backward subset
selection, PCR, and PLS) using to find the lowest LOOCV
prediction error. Subset selection methods using adjusted R2,
BIC, and Cp to eliminate unnecessary variables do not follow
this framework.

1) FACTOR VARIABLES AND DATA STANDARDIZATION
In Fig. 3, the box plots show prostate-specific antigen levels
are significantly different for patients whether seminal vesicle
invasion (p-value< 0.001) and a Gleason score greater than 6
(p-value < 0.001). Therefore, the Gleason score is classified
by the cut-off level of a Gleason score greater than 6. These
two variables are treated as factor variables. Standardization
is the concept and step of scaling and transforming to equal
each feature’s equal contribution. As formulation (3), Z-score
normalization is one of the standardization techniques for
achieving standard normal distribution with zero mean and
unit variance.

S (x) =
x − x̄
σ

(3)

The variables of lcavol, lweight, age, lbph, lcp, and
pgg45 are treated as numerical variables and did the Z-score
normalization.

2) MAHALANOBIS DISTANCE TO DETECT OUTLIER
Mahalanobis distance [19], introduced by
Prof. P. C Mahalanobis in 1936, is a reasonable multivariate
distance metric that measures the distance between a point
and a distribution. Mahalanobis distance calculates the dis-
tance between two points by considering a covariance factor
that is a difference between that and Euclidean distance.
The Mahalanobis distance between two points p1 and p2 is
presented as (4), where S is the covariance of multivariate
data X .

D2
=
(
xp1 − xp2

)T S−1 (xp1 − xp2) (4)

The Mahalanobis distance is an effective way to find out-
liers for multivariate data [20]. The idea is to calculate the
Mahalanobis distance between each point and centre that can
be chosen as a mean value of multivariate data as (5). where

xi =
[
xi,1, xi,2, . . . , xi,p

]′
, x̄ =

[
x̄1, x̄2, . . . , x̄p

]′
.

D2
i = (xi − x̄)

T
· S−1 · (xi − x̄) (5)

When n is relatively large and X is a k-dimensional
Gaussian random vector with mean vector µ and rank k
covariance matrix C,D2

i follows χ
2
k , proved in [21]. Based on
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FIGURE 2. The density correlation plots and pearson correlation for numerical variables of lcavol, lweight, age, lbph, pgg45, lcp, and lpsa.

FIGURE 3. The box plots of variables of svi, gleason, and capsular
penetration.

a chosen critical p-value αwith its critical value, it is
1 − α confident that the i-th observation is an outlier if
D2
i ≥ χ

2
k (1− α).

3) OLS REGRESSION
The loss function of ordinary least squares regression is find-
ing the plane that minimizes the sum of squared errors (SSE)
between the observed and predicted response (6).

minimize

{
SSE =

n∑
i=1

(
yi − ŷi

)2} (6)

The OLS performance depends on the key assumptions of
OLS regression:
• No or little multicollinearity
• There are more observations (n) than features (p)
• Homoscedastic (constant variance in residuals)
• No autocorrelation
• Multivariate normality
• Linear relationship
However, the number of features (p) is large for many real-

life data sets. The OLS assumptions are easy to be violated for
large p; there are three classical methods (shrinkage, dimen-
sion reduction, subset selection) to solve the large features.

4) SUBSET SELECTION METHOD
The first step of best subset selection is to fit a separate
least squares regression for each possible combination of
the p predictors, and then identifying the best subset of each
number of predictors from 1, . . . , p. The last step is to find
the optimal number of predictors among the best subset using
adjustedR2, BIC,Cp, or cross-validation prediction error. The
detail is shown in Algorithm 1.

As Algorithm 2, stepwise forward selection starts with an
empty set of attributes as the minimal set. The most relevant
attribute is chosen (having minimum p-value or maximum
SSR) and added to the minimal set. As Algorithm 3, stepwise
backward elimination is initial with all the attributes; in each
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FIGURE 4. The proposed block diagram of PSA prediction by LOOCV prediction error.

iteration, one attribute is eliminated from the set of attributes
whose p-value is highest or SSR is lowest.

Best subset selection and stepwise selection, each of which
contains a subset of the p-predictors, are used to create a
set of models. Adjusted R2, BIC, Cp, and cross-validation
prediction error are ways to determine which of these models
is best. Choosing minimum test error estimation using the
validation set or cross-validation is a direct method. Adjusted
R2, BIC, and Cp indirectly estimate test error methods by
adjusting to the training error to avoid overfitting. For a fitted
least-squares model containing d predictors, the Cp [22],
invented by C.L. Mallows, estimates test MSE (7).

Cp =
1
n
(RSS + 2d σ̂ 2) (7)

The penalty of 2d σ̂ 2 increases as the number of predictors
d in the model increases, where σ̂ 2 estimates the variance
of the error ε using the full model containing all predictors.
The technique compares the full model with a smaller model
with ‘‘d’’ parameters and determines how much error is left
unexplained by the partial model. Various suggestions have
been made about exactly how the statistic should be inter-
preted, but the general consensus is that smaller Cp values
are better as they indicate smaller amounts of unexplained
error. BIC [23] is derived from a Bayesian perspective, but
the resulting formula, as (8), is similar to Cp, where n is a
number of observations.

BIC =
1
nσ̂ 2 (RSS + log (n) d σ̂ 2) (8)

The R2 is defined as 1 − RSS/TSS, whee TSS =∑
(yi − ȳ)2. The R2 increases whenmore variables are added

because RSS always decreases as more variables including in
the model. Adjusted R2 [24] statistic (9), adds penalty on R2

when increasing number of variables.

Adjusted R2 = 1−
RSS/(n− d − 1)
TSS/(n− 1)

(9)

5) SHRINKAGE (REGULARIZATION) METHOD
Regularized regression methods’ loss function is very sim-
ilar to OLS regression; however, a penalty parameter (P) is

FIGURE 5. Mahalanobis distance method to identify outliers.

added (10).

minimize {SSE + P} (10)

Regularized regression puts constraints on the magnitude
of the coefficients and will progressively shrink the coeffi-
cients towards zero. This constraint reduces the magnitude
and fluctuations of the coefficients and will reduce the vari-
ance of our model.

Ridge regression [25] constraints the coefficients by
adding λ

∑p
j=1 β

2
j to the loss function (11).

minimize

SSE + λ
p∑
j=1

β2j

 (11)

The penalty parameter is called L2 because it means a
second-order penalty is used on the coefficients. Tuning
parameter λ controls the penalty parameter that can take on a
wide range of values.

The full name of the Lasso model [26] is called as
least absolute shrinkage and selection operator. L1 penalty
λ
∑p

j=1 |βj| in the loss function is used as (12).

minimize

SSE + λ
p∑
j=1

|βj|

 (12)
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Rather than ridge regression pushing variables to approx-
imately but not equal to zero, the lasso penalty will actually
shrinkage coefficients to zero, so the lassomodel can improve
themodel with regularization and conduct automated variable
selection.

The elastic net [27], which combines the L1 and L2 penal-
ties, is a generalized ridge and lasso model (13).

minimize

SSE + λ1
p∑
j=1

|βj| + λ2

p∑
j=1

β2j

 (13)

The elastic net model is proposed for effective regular-
ization via the ridge penalty and the lasso penalty’s feature
selection characteristics.

6) DIMENSION REDUCTION METHOD
Both subset selection and shrinkage methods are defined
using the original predictors X1, . . . ,Xp. The dimension
reduction method [28] transforms the predictors and then
fit a least-squares model using the transformed variables.
Let Z1, . . . ,Zm represent linear combinations of the original
p predictors, where M < p,Zm =

∑p
j=1 φjmXj for some con-

stants φ1m, . . . , φpm(m = 1, . . . ,M ). Therefore, the linear
regression model is fitted using the least-squares as (14) for
i = 1, . . . , n.

yi = θ0 +
M∑
m=1

θmzim + εi (14)

Principal component analysis [29] is a popular unsuper-
vised learning method for deriving a low-dimensional set of
features from a large set of variables. The principal com-
ponent regression (PCR) [30] involves constructing the first
M principle components Z1, . . .ZM using PCA to reduce
dimension from p to M, and then using these M components
as the predictors in a linear regression model to fit optimal
least square.

Partial least square regression (PLSR) [31] is a dimension
reduction method like PCR. However, PLSR identifies the
new features Z1, . . . ,ZM in a supervised way. It uses response
Y to identify new features that approximate the old features
well and related to the response. In PLSR computing the
first direction Z1 =

∑p
j=1 φj1Xj, PLSR places the highest

weight on the variables that are most strongly related to the
response. The residuals from regressing each variable on Z1
are the remaining information that has not been explained
by the first PLSR direction. And then, Z2 was computed
using the orthogonalized data in the same fashion of Z1 based
on the original data. Z1, . . . ,ZM can be computed after M
times repeating. The last step is to use optimal least squares
to fit a linear model to predict Y using the new features
Z1, . . . ,ZM .

7) LEAVE-ONE-OUT CROSS VALIDATION
Leave-one-out cross-validation [32] is K-fold cross-
validation taken to its logical extreme, with K equal to N

FIGURE 6. LOOCV prediction error ± one standard error of elastic net α
from 0 to 1 by 0.01.

(the number of observations). It means that N separate times,
the function approximator is trained on all the data except for
one point, and a prediction is made for that point. Then the
average error is computed and used to evaluate the model.
The evaluation given by leave-one-out cross-validation error
is great for a small sample dataset. Still, it is not friendly for
a large sample dataset because it seems very expensive to
compute.

III. RESULTS AND DISCUSSION
This section illustrated the results of Fig. 4. Mahalanobis dis-
tance result identifies outlier. The results of three linear model
selection and regularizationmethods are detail explainedwith
plots. In the end, we compare ten candidate models (OLS
regression, Ridge regression, Lasso regression, Elastic net,
best subset selection, forward subset selection, backward
subset selection, PCR, PLS) and choose the best one based
on leave-one-out-cross-validation (LOOCV) prediction
error.

A. OUTLIER DETECTION BY MAHALANOBIS
DISTANCE RESULT
For all 97 observations, the Mahalanobis distance D2

i , i from
1 to 97, can be calculated as (5) by inputting mean x̄ and
covariance matrix S. As the S is rank 9 covariance matrix,
D2
i follows χ

2
df=9. Set critical p-value αequals to 0.05 such as

χ2
df=9 (1− α) ≈ 16.919, the outlier regions are [16.919,∞).

Fig. 5 shows all the 97 observations’ Mahalanobis distance
on x-lab. The outlier region is filled in light red on the right
tail area. The D2

94, D
2
57,D

2
47, and D

2
69 Mahalanobis distance

are greater than 16.989, so it is 95% confident that the obser-
vations (index: 94, 57, 47, 69) are outliers.

B. SHRINKAGE (REGULARIZATION) METHOD RESULT
Fig. 7 shows ridge, lasso, and elastic net with α equals
0.47 coefficient paths and their leave one out cross-validation
mean squared error across the λ values. From the coeffi-
cient path plots, the penalty parameters are controlled by the
tuning parameter λ. The coefficients equal OLS regression
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FIGURE 7. Coefficients path and grid LOOCV prediction error plot of lasso, ridge, and elastic net where α = 0.47.

coefficients when λ = 0 for the coefficient paths plots
because there is no effect and the objective functions equals
the normal OLS regression objective function of simply min-
imizing SSE. As λ → ∞, the penalty parameter becomes
large and force coefficients of lasso and elastic net to exact
zero but coefficients of the ridge to approximately but not
equal to zero. The coefficients path plots illustrate the detail
of how the largest λ values have pushed these coefficients to
nearly 0.

In LOOCV MSE plots across the λ values for ridge and
lasso, the plots show the MSE rise considerably when λ cross
over the second vertical dashed lines for ridge and lasso.
At the top of each LOOCV MSE plot, the numbers represent
the number of variables in the model. As ridge regression
does not force any variables to exact zero, all variables will
remain in the model, and the top numbers are 8 across all the
λ values. The upper and lower bar around the MSE results for
each λ denote theMSE plus/minus its standard error. The first
and second vertical dashed lines refer to the λ value with the
minimum MSE and largest λvalue within one standard error
minimum MSE. Adding one standard error to the minimum
MSE value can get a more regularized model, a largest λvalue

TABLE 2. LOOCV prediction error for lasso, ridge, and elastic net where
α = 0.47.

within one standard error minimum MSE is used to evaluate
model performance.

The elastic net penalty has two tuning parameters: λ for
the complexity and α for the compromise between LASSO
and ridge. Fig. 6 is LOOCV prediction error ± one standard
error of Elastic net α from 0 to 1 by 0.01. To find the best
tuning parameter α, a tuning grid that searches across a range
from 0 to 1 by 0.01 is created. Then, iterate over each α value
and extract the minimum and one standard error MSE values
and their respective λ. The blue label point shows that the
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FIGURE 8. Standardized coefficients path and LOOCV and adjusted LOOCV prediction error for different components using PLS and PCR methods.

FIGURE 9. LOOCV prediction error with a different number of predictors for exhaustive, forward, and backward selection.

largest λvalue within one standard error minimum MSE for
all α from 0 to 1 by 0.01 has minimum MSE when α equals
to 0.47.

Table 2 shows the detail of λ values with the mini-
mum MSE and largest λ value within one standard error

of the minimum MSE, LOOCV-MSE, standard error, and
some variables shrinkage toward zero. Elastic net with α
equals 0.47 > Lasso > Ridge based on minimum 1se PMSE
compare. Besides, Lasso and Elastic net with α equals
0.47 models eliminated lcp and age variables.
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FIGURE 10. Exhaustive subset selection plots for methods of R2 adjusted R2, BIC, and Cp.

TABLE 3. Exhaustive subset selection result for 94 data points excluded
four outliers.

C. DIMENSION REDUCTION METHOD RESULT
Fig. 8 shows standardized coefficient estimates for different
components and leave-one-out cross-validation MSE on pre-
process Prostate data set using PCR and PLSR. The dimen-
sion reduction method (PCR and PLSR) can make feature
selection but cannot select the variables out; the coefficients
are toward zero but not equal to zero when the number of
components decreases to one.

To find the optimal tuning parameter M (number of
components), ordinary CV estimate, and adjusted CV
(bias-corrected CV estimate) are applied to find the minimum
MSE. From the figures, it shows there is virtually no differ-
ence for LOOCV and adjusted LOOCV. The blue dots are
the location of the minimum LOOCV MSE for PLSR and
PCR models. Eight components minimize LOOCV MSE for
PCR and PLSR methods to predict log of prostate-specific
antigen. LOOCVMSE of PCRmodel with eight components
(0.4859) is larger than that of seven components (0.5155)
and six components (0.5094), and the second lowest LOOCV
MSE is PCRmodel with five components (0.50197). LOOCV
MSE of PLSR model with eight components (0.4859) is
almost equal to that of seven (0.4860), six (0.4897), five
(0.4904), four (0.4914), and three (0.4940). As mentioned
in the dimension reduction methods introduction, the main
practical difference between PCR and PLSR is that PCR
often needs more components than PLSR to achieve the same
prediction error. In this literature, LOOCV MSE of PLSR
model with two variables (0.5061) is smaller than LOOCV
MSE of PCR model with the variables that is less than eight.

TABLE 4. Forward subset selection result for 94 data points excluded
four outliers.

TABLE 5. Backward subset selection result for 94 data points excluded
four outliers.

Therefore, an optimal tuning parameter for PCR linear is
eight-components that did not reduce the dimension. It is the
same as OLS regression, but the independent variables did
orthogonal transformation. It is hard to determine an optimal
tuning parameter (number of components) for PLSR model.
PLSR model with eight-components has minimum LOOCV
MSE. However, choosing seven, six, or five components are
reasonable as well.

D. SUBSET SELECTION METHOD RESULT
Use all 94 excluded 4 outlier data to build the regression
subset model; the selected subsets are not the same for
exhaustive, backward, and forward subset selection methods
shown in Table 3, 4, and 5, but the selected four variables
are the same in these three subset selection methods. They
contain lcavol, lweight, svi, and lbph variables.
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FIGURE 11. Forward subset selection plots for methods of R2, adjusted R2, BIC, and Cp.

FIGURE 12. Backward subset selection plots for methods of R2, adjusted R2, BIC, and Cp.

TABLE 6. Excluded variables result for 8 variable selection methods.

Fig. 9 shows the LOOCV MSE for different predic-
tors among the exhaustive, forward, and backward selected
subset. If the selected variables in Table 3, 4, and 5 are not
same, they will have different LOOCV MSE. The number
of predictors with the lowest LOOCV MSE (0.47656) is
equal to four among these three subset selectionmethods. The
selected variables are lcavol, lweight, svi, and lbph.

Fig. 10, 11, and 12 show the R2, adjusted R2, BIC, and Cp
statistics of regression subset model for a different number
of predictors among exhaustive, forward, and backward sub-
set selection methods.R2 statistic increases from 0.56 when
only one variable is included in the model to 0.70 when all
variables are included. As expected, the R2 statistic increases
monotonically as more variables are included, so R2 statistic

cannot evaluate the machine learning model’s performance.
The number of predictors in subsets is a tuning parameter.
The best selected model for these three selection methods
by BIC, Cp and adjusted R2 are the same. The best per-
former using BIC method is four variables including in the
linear regression model that are lcavol, lweight, lbph, and
svi. Adjusted R2 method suggests seven variables that only
exclude gleason variable. Cpmethod selects five variables out
that are lcavol,lweight, lbph, svi, and pgg45.

E. DISCUSSION
Table 6 shows eight feature selection results by directly or
indirectly calculating prediction error to eliminate variables
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FIGURE 13. Radar plot of variable selection results of by subset selection
methods (adjusted R2, Cp, BIC , LOOCV prediction error) and shrinkage
methods (elastic net, and lasso LOOCV prediction error).

based on the above experimental results, and Fig. 13 visual-
izes the variable selection results. The variables of lweight,
lcaval, lbph, and svi are included all the times, and the
variable of lcp and age are included only once by adjusted R2

method. Therefore, prostate weight, cancer volume, amount
of benign prostatic hyperplasia, and whether seminal vesicle
invasion are necessary variables for prostate-specific antigen
prediction. Age and capsular penetration are not important
variables.

IV. CONCLUSION
Although the sample size is small in this experimental study,
the data is collected precious and accurate. The Prostate
specimens were subjected to detailed histological and mor-
phometric analysis [15], and all 97 observations are effec-
tive without obvious outliers and extreme points. Besides,
leave-one-out cross-validation is only efficient using a small
sample size of data by standard computers, which can help
reviewers and readers with different versions and R-language
environments to reproduce the same figure and table
results.

The paper discusses some important considerations for
feature selection with a detailed R code. Besides, it proves
prostate weight, cancer volume, amount of benign prostatic
hyperplasia, and whether seminal vesicle invasion are nec-
essary variables that must include predicting PSA. Age and
capsular penetration are least important variables. The vari-
ables of Gleason score, a percent of Gleason scores 4 or 5 are
important sometimes. Lastly, the less developed and poor
areas are hard to apply PSA testing, so PSA prediction by
statistical models is meaningful for them to detect prostate
cancer early.

APPENDIX
ALGORITHMS FOR SUBSET SELECTION
A. EXHAUSTIVE

Algorithm 1 Best Subset Selection
1) Let M0 represents the null model, which contains no

predictors. The model predicts the sample mean for
each observation.

2) For k = 1, . . . , p

(a) For all
(
p
k

)
models that contain k predictors

(b) Pick the best among these
(
p
k

)
models as

Mk ,based on the smallest RSS or largest R2.
3) Select the best model among M0, . . . ,Mp by Adjusted

R2,Cp,BIC or cross-validation prediction error.

B. FORWARD

Algorithm 2 Forward Stepwise Selection
1) Let M0 represents the null model, which contains no

predictors.
2) For k = 0, . . . , p− 1:

(a) Consider all p − k models that augment the pre-
dictors inMk with one additional predictor.

(b) Choose the best among these p − k models and
call itMk+1.

3) Select the best model among M0, . . . ,Mp by Adjusted
R2,Cp,BIC or cross-validation prediction error.

C. BACKWARD

Algorithm 3 Backward Stepwise Selection
1) Let Mp represents the full model, which contains all p

predictors.
2) For k = p, p− 1, . . . , 1:

(a) Consider all k models that contain all but one of
the predictors inMk , for a total of k−1 predictors.

(b) Choose the best among these k models, and call
it Mk−1.

3) Select the best model among M0, . . . ,Mp by Adjusted
R2,Cp,BIC or cross-validation prediction error.
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