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ABSTRACT This paper addresses the flexible job shop scheduling problem with sequence-dependent set-up
times and job lag times (FJSP-SDST-LT), which characteristics are important in modern manufacturing
systems. We first present a mathematical model with the objective to minimize the makespan. Then a
hybrid algorithm (HGA-TS) which combines genetic algorithm (GA) and tabu search (TS) is proposed
to solve the FJSP-SDST-LT. The GA performs powerful global search by genetic operators and serves as
exploration, while based on the specific structure of SDST and LT, the TS is able to perform an effective local
search by relocating operations and serves as exploitation. Therefore, the proposed HGA-TS integrates good
searching ability with strong diversifying ability. In order to solve the FJSP-SDST-LT effectively, we adopt
effective encoding and decoding methods, genetic operators in GA, and four neighborhood structures in TS.
We conduct computational experiments on two classes of instances generated from two classic data sets and
the results show the great performance of HGA-TS in solving FJSP-SDST-LT.

INDEX TERMS Flexible job shop scheduling, genetic algorithm, hybrid algorithm, job lag times,
sequence-dependent setup times, tabu search.

I. INTRODUCTION
Production scheduling is one of the most critical optimiza-
tion issues in the planning and managing of the modern
manufacturing systems [1]. The flexible job shop scheduling
problem(FJSP) was first presented by [2], which is one of
the most prevalent problems, because it is widely applicable
to real-world manufacturing systems. Since then extensive
research has been carried out by researchers [3] and [4].
However in modern manufacturing systems with many prac-
tical scheduling settings, FJSP is no longer suitable with the
assumption that setup times are zero or constant and the
lag times are neglected after operation completion. In many
real applications such as chemical, semiconductor, phar-
maceutical and automobile industry, setup time is incurred
when two operations are successively processed in the same
machine and lag time is incurred when an operation is fin-
ished and demands time of cooling down before the next
procedure [5]. In this case, the flexible job shop problem with
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sequence-dependent setup times and lag times (FJSP-SDST-
LT) is extended from the FJSP.

Research on extensions of FJSP is abundant. The
FJSP with setup times has been studied for decades.
A recent survey [3] considered scheduling problems with
sequence-dependent setup times on parallel machines. Ref-
erence [6] presented a hierarchical tabu search algorithm to
solve the FJSP with setup times. The algorithm was com-
posed of a procedure that searched for the best sequence
of job operations, and a procedure that found the best
choice of machine alternatives. Reference [7] solved the FJSP
with attached and detached setup times, machine release
dates, and technological lag times constraints by a parti-
cle swarm optimization-based algorithm. Based on the pre-
vious study, [8] presented a two-stage genetic algorithm
for this problem, where a new encoding method and two
searching stages were introduced. Reference [9] solved a
realistic manufacturing problem with transportation time
and sequence-dependent setup times by an ant colony opti-
mization method. Later, [10] proposed a swarm intelligence
approach to solve FJSP with setup times, transportation
times, and various release dates of each job, where the
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assignment and sequencing problem were solved in a single
step. Reference [11] developed an extensive neighborhood
search function from [12] for FJSP with setup times and
assumed a definition of setup times which was symmetric and
satisfied the triangular inequality property. Reference [13]
presented an MILP of FJSP-SDST which solved small
instances to optimality and developed a tabu search algorithm
with specific neighborhood structures. Reference [14] pre-
sented an exact and heuristic decomposition-based solution
approaches to solve the FJSP-SDST with the objective to
minimize the makespan and the total tardiness.

Other practical settings were also incorporated into the
basic FJSP. In some practical settings, operations may not
be independent and they may interrelate with other opera-
tions because of assembly requirements, while in some cases
finished operations may not be instantly ready for the next
procedure because of the necessity for drying, cooling or
other ancillary operations. Reference [7] and [15] formulated
anMILP for the complex FJSP in assembly job shop systems.
Reference [5] discussed real-world applications of scheduling
problems where steel needs to be cooled to form slabs. Refer-
ence [16] and [17] solved the issue of lot streaming in FJSP,
where batches of the jobs were split into subplots to allow the
overlapping of operations.

Although plenty research has been conducted on the exten-
sion of FJSP, additional features combining SDST and LT
have not been studied adequately. Considering its com-
plexity status and broad application, an effective algorithm
for the FJSP-SDST-LT is desirable. GA is an effective
meta-heuristics which shows great performance for schedul-
ing problems on account of its powerful global search abil-
ity. Reference [18] proposed a GA that integrated different
strategies for generating the initial population, selecting the
individuals for reproduction, and reproducing new individu-
als. Reference [19] proposed an improved GA to solve the
distributed FJSP. Reference [20] developed the algorithm
based on GA and Grouping Genetic Algorithm (GGA) for
FJSP. Reference [21] applied a genetic algorithm to solve
FJSP with overlapping in operations. Reference [22] pro-
posed a GA that adopted a new chromosome representation
and some different strategies for crossover and mutation for
FJSP. However, lack of neighborhood search procedure leads
to its poor local search ability stumbling the optimization
speed. TS is one of the most effective methods for solving the
scheduling problem. The design of neighborhood structures
determines its effectiveness. Reference [23], [24] applied a
TS to solve FJSP. Reference [12] designed effective neigh-
borhood functions of TS to solve FJSP and obtained good
results. Reference [11], [13] brought up a TS method for
FJSP-SDST. Reference [25] proposed a novel path-relinking
algorithm based on the tabu search algorithm with back-jump
tracking. However, TS merely relocates the operations in
the critic path of scheduling problem, which characteris-
tic makes it inadequacy of global search ability. Therefore,
a combination of GA and TS can perform great competence
in scheduling problems. Some researchers have been done

to combine several algorithms to construct effective hybrid
algorithms (HA) for FJSP. Reference [26] applied a hybrid
genetic algorithm to deal with the sequencing problem in
FJSP. Reference [27] used variable neighborhood descent to
improve the search ability of GA for FJSP. Reference [28]
proposed effective memetic algorithms (MAs) that combined
a classic multiobjective evolutionary technique referred as
NSGA-II with a novel problem-specific local search for FJSP.
Reference [29] hybridized the GA and TS to solve FJSP and
obtained the new best solutions for several benchmarks.

Based on the analysis of the above methods, we propose
a new and effective HA-based approach named HGA-TS for
FJSP-SDST-LT. We adopt a concise encoding method to rep-
resent two sub-problems: machine assignment and operation
sequencing and decoding method to improve the solution
quality by TS. Effective genetic operators are used to per-
form selection, crossover and mutation functions. In the TS,
we implement new neighborhood structures and diversifica-
tion functions to strengthen its local search ability. Experi-
ments on the datasets generated from the classic benchmark
instances show that HGA-TS can attain good results in short
iterations.

The primary contributions are summarized as follows:

1) We formulate a mathematical model considering extra
two practical characteristics upon classic FJSP.

2) We employ a hybrid algorithm HGA-TS to solve this
problem effectively. It combines the exploitation ability
of TS and the exploration ability of GA, which shows
great performance.

3) We adopt TS utilizing the problem structure of
sequence-dependent setup times and job lag times,
which is efficient in performing local search.

4) We compare the global search ability of diversification
operator of TS and GA in this problem, and we find
diversification operator of TS is effective but GA is
better in exploration.

The remaining parts of this paper are organized as
follows. The description and the mathematical model of
FJSP-SDST-LT are presented in Section II. In Section III,
the key elements of our HGA-TS algorithm are elabo-
rated. Computational results and analyses are summarized
in Section IV. Conclusions and future work are drawn in
Section V.

II. PROBLEM DESCRIPTION
For the convenience of notation, we use [x] to represent
set {1, 2, . . . , x}, of which x is a positive integer. The
FJSP-SDST-LT can be stated as follows. There are a set
of n jobs J = [n] and a set of m machines M = [m].
Each job i consists of a sequence of operations Oi =
{Oi1,Oi2, . . . ,Oidi}, where di denotes the number of opera-
tions that job i needs. Each operation Oij, ∀i ∈ [n], j ∈ [di],
has to be designated to a certain machine k from a set of
compatible machines Mij ⊆ M . For each operation Oij, let
pijk be the processing time on machine k ∈ Mij. Stimulated
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by practical applications in modern manufacturing system,
a setup time sii′k is incurred when operations of job i and job
i′ are processed sequentially on machine k . Besides, sii′k is
only defined if the compatible machine set Mij of Oij and
Mi′j′ of Oi′j′ have intersections. Namely, k ∈ Mij ∩ Mi′j′ ,
if Mij ∩ Mi′j′ 6= ∅. Specifically, s0ik is the initial setup time
for job i to be processed on machine k . In addition, sii′k could
be extended to siji′j′k by considering the setup time incurred
when operation Oij and Oi′j′ are processed sequentially on
machine k . The setup times satisfy the following triangular
inequality:

sii′′k ≤ sii′k + si′i′′k ,

∀ i, i′, i′′ ∈ J , j ∈ [di], j′ ∈ [di′ ], j
′′
∈ [di′′ ],

k ∈ Mij ∩Mi′j′ ∩Mi′′j′′ (1)

A lag time lij is incurred in the sequential operation process
order of jobs independent of machines. It does not affect the
beginning processing time st i′j′ of successive operation Oi′j′
on the same machine when i 6= i′. In addition, st ij+1 should
be no less than the finishing processing time of its previous
operation Oij plus lij, i.e., st ij+1 ≥ st ij + pijk + lij.

The other assumptions considered in this paper are sum-
marized as follows:

1) Job preemption is not permitted, i.e., each opera-
tion must be completed without interruption once
started.

2) Each machine can handle only one job at a time.
3) The different operations of one job are required to be

processed in a certain sequence, rather than simultane-
ously.

4) All jobs and machines are available at time zero.
The objective is to minimize the time required to complete

all jobs, i.e., the makespan Cmax , by assigning each job to
an eligible machine and sequencing the operations on each
machine.

To formulate the problem, we define two binary variables
below:

αijk =

{
1, if Oij is assigned to machine k

0, otherwise

βiji′j′ =

{
1, if Oij is scheduled before Oi′j′

0, otherwise

The mathematical model is formulated as follows:

min Cmax (2)∑
k∈Mij

αijk = 1, ∀ i ∈ J , j ∈ [di] (3)

st ij+1 ≥ st ij +
∑
k∈Mij

pijkαijk + lij ,∀ i ∈ J ,

j ∈ [di − 1] (4)

st ij ≥ st i′j′ + pi′j′k + si′ik
−(2− αijk − αi′j′k + βiji′j′ )H ,

∀ (i, i′) ∈ J × J , j ∈ [di], j′ ∈ [di′ ],

s.t. Oij 6= Oi′j′ , k ∈ Mij ∩Mi′j′ (5)

st i′j′ ≥ st ij + pijk + sii′k
−(3− αijk − αi′j′k − βiji′j′ )H ,

∀ (i, i′) ∈ J × J , j ∈ [di], j′ ∈ [di′ ],

s.t. Oij 6= Oi′j′ , k ∈ Mij ∩Mi′j′ (6)

Cmax ≥ st idi +
∑
k∈Midi

pidikαidik , ∀ i ∈ J (7)

αijk ∈ {0, 1}, ∀ i ∈ J , j ∈ [di], k ∈ Mij (8)

βiji′j′ ∈ {0, 1}, ∀ (i, i′) ∈ J × J , j ∈ [di] (9)

The objective (2) is to minimize the makespan Cmax . Con-
straint (3) ensures that each operation is assigned to one
and only one of its compatible machines. Constraint (4)
ensures that operations of the same job should be processed
in the given sequential order. Constraints (5) and (6) pre-
vent the overlapping of operations on the same machine
k . H stands for a large enough number. These constraints
are only activated when Oij and Oi′j′ are both assigned to
machine k . Constraint (5) ensures that if Oij is scheduled
after Oi′j′ , the beginning processing time of Oij is later than
the completion time of Oi′j′ . Constraint (6) is activated when
βiji′j′ = 1. The makespan is determined by Constraint (7).
Constraint (8) and (9) ensure the decision variables are
binary.

III. SOLUTION METHODOLOGY
A. WORKFLOW OF THE PROPOSED HGA-TS
In the paper, the proposed HGA-TS combines GA and
TS to solve FJSP-SDT-LT. Its workflow is described in
Algorithm 1:

Algorithm 1 Framework of HGA-TS
1: Step 1: Parameter setting for the HGA-TS;
2: Step 2: Initialization: randomly generate the initial pop-

ulation and set the algorithm iteration ITER: = 1;
3: Step 3: Evaluation: calculate the objective (makespan) of

each individual in the population.
4: Step 4: Termination satisfaction: if the ITER reaches the

max iteration or the best result has not improved for given
iterations and go to Step 7; otherwise, go to Step 5;

5: Step 5: Reproduce offsprings:
6: Step 5.1: Each time two selected parents conduct

crossing over and mutation to generate two offsprings
to form new population until the new population size
reaches the given max size.

7: Step 5.2: Apply TS to every offspring to improve
quality.

8: Step 6: Set ITER: = ITER + 1 and go to Step 3;
9: Step 7: Output the best solution.

B. ENCODING AND DECODING
Chromosomes represent the solutions of the FJSP-SDST-
LT. In this paper, we adopt the encoding method in [28]
to encode the solution to two chromosomes which are
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Procedure 1 Decoding Operator
Input: OS, MS
Output: Solution
1: for i← 1 to N do
2: determine the operation Oij in the ith element of OS
3: if j = 0 then
4: asij← s0ik
5: else
6: asij← cti(j−1) + lti(j−1)
7: end if
8: determine the assigned machine k of Oij in the jth

position of the ith part in MS
9: for [stk , etk ] in the idle period set of machine k do
10: if max(stk + si′ik , asij)+ pijk + sii′′k ≤ etk , βi′j′ij =

1, βiji′′j′′ = 1 then
11: stij← max(stk + si′ik , asij)
12: insert Oij into machine k
13: the idle period of machine k
14: break
15: end if
16: end for
17: ctij← stij + pijk
18: end for

employed to correspond to the two subproblems. The first is
for operation sequence (OS) and the second is for machine
assignment (MS).

Every number in OS represents a job type. Each job type
i occurs di times. The corresponding operation type j refers
to the jth appearance of job i by scanning the OS from left to
right. Thus, the length of OS chromosome is equal to the total
number of operations, i.e.,

∑n
i=1 di. The significant advantage

of OS is that any permutation can be decoded to a feasible
solution.

The MS represents the selected machines of each oper-
ation. It is separated into n parts. The ith part contains di
operations of job i. So every position in MS denotes the
selected machine for operation Oij, according to its located
part and the jth position in it. The length of MS corresponds
to the length of OS.

The decoding method aims to decode chromosomes into
a solution, which is conducive to apply TS to improve its
quality. A solution contains the scheduling information of
each operation Oij which includes its assigned machine k ,
stij, and pijk . We define four additional variables to explain
the decoding method:

asij the arriving time of Oij
ctij the completion time of Oij
stk the starting time of idle period of machine k

etk the ending time of idle period of machine k

Based on the decoding method, the information of each
operation Oij including st ij, ct ij and its assigned machine
k are determined. Thus, we get an intact schedule for the

FIGURE 1. Example of encoding and decoding.

work shop. We exemplify the relation between a solution
and its chromosomes by Fig. 1. In the top subfigure of
Fig. 1(a), the length of semi-transparent bar is equal to
the sequence-dependence setup times. In the bottom sub-
figure of Fig. 1(a), the length of semi-transparent bar is
equal to the job lag times. Fig. 1(b) represents the encoded
OS and MS chromosomes corresponding to Fig. 1(a).
The permutation of OS is equal to the permutation of
O21,O31,O32,O11,O22,O33,O12,O23. The permutation of
MS represents the machine assignment information which is
(O11,M1), (O12,M3), (O21,M2), (O22,M2), (O23,M1), (O31,

M1), (O32,M2), (O33,M3) and they can be decoded into the
solution represented in Fig. 1(a).

C. GENETIC OPERATORS
Proper genetic operators contribute to generating excellent
offspring. We adapt three operators from [29] which are
selection, crossover, and mutation.

1) SELECTION
The selection operator is used to select individuals accord-
ing to the fitness. We employ the elitist selection opera-
tor and the tournament operator. In this paper, the elitist
operator selects N individuals with the shortest makespan
as parents. The tournament operator chooses b (in this
paper b = 2) individuals from the population each time
and selects the individual with the shortest makespan as a
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Procedure 2 POX Operator
1: Step1: Divide job set J into two groups J1 and J2 ran-

domly;
2: Step2: Any element of OS in P1 which belongs to J1 are

relocated to the same position of OS in O1 and deleted
from P1. Any element of OS in P2 which belongs to J2
are relocated to the same position of OS inO2 and deleted
from P2;

3: Step3: The remaining elements of OS in P2 are relo-
cated to the remaining empty positions of OS in O1
sequentially. The remaining elements of OS in P1 are
relocated to the remaining empty positions of OS in O2
sequentially.

Procedure 3 JBX Operator
1: Step1: Divide the job set J into two groups J1 and J2

randomly;
2: Step2: Any element of OS in P1 which belongs to J1 are

allocated to the same position of OS in O1 and deleted
from P1. Any element of OS in P2 which belongs to J2
are allocated to the same position of OS inO2 and deleted
from P2;

3: Step3: The remaining elements of OS in P2 are allo-
cated to the remaining empty positions of OS in O1
sequentially. The remaining elements of OS in P1 are
allocated to the remaining empty positions of OS in O2
sequentially.

FIGURE 2. Crossover operators for OS.

parent until the parent set reaches the maximum of population
size.

2) CROSSOVER
We adopt the precedence operation crossover (POX) and the
job-based crossover (JBX) for the OS. Two operators are
employed at 50%. We denote two parents as P1 and P2
and two offspring as O1 and O2. The procedure of POX is
described in Procedure 2 and is illustrated in Fig. 2(a). The
procedure of JBX is decribed in Procedure 3 and is illustrated
in Fig. 2(b). In addition, we adopt a two-point crossover for
the MS. The procedure is described in Procedure 4 and is
illustrated in Fig. 3.

Procedure 4 Two-Point Crossover Operator
1: Step1: Randomly choose two non-repetitive points p1

and p2 from 1 to N (p1 < p2);
2: Step2: Elements of MS which positions are in[p1, p2]

in P1 are allocated to the same position of MS in O2.
Remaining elements are allocated to the same position of
MS inO1. Elements ofMSwhich positions are in[p1, p2]
in P2 are allocated to the same position of MS in O1.
Remaining elements are allocated to the same position
of MS in O2.

FIGURE 3. Two-point crossover for MS.

Procedure 5 Swapping Mutation Operator
1: Step1: Select two non-repetitive positions p1 and p2

randomly in the OS of P1;
2: Step2: Swap the element on p1 and p2 and generate O1.

Procedure 6 Neighborhood Mutation Operator
1: Step1: Select three non-repetitive elements randomly in

the OS of P1;
2: Step2: Generate all the permutations of these three ele-

ments as neighborhood OS;
3: Step3: Choose one OS from neighborhood randomly, and

generate O1 by setting it as the current OS.

3) MUTATION
We adopt the swapping mutation operator and the neigh-
borhood operator for OS and each operator is selected at
50%. We denote the individual before mutation as P1 and
the individual after mutation as O1. The swapping opera-
tor is described in Procedure 5. The neighborhood muta-
tion operator is described in Procedure 6. Both of them are
illustrated in Fig. 4(a). For the MS, a machine reassign-
ment operator is described in Procedure 7 and is illustrated
in Fig. 4(b).

D. PROBLEM STRUCTURE
Before introducing the TS, we first describe our prob-
lem structure to construct neighborhood structure efficiently.
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FIGURE 4. Mutation operators.

Procedure 7 Machine Reassignment Operator
1: Step1: Select h positions in the MS of P (in this paper,
h = N/2);

2: Step2: Get the corresponding operation of each position.
Choose the other machine randomly from its eligible
machine set as the current machine assignment.

In this paper, we utilize the concept of disjunctive graph
G = (O,A,E). Set O contains two fictitious nodes 0 and ∗,
which represent the origin and the destination of the schedule.
Thus, we have O = {0, 1, . . . ,N , ∗}. The relation between a
node u and operation Oij is that u =

∑i−1
h=1 dh+ j. The weight

of node is equal to its processing time. Operation sequence
relations within the same job are modeled by conjunctive arcs
in set A as follows:

A =
n⋃
i=1

{(Oij,Oi(j+1)) : j ∈ [di − 1]}

∪{(Oidi , ∗)} ∪ {(0,Oi0)} (10)

The length of arc in A between Oij and Oi(j+1) is equal to
the lag time ltij of Oij. Sequence relations within the same
machine are modeled by disjunctive arcs in set E as follows:

E =
m⋃
k=1

{[Oij,Oi′j′ ] : mij = mi′j′ = k}

∪{[0,Oij]} ∪ {[Oij, ∗]} (11)

The length of arc in E betweenOij andOi′j′ onmachine k is
equal to the setup time sii′k . Transforming E into conjunctive

graph will generate permutation � in the following:

� =

m⋃
k=1

{(Oij,Oi′j′ ) : mij = mi′j′ = k}

∪{(0,Oij)} ∪ {(Oij, ∗)} (12)

For the sake of constructing neighborhood structure effi-
ciently, we introduce some definitions. Specifically, a path
from nodes u to v contains a finite set of sequential nodes and
conjunctive arcs between u and v. The length of a path L(u, v)
is equal to the sum of the weights of nodes and the length of
the arcs on the path [24]. A critical path refers to a longest
path between node 0 and node ∗ and its length L(0, ∗) is the
makespan. Next, we introduce resource extending equation
for each operation. We denote node u’s head as ru which can
be viewed as a longest path from 0 to u without u’s node
weight and its tail as qu which can be viewed as a longest
path from u to ∗. Practically, ru can be seen as the earliest
beginning time of u and [L(0, ∗)− qu] can be seen as the
latest completion time of u. We define rJu as the path gen-
erated from the previous operation [u− 1] on its job routing
and rMu as the path generated from the previous operation w
on its machine routing. We define qJu as the path generated
from the successor node [u+ 1] on its job routing and qMu as
the path from the successor node v on its machine routing.
Specifically, the calculation is demonstrated as follows:

ru = max{rJu , r
M
u }, (13)

rJu = ru−1 + pu−1 + lu−1 (u− 1, u) ∈ A, (14)

rMu = rw + pw + swu (w, u) ∈ �, (15)

qu = max{qJu, q
M
u }, (16)

qJu = qu+1 + pu+1 + lu (u, u+ 1) ∈ A, (17)

qMu = qv + pv + suv (u, v) ∈ �, (18)

The makespan is defined by

Cmax = max
u∈O
{ru + qu + pu} (19)

We denote operation u on the critical path as critical oper-
ation, which satisfies ru + qu + pu = Cmax .

E. TABU SEARCH ALGORITHM
In order to improve the quality of the offspring reproduced
by genetic operators, we adapt the TS from [13] for FJSP-
SDT-LT. TS contains four parts: neighborhood structure with
feasibility checks, preliminary neighbor evaluations, tabu list,
and diversification.

1) FEASIBILITY CHECK
Before constructing relocating neighborhood structure,
we first guarantee that the directed graph does not contain
cycles to acquire feasible solutions. In this paper, we develop
a proposition for FJSP-SDST-LT based on [24] as follows:
Theorem 1: For FJSP-SDST-LT, sequencing operation u

between v and w does not lead to infeasible solutions if:
1) rv < ru+1 + pu+1 +mink∈Mu+1∩Mv s(u+1)vk

with (u, u+ 1) ∈ A, [u, v] 6∈ A.
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2) rw + pw +mink∈Mw∩Mu−1 sw(u−1)k > ru−1
with (u− 1, u) ∈ A, [w, u] 6∈ A.

Proof: Removing operation u from the graph means
breaking arcs (a, u), (u, b) ∈ �, generating graph G− which
does not contain cycles. Inserting u between v and w means
adding arcs (v, u) and (u,w) which only generates cycles if
path (v, u, u + 1, . . . , v) or (u − 1, u,w, . . . , u − 1) exist.
In this paper, we consider the minimum setup time between
operations in the path. The first condition guarantees that u+1
does not appear before v and thus no cycle (v, u, u+1, . . . , v)
will be generated, while the second condition guarantees that
no cycle (u − 1, u,w, . . . , u − 1) will be generated as well.
Therefore the proposition prevents infeasible operation move
and ensures feasibility.

2) NEIGHBORHOOD STRUCTURE
We assume that arcs (a, u), (u, b), (v,w) ∈ � are in the
current graph and u is on machine mu. Neighborhood is con-
structed by relocating u from its current position to another
position based on the feasibility propositions. According
to [12], only operations on the critical path CP determine the
makespan directly, i.e., Cmax = ru + pu + qu, u ∈ CP. Thus,
we relocate operations on one critical path out of efficiency.
The relocating operator is adapted from [13] and described in
Procedure 8.

Procedure 8 Relocating Operator
1: Find a critical path CP
2: for operation u in P do
3: if u satisfies Cmax = rJu + pu + q

J
u then

4: continue
5: end if
6: for machine k in Mu do
7: for position i in machine k do
8: if u satisfies Cmax = rJu + pu + q

M
u then

9: neglect positions before u on machine mu
10: end if
11: if u satisfies Cmax = rMu + pu + q

J
u then

12: neglect positions after u on machine mu
13: end if
14: if u satisfies feasibility conditions by inserting on

position i then
15: generate a new neighbor and add into neigh-

borhood
16: end if
17: end for
18: end for
19: end for
20: Output neighborhood

3) NEIGHBOR EVALUATION
In order to evaluate neighborhood efficiently instead of cal-
culating the makespan from scratch, we employ the method
in [13] to calculate the lower bounds on the new makespan.

We denote Pv and Sw as sets containing all predecessors of v
and successors of w. If u is inserted between operation v and
w and rv > ru, the lower bound of the new makespan is:

LB1 = max{rJu ; r̂v + pv + svu} + pu
+max{qJu; suw + qw + pw} (20)

where

r̂v =

{
rv, u 6∈ Pv
max{rJb ; r

M
u − sau + sab} + rv − rb, u ∈ Pv

(21)

If u is inserted before w and rv > rw, the lower bound of
the new makespan is:

LB2 = max{rJu ; rv + pv + svu} + pu
+max{qJu; suw + q̂w + pw} (22)

where

q̂w =

{
qw, u 6∈ Sw
max{qJa; q

M
u − sub + sab} + qw − qa, u ∈ Sw

(23)

4) TABU LIST
When relocating operation u from machine k to machine k ′,
we store (u, k) and (u, k ′) in tabu list.

5) DIVERSIFICATION
The neighborhood structure focusing on critical operations
neglects optimizing the whole scheduling structure. For this
case, we employ a diversification structure to help jump out
of local optimum. When no improvement of the makespan
reaches a certain number of iterations, diversification is acti-
vated. Operation u which satisfies Cmax = rJu + pu + qJu
and non-critical operations are relocated to another position
randomly. The diversification is repeated for prescribed iter-
ations. When the number of diversification reaches a cer-
tain number, we generate the initial solution randomly from
scratch as the current solution.

IV. NUMERICAL RESULTS AND DISCUSSION
A. EXPERIMENTAL DESIGN
To evaluate the performance of the proposed HGA-TS,
we conduct experiments on two classes of FJSP-SDST-LT
instances derived from benchmarks in [24], [30] respectively.
We denote them as Set 1 and Set 2. The algorithms are coded
in Java and implemented on a computer with 2.2 GHz Intel
Core i7 and 16 GB of RAM memory. The MILP is solved
by IBM ILOG CPLEX 12.8.0. The parameters including
HGA-TS, pure GA, and TS for these instances are shown
in Tables 1 and 2.

Set 1 consists of 10 problem instances where the num-
ber of jobs ranges from 10 to 20, the number of machines
ranges from 6 to 15, the number of operations for each job
ranges from 5 to 15, and the maximum number of equivalent
machines per operation ranges from 3 to 6. Set 2 consists
of 18 test problems where the number of jobs ranges from
10 to 20, the number of machines ranges from 5 to 10, and the
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TABLE 1. The HGA-TS parameters.

TABLE 2. The GA and TS parameters.

number of operations for each job ranges from 5 to 25. The set
of machines capable of processing an operation is constructed
by letting a machine be in that set with a probability ranging
from 0.1 to 0.5.

B. RESULTS AND DISCUSSIONS
Tables 3 and 4 show the experiment results (Cmax) of
HGA-TS and MILP (time limit is 4 hours) on Set 1 and
Set 2. The results marked by ‘‘∗’’ are the best results. The
results marked by ‘‘−’’ indicate that MILP is unable to find a
feasible solution in the limited time. MRE (%) column shows
a comparison between MILP and our HGA-TS, which means
the percentage improvement calculated as:

MRE =
CMILP
max − C

HGA−TS
max

CMILP
max

(24)

The result shows that MILP is not qualified in solv-
ing large-scale instances and HGA-TS can find feasible
solutions better than MILP on two classes of data set,
improving the upper bound by 9.7% and 15.8% respec-
tively. It shows the great effectiveness of HGA-TS in solving
FJSP-SDST-LT.

Percentage improvement is illustrated in Fig. 5 and Fig. 6
which shows improvement among heuristic algorithms com-
pared with HGA-TS on Set 1 and Set 2. The heuristic algo-
rithms are obtained by algorithms proposed in Section III
that includes GA (pure genetic algorithm without tabu search

TABLE 3. Computational results on set 1.

TABLE 4. Computational results on set 2.

FIGURE 5. Comparison among heuristic algorithms on set 1.

algorithm), TS1 (tabu search algorithm with diversification
operator), TS2 (tabu search algorithm without diversification
operator). The results show that our HGA-TS outperforms

VOLUME 9, 2021 104871



Y. Wang, Q. Zhu: Hybrid GA for FJSP-SDST-LT

FIGURE 6. Comparison among heuristic algorithms on set 2.

TABLE 5. The levels of GA parameters.

FIGURE 7. Impact of GA parameter levels on HGA-TS.

other heuristic algorithms on data set of short processing
time and long processing time at the same time. Meanwhile,
it is notable that TS1 outperforms TS2 and GA in almost
every instance but lags behind HGA-TS, which shows the
diversification operator can help the solution escape local
optimality to some extent, but its global search ability is
weaker than GA.

We also show the impact of GA parameter levels on
HGA-TS in Fig. 7. GA parameter levels are showed
in Table 5, which include four levels ranging from low popu-
lation size and iteration to high population size and iteration.
Fig. 7 shows the average percentage improvement of Level
4 compared with other levels. It illustrates that with the level
increasing, the GA impact on optimization decreases, and a
low level of GA parameters is enough to find a good solution.
In consequence, the computational results demonstrate that
our HGA-TS dominates its components and MILP, show-
ing great ability in solving FJSP-SDST-LT even with low

population size and iteration. The reasons are demonstrated as
follows: First and foremost, we use two selection operators,
the elite selection focusing on the best individuals of the
population, and tournament selection balancing the quality
and diversity of the selected individuals. The crossover and
mutation operators designed for OS and MS respectively
ensure its effective exploration. With the local improvement
of TS, the quality of individuals can get improved further.
Therefore, our proposed algorithm has distinctive advantages
over other algorithms.

V. CONCLUSION
In this paper, by employing the global diversification
ability of GA and the local improvement ability of TS,
we propose a hybrid genetic algorithm HGA-TS for
FJSP-SDST-LT. Experiments are conducted on two classes
of data set generated from two famous benchmark instances.
The computational results show HGA-TS outperforms other
heuristic algorithms and can find better upper bounds than
MILP, proving its effectiveness in solving FJSP-SDST-LT.
For future studies, multi-objective optimization is required
for a practical scheduling environment in which the objective
not only includes makespan but tardiness and machine load
balance. Besides, various practical constraints such as work
schedule and resource limitation could be of interest.
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