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ABSTRACT In this paper, we propose a highly efficient method for synthesizing high-resolution(HR)
smoke simulations based on deep learning. A major issue for physics-based HR fluid simulations is that
they require large amounts of physical memory and long execution times. In recent years, this issue has been
addressed by developing deep-learning-based super-resolution(SR)methods that convert low-resolution(LR)
fluid simulation results to HR(High-resolution) versions. However, these methods were not very efficient
because they performed operations even in areas with low density or no density. In this paper, we propose
a method that can maximize its efficiency by introducing a downscaled and binarized adaptive octree.
However, even if it is divided by octree, because the number of nodes increases when the resolution of
the simulation space is large, we reduce the size of the space by multiscaling and at the same time perform
binarization to preserve the density that may be lost in this process. The octree calculated in this process has
a structure similar to that of a multigrid solver, and the octree calculated at coarse resolution is restored to
its original size and used for HR expression. Finally, we apply the SR process only to those areas having
significant density values. Using the proposed method, the SR process is significantly faster and the memory
efficiency is improved. The performance of our method is compared with that of an existing SR method to
demonstrate its efficiency.

INDEX TERMS Fluid simulations, deep learning, super-resolution, adaptive synthesizing, octree,
physics-based simulations.

I. INTRODUCTION
Because of advances in deep learning in recent years,
physics-based simulation fields such as character anima-
tions [13], [14], [29] and fluid simulations [2], [6], [15],
[24] have also been remarkably improved because of deep
learning. Accuracy and efficiency in fields such as style
transfer [5], [16], [27], character motion control [17], [26],
and numerical analysis [18] have also improved. However,
in certain fields, it still suffers from the need for a large
amount of computation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiju Poovvancheri .

In physics-based fluid simulation, it is an important issue
that the amount of computation increases rapidly depending
on the resolution, particularly for 3D simulation. To address
this issue, there have been studies to express flow detail
in HR simulation by adding a turbulence term to LR fluid
simulation [7], [8], and recently, there have been attempts to
apply deep-learning additionally. The existing deep learning
methods for HR fluid simulation can be divided into two
categories based on the type of application. The first category
includes studies that try to solve simulation equations directly
using deep-learning methods. [2], [11]. Studies in the second
category enhance the details of input LR simulation data by
transforming the data into turbulent styles [42] or upscaling
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FIGURE 1. A super-resolution example of our method, which is based on tempoGAN [28]. (a) is the low-resolution input, (b) is the
super-resolution result generated by our method.

its resolution [12], [28]. However, both the style-transform
and resolution-upscaling methods are applied to the entire
simulation space including the low-density region, reducing
the efficiency of the computation process. In this paper,
we propose a method that effectively addresses this issue
by using a spatial partitioning method with an adaptive tree
structure.

In this paper, we employ quadtree-based [34] and octree-
based [35] structures to partition and store the simulation
space. This enables the efficient production of HR results for
‘‘smoke-like’’ scenes. The SRmethod we used introduces the
state-of-the-art work of tempoGAN [28]. Unlike the original
tempoGAN, our method can reduce the amount of computa-
tion while maintaining quality by applying the operation only
to the simulation area with significant density data. To make
the SR result of Figure 1, our method takes 7.27 seconds
and the original tempoGAN takes 90.03 seconds. According
to the experimental results, as the density becomes more
sparse, the performance improves. To compare the SR quality
between our method and the original tempoGAN, we mea-
sured the difference error for each frame and confirmed that
the difference was insignificant. Furthermore, because of the
tree-based spatial partitioning technique, we can handle the
SR operations of extremely high resolution without memory
problems in GPUs.

In addition to the structural efficiency of octrees, we can
significantly reduce computation time by applying binariza-
tion and downscaling techniques when constructing octrees.
Our contributions are summarized as follows:
• We present the binarized and downscaled octree-based
method to accelerate the SR of smoke scenes.

• Our method produces high-quality results while improv-
ing the performance of the SR process. Compared with
existing methods, there is little quality degradation.

A. PROBLEM STATEMENT
In general, the grid-based spatial partitioning method, which
is widely used in the Eulerian simulation technique, is mainly

FIGURE 2. Example of numerical dissipation of density when performing
downscaling (original grid res.: 128 × 128, orange box: regions with
severe numerical dissipation).

used to express smoke, water, and fire [19], [20]. Space can
be optimized using data structures such as octree [21], [22],
[25], but efficiency is not significantly improved because
the amount of computation required for octree construction
increases when the originally given grid resolution is high.
A simple solution to this issue is to reduce the space to mul-
tiscale. However, in the process of downscaling the density,
numerical dissipation occurs. As shown in Figure 2, numer-
ical dissipation greatly occurs in the low-density regions
(i.e., the region in which smoke is blurred, see the orange
box in Figure 2), and this problem becomes more severe as
downscaling proceeds.

In this paper, we propose a data optimization technique that
can efficiently train and test data even in scenes with high
grid resolution. The proposed technique solves the following
subproblems:

1) A space downscaling technique to maximize the effi-
ciency of simulation space

2) A binarization technique for minimizing the numerical
dissipation of density that occurs in progressive down-
scaling.

3) A technique to build a quadtree (octree in 3D) in a
bottom-up style in a downscaled space and merge data

4) A method of collecting data necessary for training
based on a quadtree built in a downscaled space.

Solving the first issue reduces the size of the space in
which the quadtree needs to be computed (like a multigrid
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solver [23]), and progressive downscaling is possible as much
as the user wants. If the second issue is solved, the small
density is not lost in the process of reducing the space,
and the original shape of the density distribution can be
maintained even in a downscaled space. Solving the third
problem allows us to calculate quadtree in a smaller space.
By solving the last problem, quadtree can be upscaled to
its original size to collect efficiently the data needed for
training.

II. PRELIMINARY
A quadtree is a tree data structure with four children in
each internal node and is an algorithm used to partition a
two-dimensional space adaptively by dividing a 2D square
space into four quadrants and subdividing it recursively
according to a given criterion. The data associated with a
leaf cell varies depending on the application, but a leaf cell
generally has a ‘‘minimum unit of information of interest’’.
The octree is an extended version of the quadtree applied
to the 3D space, and the internal node is divided into eight
octants and subdivides the cube-shaped space recursively.
Our method uses a quadtree in 2D and an octree in 3D based
on the data structure presented.

III. RELATED WORK
In this section, we review the latest studies on spatial parti-
tioning and SR in smoke simulation.

A. HIGH-RESOLUTION SMOKE SIMULATION
Smoke simulation is an example of a typical grid-based simu-
lation. Stam [40] solved the Navier–Stokes equation involved
in smoke simulations using a semi-Lagrangian method. Some
studies [9], [10] considered the turbulence effect to express
flow details in LR smoke simulations. Bridson et al. [48]
generated a turbulence velocity field by adding noise, and
Zhang et al. [49] refined the details by restoring missing
vorticity elements. In recent years, studies to perform HR
smoke simulation using deep learning have appeared. Convo-
lutional neural networks(CNNs) [1], [4] or generative adver-
sarial networks(GANs) [3] can be used to achieve finely
expressed simulations efficiently. Tompson et al. [2] and
Xiao et al. [11] proposed using a CNN-based approach to
solve the Navier–Stokes equation efficiently.

Some studies attempted to perform SR using previously
acquired LR smoke simulation results rather than solving the
simulation equation directly. The LR results received in these
studies were upscaled to a higher resolution, and the coarse
shape was refined in more detail.

CNNs and GANs are popular deep-learning methods for
SR-related research. Dong et al. [30] proposed the first
CNN-based solution for single-image SR. Ledig et al. [31]
and Chu et al. [32] proposed GAN-based methods for
image SR. Wang et al. [33] proposed an SR technique that
magnifies an image eight times using a multiscale model
based on CNNs and GANs. For smoke flow simulation,
Liu et al. [45] employed a CNN for SR smoke image.

Chu and Thuerey [12] used a CNN model to synthesize HR
smoke flow. Xie et al. [28] and Werhahn et al. [47] employed
a GAN for both 2D and 3D SR smoke flow. Bai et al. [46]
used deep learning to perform SR that produced HR flow
details with dynamic features.

Although these approaches can produce HR smoke flow
results from input LR smoke flows, they are inefficient
because they perform operations on the entire space, includ-
ing spaces where valid data do not exist. To address this
issue, we propose an accelerated SR method that partitions
simulation data into regions with and without valid data based
on a tree structure and performs the SR process only in
regions with valid simulation data.

B. SPATIAL PARTITIONING
Quadtree [34] and octree [35] methods have been used widely
for partitioning 2D and 3D spaces, respectively. Space par-
titioning methods are often used to increase efficiency by
performing operations in only a few spaces with meaningful
data in the entire target space. Whang et al. [44] employed an
octree for optimizing the ray-tracing process. Shi et al. [43]
used octrees to generate more detailed results than simula-
tions conducted without octrees under the same conditions.
Zhou et al. [36] proposed an algorithm for reconstructing
a 3D surface model using a GPU-based octree. Recently,
studies combining space partitioning and deep learning have
emerged. Riegler et al. [37] and Wang et al. [38] proposed
techniques for classifying, retrieving, and segmenting 3D
models using octrees and CNNs. Tatarchenko et al. [39]
addressed memory and speed issues by partitioning the space
used for the 3D model generation. However, these stud-
ies have focused on modeling and rendering, rather than
simulation.

IV. OVERVIEW
Our method consists of the following processes: In the pre-
processing process, the smoke density data are divided into
patches. Assuming that the divided patches are nodes of the
smallest size, the quadtree is merged in a bottom-up style.
In this process, downscaling and binarization are performed
to prevent the dissipation of density data and reduce com-
putational space. Then, SR is performed to convert the space
into higher-resolution data. Our algorithm operates as follows
(see Figure 3):

1) Data are preprocessed to construct a tree structure.
The preprocessed data and the tree structure are used
to partition the entire space adaptively and find areas
requiring SR.

2) In the process of constructing the quadtree, downscal-
ing and binarization are performed to reduce the space
without numerical dissipation of the density.

3) After dividing the patches in the smallest downscaled
space, we classify each cell into FD (Filled density)
and ED (Empty density), and build a quadtree in a
bottom-up style.
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FIGURE 3. Algorithm overview.

4) After the quadtree constructed from the downscaled
space is upscaled to the original size, SR is performed
using only the density data contained in the leaf nodes.

5) To convert the LR data to a higher resolution, the SR is
performed using the training model using tempoGAN
[28] and the partitioned data. Postprocessing is also
required to merge the partitioned HR data.

In the next section, our method is described using quadtree
and 2D simulation results.

V. INPUT DATA PARTITIONING BASED ON TREE
STRUCTURE
Quadtree for 2D space and octree for 3D space have been
widely used for spatial optimization. We also employ the
quadtree (or octree) to partition the simulation space with
the spatial information in the tree structure and the density
data. In this process, if the smoke density is given as input
data, it is compressed through binarization and downscaling.
If the smoke density data are not dissipated after binarization,
it is possible to optimize the performance of the operation that
builds the quadtree. As shown in Figure 4b, even small den-
sity values can be captured without numerical loss because
of the binarization process. Areas A and B of Figure 4a were
clearly captured despite the high probability of losing their
features because of their small density (seeA,B in Figure 4b).

Then, the input data are divided according to the prede-
termined patch size. We construct a matrix of the maximum
density values of each patch using the parallel computa-
tion of the GPU. Using the generated matrix, a state value
that determines whether SR should be performed or not is
assigned to each patch. Using the assigned state value and the
information of the lowest node of each patch, we construct a
tree structure in a bottom-up manner. The generated tree is

FIGURE 4. Binarization of density data.

used to find the area where SR should be performed. This
process is shown in Figure 3, and its details are described
in the following subsections. Unlike the classic quadtree,
which divides patches from input simulation data, our method
goes through downscaling and binarization, so we divide the
patches in the smallest downscaled space. This process is also
described in more detail later.

A. INPUT DATA PREPROCESSING
The input data are composed of the density value of each
grid point. First, the entire simulation space is divided into
smaller sizes in the preprocessing step. As a tree structure to
store divided spaces, we use the quadtree (for 2D space) or
the octree (for 3D space).

Through several experiments, we confirmed that it was
almost invisible when the density value decreased to less than
0.01. Based on this result, an experiment was conducted by
setting threshold sets (0.015, 0.01, 0.005) with values near
0.01. When the threshold was set to 0.015, the FD path was
incorrectly judged as ED in some scenes, and when it was
0.005, the results were similar to those of 0.01, but the ED
area that does not require computation was judged as FD, and
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FIGURE 5. Calculation of the maximum density value matrix for patches.

FIGURE 6. State values for partitioned patches of input data. The green
patches were set to ‘‘FD,’’ and the red ones were set to ‘‘ED’’.

the performance slowed because of over-computing. There-
fore, in this paper, 0.01 was set for all results, and in this case,
the most stable result between performance and quality was
obtained.

B. STATE VALUES FOR INPUT DATA PATCHES
Based on the state value of the input data, we can find the area
that needs the SR. State values are specified as follows.

First, the divided input data are partitioned into patches
of a predetermined size, and the maximum density value of
each patch is calculated and stored in a matrix via GPU-based
parallel operations.

Next, the state value of each patch is determined by com-
paring the maximum value of the matrix with the prede-
fined threshold. If the maximum density value of each patch
exceeds the threshold, its state is set to the ‘‘FD(Filled Den-
sity)’’ requiring SR processing. In the opposite case, the patch
is set to ‘‘ED(Empty Density)’’ where SR is not performed
(see Figure 6).

If the threshold is too high, many details will disappear, and
if it is too low, SR will be performed in dim areas that are not
recognized by the eye, resulting in lower overall performance.
In this paper, we set the threshold value of 0.01 through
several preliminary experiments. Section VII presents the
results of the performance improvement from the GPU-based
method we used.

C. BINARIZATION AND DOWNSCALING OF SIMULATION
SPACE
When we compress and downscale the data to reduce com-
putation time, we reduce the size to 1

4 times ( 18 times in 3D)
compared with the previous size.When downscaling, the data
were compressed by calculating the average density of four

FIGURE 7. An example of density compression by binarization and
downscaling.

FIGURE 8. Binarized density patterns in 2D.

FIGURE 9. Change of density after combining progressive binarization
with downscaling (grid res.: 32 × 32).

adjacent nodes. In this paper, downscaling was performed
three times for each experiment (see Figure 7).

To determine the threshold to be used when performing
downscaling for the first time on the original data, we per-
formed binarization using values such as 0, 0.01, 0.1, and
0.05. As a result of repeated experiments in various environ-
ments, the quality of the results was the best when the thresh-
old α was set to 0.05. Therefore, in the experimental results of
this paper, the downscaling was performed by setting 0.05 as
the α: density > α ? 1: 0. When performing the second and
third downscaling, the target data consist of only 0s and 1s
because binarization has already been performed once. In this
case, the average density of four adjacent nodes is one of 0,
0.25, 0.5, 0.75, and 1, and the threshold for binarization at
this stage is set to 0.5 (see Figure 8). By minimizing data loss
through this binarization process and reducing the size of data
through downscaling, the amount of computation required for
quadtree operation has been greatly reduced.

Figure 9 shows the change in density after combining bina-
rization with downscaling. In the case of only downscaling,
as the space decreases, the smaller density value vanishes and
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FIGURE 10. Classification of FD and ED according to the presence or
absence of density: (a) binarized and downscaled data, (b) patch split,
(c) classification of FD and ED (cyan: FD node).

gradually converges to 0 (see A,B in Figure 9a). In contrast,
when binarization is combined with downscaling, the results
show that the detailed characteristics of the area in which the
density exists are well maintained (see A,B in Figure 9b).
Unlike the classic quadtree, which splits the patches at

the original resolution, when applying a quadtree including
downscaling and binarization, they are split in the smallest
downscaled space. In this paper, the size of the patch was set
to 16×16, and nodes were created based on data compressed
three times. To merge the quadtree in a bottom-up style using
the generated nodes, we first determinewhether density exists
in each node, compare it with the threshold, and classify it
into FD and ED (see Figure 10).

D. CREATING THE FINAL TREE STRUCTURE
As described earlier, we first create the lowest nodes and
merge them in a bottom-up manner to build a quadtree.
The lowest nodes have specified patch-state values and the
patch-state value of the parent node is determined accord-
ing to the patch-state values of the child nodes, as shown
in Figure 12a.

Each node of the tree has data, key, and state values (see
Figure 11). data indicates the density value of the node.
key has the x-coordinate and y-coordinate (including the
z-coordinate in the case of octree) indicating the location
of the node, and the tree depth used when constructing the
tree (see Figure 12c). The depth and position are used when
merging the result after the SR process is completed. In the
case of state, it can be FD, ED, and MIX values.

FIGURE 11. Information at each node of the quadtree.

In this paper, we assign the density of each patch as data
of the lowest node (see Figure 12a). Among the key values of
the lowest node, the depth is calculated using Equation 1.

d = log2(Dwidth/Nwidth), (1)

where d is the depth of the current node, Dwidth is the width
of the entire input data, and Nwidth is the width of the current
node. Then, we create a parent node in bottom-up style with
four nodes (eight in the case of octree) (see Figure 12b).When
creating a parent node, data becomes the sum of the data of
child nodes, the depth of the key value is reduced by 1, and the
position value is obtained by merging all child nodes. Finally,
the state values are determined by checking the state values
of child nodes as follows: If the state values of all child nodes
are the same, that value is assigned. If FD and ED are mixed
in the state values of all child nodes, MIX is assigned.

If all child nodes have the same state value, they are
deleted. In the case of ED, SR is not required, and in the case
of FD, it is faster to perform SR once for the parent node
than for each child node. If this operation is repeated until
reaching the root node, a tree with state values assigned to
all nodes is finally created (see Figure 12c). After the tree
is created, the state value is checked from the root node to
collect data and key values from all FD nodes (see Figure 13).
The ED node is removed because it does not require SR. After
traversing all leaf nodes, the collected data are transferred as
input data of SR.

Figure 14 shows examples of quadtrees constructed in
downscaled space using binarized density. By extracting the
area with density through quadtree and using the multiscale
technique, the amount of calculationwas reduced, and density
dissipation was prevented through binarization. As shown
in the orange boxes of Figure 14, although the density is
relatively small, it is clearly expressed by binarization, so that
the node is divided.

Figure 15 shows an overview of the entire process
explained earlier. First, leaf nodes divided into patches are
compared with the threshold and classified into FD and ED
(see Figure 15a). The quadtree calculated in downscaled
space is upscaled (see Figure 15b) and postprocessing is
performed according to the size of the original data. In this
process, only the original density data corresponding to the
leaf node of the upscaled quadtree are used in the neural
network. SR is performed only in the area where the density
exists, and the area without the density is filled with black and
composited (see Figure 15c).

Although the quadtree is calculated in a downscaled space,
it is stably upscaled to the size of the original data, and the
amount of input data is reduced using only the data in the
leaf nodes to the neural network (see Figure 16).

VI. SUPER-RESOLUTION(SR) PROCESSING
A. SR MODEL
The deep-learning model we used to perform the SR oper-
ation is tempoGAN, the state-of-the-art model proposed by
Xie et al. [28] suitable for performing smoke SR. We select
nodes with FD state values in the quadtree and provide them
as input to tempoGAN. The tempoGAN model we used con-
sists of one generator and two discriminators. The generator
consists of two nearest neighbor layers and four residual
blocks. The two discriminators are the space discriminator
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FIGURE 12. Overview of generating the quadtree containing patch-state values.

FIGURE 13. An example of the quadtree nodes for SR.

and the temporal discriminator, both of which are composed
of four convolution layers. The space discriminator receives
the fake data created by the generator and the real data
obtained through the simulation at the frame t and deter-
mines whether they are real or fake (see Space Discriminator
in Figure 17). The temporal discriminator receives the data
created by the generator and the real data obtained by simu-
lation at frames t − 1, t , and t + 1 as inputs and determines
whether they are fake or real (see Temporal Discriminator
in Figure 17). In this paper, after learning of the model is

FIGURE 14. An example of downscaled quadtree using binarized density.

completed in this way, SR was performed using the generator
of this model.

The tempoGAN data for SR where used by downloading
the trained model from the tempoGAN author’s GitHub.
Because the tempoGAN algorithm divides large-sized data
into multiple patches of the same size and performs
SR, the generator model can be applied to a single-size
patch. However, because this paper uses data sets of vari-
ous sizes generated through trees, the generator model of
tempoGAN has been modified so that it can receive inputs
of various sizes. So, pieces of various sizes are input to the
generator model of tempoGAN, and as a result, a data set of
multiple pieces of HR is obtained.

B. POSTPROCESSING
After the HR data are produced by the SR operation, the par-
titioned data need to be merged to recreate the entire scene.
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FIGURE 15. An overview of quadtree construction and upscaling.

FIGURE 16. Examples of quadtrees calculated in downscaled space
upscaled to its original size (original grid res.: 512 × 512, red box: leaf
node).

FIGURE 17. Network architecture of tempoGAN [28] (R: real data, G:
generated data by the generator model).

As described in Section V-B, each node stores data and key
information. Because the location of the node and the size
of the patch are fully specified from the key with the depth
and location value, data of patches with different sizes can be
merged.

FIGURE 18. 2D SR processing.

Before merging the patches we first create an empty space
with the size of the target scene. Then, the final result is com-
pleted by synthesizing the data at the corresponding patch
location according to the key information of the post-SR data.

VII. EXPERIMENTS AND ANALYSIS
In this paper, all experiments were performed using a standard
PC with an Intel Core i9 X-series CPU and a GTX Titan RTX
24GB graphics card. The smoke simulation was implemented
using the C++ language. We used the deep-learning model
proposed by tempoGAN [28] for the SR process.

A. RESULTS OF SR PROCESSING
1) 2D SCENES
The 2D SR results are shown in Figure 18. From the input
data of 512 × 512 resolution, we obtained the result of
2048 × 2048 resolution through SR processing. The HR
details are clearly visible in certain areas (blue and yellow
boxes in Figure 18). When this scene was performed using
the original tempoGAN without quadtree, it took an average
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FIGURE 19. Smoke-injecting simulation.

of 1.3 seconds, but when the proposed method with quadtree
was used, it took 0.025 seconds. Our method significantly
improved the detail and clarity of the features when compared
visually with LR smoke (see Figure 18b).

We also experimented in an environment where smoke is
randomly injected (see Figure 19). The input smoke data have
a resolution of 512 × 512, and are upscaled by two times.
When using the original tempoGAN technique, it took an
average of 1.2 seconds, but when using our technique, the per-
formance was approximately double. Because quadtree has
proven its efficiency in terms of speed and memory because
of its data structure nature, we conducted additional experi-
ments. When using only the classic quadtree without down-
scaling and binarization, it took about 0.6 seconds, but
our method, including downscaling and binarization, took
0.04 seconds. In the scene in Figure 19, the performance
is improved by about 15 times compared with the classic
quadtree. As in the previous experiments, we were able to
obtain clear results in terms of quality.

FIGURE 20. Rising smoke simulation.

We also conducted experiments in a rising smoke envi-
ronment. In our results shown in Figure 20a, not only the
density was clearly expressed, but the turbulent pattern was
clearly well expressed in the vicinity of the free surface in
contact with air. The results show that similar results are well
expressed in Figure 20b.

2) 3D SCENES
Figure 21 shows the three training scenes used to perform the
3D simulation. Figure 22 shows the result of 512 × 256 ×
256 resolution obtained from the input data of 128 × 64 ×
64 resolution. As shown in the figure, the blurred areas are
expressed in great detail after the SR operation.

One of our goals in this study is to improve the speed of SR
calculation while maintaining the visual quality when using
the original tempoGAN technique. We devised an equation
representing the quality difference between the results using
the original tempoGAN and our results as follows:

E =
1
N

N∑
i=1

|yi − ŷi|, (2)
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FIGURE 21. The three training scenes used for 3D smoke simulation:
(a) collision(128 × 64 × 64), (b) boost(128 × 64 × 64),
(c) basic(64 × 128 × 64).

FIGURE 22. Comparison of before (a) and after (b) 3D SR processing.

FIGURE 23. Comparison of results between original tempoGAN and our
method. The average error values for Figure 21a(collision) and
Figure 21b(boost) were 0.000058 and 0.000065, respectively.

where E is the error value, N is the total number of frames,
yi is the HR data generated by tempoGAN for frame i, and
ŷi is the HR data generated by our method. The overall error
is computed by averaging the sum of the individual errors
over all frames. The error value for two different scenes is
shown in Figure 23, showing that the difference between
the HR results from our method and the tempoGAN method
is almost zero, with the close-up details (green and yellow
boxes) confirming the similarity. We compared ytempo and
yours, which are results from the same input data, to determine
how different our method is from the original tempoGAN.
The mean error was calculated using the absolute value of
the difference between ytempo and yours for all grids.
As shown in Figure 24, despite using the adaptive octree,

the density of SR smoke looks lossless and the pattern is
clearly expressed.

FIGURE 24. Results of 3D SR processing (Figure 21c).

FIGURE 25. Adaptivity test for rising smoke (red cell: empty region).

Our method improves the efficiency in terms of speed
and memory by applying the SR operation to the smoke
simulation based on the adaptive grid (e.g., octree). Although
our method does not represent realistic elements of the
smoke movement, integrating our method into existing
detail-enhancement studies can improve details and effi-
ciency [5], [6], [50]. Some studies improve detail using deep
learning for fluid simulation. They proposed a style-transfer
network that can control the detailed motion of smoke while
using a grid-based structure. Although this technique is not an
SR technique, it is the first study to apply image-style-transfer
research, which has been studied a large amount in computer
vision, to a physics-based simulation. Because this study also
uses grids and densities like ours, it can be easily integrated
based on octrees.

B. DISCUSSION
1) SPATIAL ADAPTIVITY
Two scenes were created to determine the efficient of the
proposed method in terms of space. We experimented by
upscaling the quadtree calculated in the downscaled space to
its original size (see Figure 25).
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FIGURE 26. Comparison of execution time between the original tempoGAN and our method (inset image: our method(full)).

FIGURE 27. Comparison of execution times for different patch sizes.

Figure 25a shows the adaptivity of our technique through
an example of rising smoke. The quadtree is partitioned only

in the area where the density exists, and the SR operation
is not performed on the empty area without the density.

VOLUME 9, 2021 98625



B.-S. Hong et al.: Accelerated Smoke Simulation by SR

FIGURE 28. SR results for the smoke text scene generated by our method (inset image: LR results).

We randomly distributed the location where the density is
sourced, and then performed a smoke injection simulation.
At the beginning of the simulation, the quadtree was divided
only near the sourcing position, but as the density spreads,
the area in which the quadtree is calculated also expands (see
Figure 25b). As the computational space increases, the num-
ber of nodes merged increases, so the total number of nodes
does not continue to increase.

2) COMPARISON WITH THE PREVIOUS METHOD
First, we compared the execution time between our method
and the original tempoGAN.Because the original tempoGAN
technique applies the SR operation to the entire simulation
space, the execution time for each frame does not change
significantly. In contrast, our method has a large variation
in execution time for each frame because there are many
changes in the quadtree nodes for each frame.

Figure 26a shows the results of performing the SR opera-
tion on 2D input data with a patch size of 128 and a resolution
of 512 × 512. When using the original tempoGAN, it took
about 1.2 seconds, and when using only quadtree among our
methods(our method(only quadtree) in Figure 26a), it took
about 0.5 seconds on average. When we used our method
with only quadtree, the execution time was 5 times faster for
simple scene frames, and about 1.6 times faster for dynamic
scene frames. On average, the frames are processedmore than
3 times faster. As described, when the quadtree was combined
with downscaling and binarization (our method(full) in Fig-
ure 26a), the performance was improved by about 16 times
compared with the classic quadtree alone.

Similar patterns appear in other scenes in Figure 26. If only
quadtree is used, the performance improvement decreases
toward the latter half of the simulation, where the scene
becomes more complex and dynamic, but when downscaling
and binarization are combined, the performance improves
dramatically in every frame. Figure 26c and 26d, showing the
boost and basic scenes, have the same maximum acceleration
factor at the beginning.

3) DIFFERENT PATCH SIZES
Because the simulation space is divided into patches,
the overall simulation performance is inevitably affected by
the size of the patch. Because the time for SR processing
in our proposed method depends on the complexity of the
scene and the patch size, it is necessary to specify a suitable
patch size. Figure 27 shows the SR execution times when
using three different patch sizes for the 2D and 3D basic
scenes.

For a 2D basic scene with input data resolution of 512 ×
512, we tested with patch sizes set to 1

2 ,
1
4 , and

1
8 of the

input data resolution. For a 3D basic scene with input data
resolution of 64 × 128 × 64, we tested with patch sizes set
to 1

4 ,
1
6 , and

1
8 of the input data resolution. According to

our experiments, the optimal patch size is 1
4 (for 2D) or 1

8
(for 3D) of the input data size. In this paper, through various
experiments, the patch size for the 3D scene was set to 16 and
a good result was produced.

Finally, we compared the execution time for each of the
3D scenes using a patch size of 16. Figure 26 demonstrates
that our method performs SR faster than tempoGAN in each
frame, and the error value of 0.000097 is insignificant.

4) DIFFERENT SCENES
As mentioned earlier, the more complex and dynamic the
scene, the longer the execution time will take. In this paper,
experiments were conducted on various scenes according to
various situations and settings, and the configuration and
performance of each scene are summarized in Table 1. The
parameters in this paper are summarized in Table 2.

Because our method applies the SR operation only to
patches with a state value of FD or MIX, the more com-
plex scene in the second half of the simulation (with more
variable-density data) requires more processing. By contrast,
the scene at the start of the simulation required little pro-
cessing, because there were almost no variable-density data.
Figure 28 shows the SR results generated by our method of
the target-driven smoke scenes.
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TABLE 1. Simulation configuration and performance.

TABLE 2. Simulation parameters. We used these specific parameters to generate the example animations shown in this paper.

5) MEASURING EXECUTION TIME
The execution times of the original tempoGAN [28] and our
method were measured and compared. Because tempoGAN
uses data simulated in the entire space without a quadtree,
we measured the average SR time spent for training and
testing. When measuring the execution time of our method
using only the quadtree, the time taken to build the quadtree
and the average SR time taken for training were summed.
When measuring the execution time of our method in which
all operations were applied, the time required for binarization
and downscaling was added.

VIII. CONCLUSION AND FUTURE WORK
We propose an accelerated SR method for a 3D smoke scene
based on an octree technique. While most of the existing SR
methods perform operations for the entire simulation space,
our method can reduce the execution time because it searches
for a region to which the SR is to be significantly applied.
We first divide the space based on the presence of density
data, and this information is stored in a tree structure such as a
quadtree or octree. Because of the elimination of unnecessary
SR operations, the performance of our method is significantly
improved compared with using the original tempoGAN [28].
Because the space partitioning technique in this study is
widely used, it can be easily applied when performing SR
operations for other types of fluid simulation techniques (e.g.,
Sato et al. [42] and Kim et al. [5], [6]).

The limitation of our study is that the optimal patch size can
only be obtained empirically. In addition, the data optimiza-
tion method proposed in this paper is a tree-based method

that depends on the density of smoke. In other words, there
is a limit to maximizing efficiency because it depends on the
presence or absence of density, not adaptivity according to
the level of detail of density. In addition, the adaptivity of
data was not considered in the network configuration stage.

In the future, we will study how to determine the optimal
patch size based on the given data. In addition, we will newly
define the standard for adaptivity according to the level of
detail, and study how to improve the performance in both data
and network configuration processes.

In future work, we aim to investigate the automatic deter-
mination of suitable patch sizes, which would improve the
efficiency of our method. Because our method of partitioning
the simulation space to be operated on is a generalizable
process, our approach should be applicable to the acceleration
of other fluid-simulation-based SR models or style-transfer
models (e.g., Sato et al. [42] and Kim et al. [5], [6]).
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