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ABSTRACT Supplier-buyer relationships have been the focus of considerable supply chain management
and marketing research for decades. To validate the process capability of a supplier, practitioners usually
operate the acceptance sampling plan (ASP). The most basic ASP is a single sampling plan (SSP) due to its
straightforward lot-disposition mechanism. However, since the lot-disposition mechanism of SSP cannot
accommodate the historical lot-quality levels information, it requires a large sample size for inspection
to validate the submitted lot’s process capability. To obtain these benefits from historical information,
multiple-lot dependent state (MDS) sampling plans have been proposed. TheMDS plans havemanufacturing
traceability of historical lot-quality levels information to sentence the submitted lot. However, the MDS
plan’s manufacturing traceability has a drawback that cost-efficiency decreases as more historical lot-quality
levels information are considered, which contradicts its initial development goal. To overturn this con-
tradictory situation, we proposed the adaptive MDS (AMDS) plans based on the process loss restricted
consideration with combinatorial mathematical treatment that can correct the MDS plans manufacturing
traceability of historical lot-quality levels information that help practitioners to adopt more historical
information into lot-disposition freely without bearing the reduction of cost-efficiency. Meanwhile, their
performances are superior to existing MDS plans in terms of cost-effectiveness and discriminatory power.
Moreover, we further developed a web-based app for our proposed plans to improve the convenience of
applying them in practice. By operating the web-based app, practitioners can quickly obtain the optimal plan
criteria without bearing the burdens of table-checking or mathematical model solving. These improvements
can genuinely help buyers distinguish reliable suppliers efficiently and build up a strong partnership with
them. Finally, the applicability of the proposed plan is demonstrated in a real-world case study.

INDEX TERMS Lot tracing, process loss restricted, lot-dependent sampling plans, supplier-buyer
relationships, historical lot-quality levels information.

I. INTRODUCTION
Supplier-buyer relationships have been the considerable
focus of supply chain management and marketing research
for decades [1], [2]. Yu and Pysarchik [3] suggested the
long-term supplier-buyer relationship to be the most crit-
ical construct to establish optimal business relationships.
Constructing a long-term supplier-buyer partnership is a
progressive process that requires accumulating trust for each
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other. In this process, suppliers should demonstrate their
process capability for a long time to earn buyers’ trust.
To validate the process capability of suppliers, practition-
ers usually inspect the submitted lot from the suppliers [4].
An acceptance sampling plan (ASP), a compromise between
100% inspection and no inspection, is a practical and widely
used tool for lot disposition [5]–[7]. A well-designed ASP
can not only protect both supplier-buyer under a risk-
controllable condition but also improve the cost-efficiency of
lot-disposition [8].
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A single sampling plan (SSP) is the most basic
ASP because of its straightforward lot-disposition mecha-
nism [9], [10]. Nevertheless, since the lot-disposition mecha-
nism of SSP only considering the current lot’s information
that cannot accommodate the historical lot-quality levels
information, it requires a large sample size for inspection
to validate the submitted lot’s process capability [11], [12].
With the rapid development of manufacturing technology,
the supplier has widely adopted continuous-flow produc-
tion processes [13], [14]. Continuous receipts and accep-
tance inspections produce substantial useful information.
This information feedback corrects the inspection rules,
mechanisms, and action plans to maximize supplier-buyer
resource benefits. In this scenario, the ASPs should have
manufacturing traceability to accommodate such valuable
information [15], [16]. However, the basic SSP cannot help
practitioners to gain such valuable information. To overcome
this, several lot-dependent ASPs such as chain sampling
plan [17], lot-fixed dependent states sampling plan [18], and
multiple-lot dependent states (MDS) sampling plan [19]–[22]
have been developed.

Generally, the ASPs can be classified into attributes-type
and variables-type. One of the differences between them is the
attributes-type ASPs demand a larger sample size for inspec-
tion than variables-type ASPs when acceptable quality levels
are very small., Nowadays, as many buyers begin to stress
suppliers improve their production process, variables-type
ASPs have become more attractive [23]. The variables-type
MDS sampling plan is firstly introduced by Balamurali and
Jun [24]. Subsequently, Aslam et al. [25] further proposed
the variables-type MDS plan based on process loss restricted
consideration.

The MDS plans have manufacturing traceability of his-
torical lot-quality levels information to sentence the sub-
mitted lot. However, when more historical lot-quality levels
information is considered by practitioners, we discover the
MDS plans’ required sample size for inspection presents
an upward trend, and the lot-accepted criterion shows a
downward trend. This outcome indicates the MDS plans’
cost-efficiency and discrimination power will decrease as
more historical lot-quality levels of information are consid-
ered, which contradicts the initial goal of the development of
MDS plans. Especially, this contradiction may become seri-
ous for the long-term supplier-buyer relationship since it has
numerous traceable deliveries and lot-disposition operations.
Consequently, in practice, the manufacturing traceability of
MDS plans has been limited.

To tackle this contradictory situation, we proposed
an adaptive MDS (AMDS) plan based on the bilateral
quality-characteristic capability index with the process loss
restricted. The proposed AMDS plan has three signif-
icant contributions. Firstly, the combinatorial mathemat-
ical treatment of this paper for the proposed AMDS
plans activates their manufacturing traceability of histori-
cal lot-quality levels information, which is of necessity in
the implementation of the manufacturing execution system.

TABLE 1. The progressive development of the lot-dependent ASPs.

Secondly, its performance is superior to existing MDS plans
in terms of cost-effectiveness and discriminatory power.
Thirdly, the AMDS plan can integrant the traditional SSP
and MDS plan for building up a long-term supplier-buyer
relationship.We tabulated the progressive development of the
lot-dependent ASPs in Table 1 and marked our contribution
as follows.

So far, most studies of ASPs usually provided tables
for practitioners to execute their introduced sampling plans.
However, the tables cannot accommodate all the regula-
tions in practice, which is a disadvantage and inconve-
nience for practitioners. Thus, to improve the convenience
of applying our proposed plans in practice, we develop
a web-based app. By operating the user interface of our
proposed web-based app, practitioners can quickly obtain
the optimal plan criteria without bearing table-checking or
mathematical-model solving burdens.

The notations and abbreviations used throughout this paper
is listed in Table 2, as follows.

II. PROCESS-LOSS-RESTRICTED-BASED INDEX AND
ACCEPTANCE SAMPLING PLAN
A. PROCESS-LOSS-RESTRICTED-BASED INDEX
Process capability indices (PCIs) are functional tools that
measure the producer’s manufacturing capability within the
customer’s required tolerance scope. In practice, Cp and
Cpk are widely used PCIs, which are defined as follows,
respectively,

Cp =
USL − LSL

6σ
and

Cpk = min
{
USL − µ

3σ
,
µ− LSL

3σ

}
=
d − |µ−M |

3σ
(1)

where USL is the upper specification limit and LSL is
the lower specification limit; µ and σ are the mean and
standard deviation of quality characteristics, respectively;
d = (USL − LSL)/2 and M = (USL + LSL)/2 are the
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TABLE 2. List of the notations and abbreviations used throughout this
paper.

half-length and the midpoint of the specification tolerances,
respectively.

However, these two PCIs cannot differentiate among the
product that falls inside the specification limits. To measure

TABLE 3. Some commonly used Le values and their corresponding status.

the situation that the quality characteristic deviated from the
target value, the process loss index, Cpm, is proposed by
Chan et al. [26], which is defined as follows.

Cpm =
USL − LSL

6
√
σ 2 + (µ− T )2

(2)

where T is the process target. From Eq. (2), we can find the
Cpm index is designed based on the quality loss function,
the farther the quality characteristic deviated, the quality loss
becomes greater, the Cpm value becomes smaller [27].
Unfortunately, the Cpm index involves a reciprocal trans-

formation of the process mean and variance [28]. Moreover,
the Cpm index cannot provide an uncontaminated separation
between the information concerning the process precision,
and process accuracy, where process precision relates to prod-
uct variation and process accuracy relates to the degree of pro-
cess targeting [28]. To tackle these drawbacks, Johnson [29]
proposed another process loss index Le, which is defined as
follows.

Le =
σ 2
+ (µ− T )2

d2
(3)

For application convenience, we tabulate some commonly
used Le values and their corresponding status in Table 3.

In practice, the process parameters µ and σ are unknown,
so we consider the following natural estimator L̂e to estimate
the Le index.

L̂e =
S2n +

(
X̄ − T

)2
d2

=

[∑n
i=1

(
Xi − X̄

)2/n]+ (X̄ − T )2
d2

=

∑n
i=1 (Xi − T )

2

nd2
(4)

where X̄ =
∑n

i=1 Xi/n and S
2
n =

∑n
i=1

(
Xi − X̄

)2
/n.

Yen and Chang [30] derived the sampling distribution of
the estimator L̂e under the assumption of normality, that is

L̂e ∼
Leχ2

n (δ)

n+ δ
(5)

where χ2
n (δ) is a non-central chi-squared distribution with

n degrees of freedom; δ = n (µ− T )2/σ 2
= nξ2 is the

non-centrality parameter, where ξ = (µ− T )/σ .
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B. ACCEPTANCE SAMPLING PLAN WITH PROCESS LOSS
RESTRICTED CONSIDERATION
Generally, the ASP with process loss restricted consideration
is created on a pair of loss-and-risk levels, (LAPLL, 1− α)
and (LRPLL, β), to regulate supplier-buyer purchase con-
tracts, where LAPLL and LRPLL are the accepted process loss
level (APLL) and rejected process loss level (RPLL) of the
Le index, respectively; α and β denote the risks borne by
the supplier and the buyer, respectively. To be more precise,
a well-designed ASP should satisfy two conditions: (i) the
probability of accepting a lot at the LAPLL should exceed
100 (1− α)%, and (ii) the probability of accepting a lot
at the LRPLL should lower than 100 β%. Both designated
points of interest on the operating characteristic (OC) curve,
(LAPLL, 1− α) and (LRPLL, β), can be expressed by

III. DISCUSSION OF THE Le-BASED MDS PLANS WITH
MANUFACTURING TRACEABILITY AND ITS
DRAWBACKS
The Le-MDS plan was developed by Aslam et al. [25]. In the
Le-MDS plan, every quality level of the submitted lot is
recorded because of its manufacturing traceability. Let l(i),
for i = 1, 2, . . . , c, be a sequential lots submission from
the supplier. Each l(i) is randomly sampled n items to com-
pute its quality level, i.e., L̂e(i). Each L̂e(i) has three possi-
ble results as L̂e(i) ∈ {[0, ca] , (ca, cr ) , [cr , ∞) }, where
ca and cr are the lot-accepted criterion and the lot-rejected
criterion, respectively. The Le -MDS plans’ lot-disposition
of the current lot with these three results are tabulated
in Table 4.

TABLE 4. The Le-MDS plans’ lot-disposition of the current lot (L̂e(c)).

Given the specified Le value and lot-traceability param-
eter m, the acceptance probability of the current lot is a
function of (n, ca, cr ), denoted as πc (n, ca, cr |Le,m), which
can be expressed mathematically as

πc (n, ca, cr |Le,m)

= P
(
L̂e(c) ≤ ca |Le

)
+ P

(
ca < L̂e(c) < cr |Le

)
×

m∏
i=1

P
(
L̂e(c−i) ≤ ca |Le

)
= P

(
L̂e(c) ≤ ca |Le

)

+

[
1− P

(
L̂e(c) > cr |Le

)
− P

(
L̂e(c) ≤ ca |Le

)]
×

m∏
i=1

P
(
L̂e(c−i) ≤ ca |Le

)
(6)

where P
(
L̂e(c) ≤ ca |Le

)
is the outright acceptance proba-

bility of the current lot and P
(
L̂e(c) > cr |Le

)
is the out-

right rejectable probability of the current lot. By referring to
Eq. (5), these two probabilities can be expressed as follows.

P
(
L̂e(c) ≤ ca |Le

)
= P

{
χ2
n (δ) ≤

(n+ δ) · ca
Le

}
= P

{
χ2
n

(
nξ2

)
≤

(
n+ nξ2

)
· ca

Le

}
(7)

P
(
L̂e(c) > cr |Le

)
= P

{
χ2
n (δ) >

(n+ δ) · cr
Le

}
= P

{
χ2
n

(
nξ2

)
>

(
n+ nξ2

)
· cr

Le

}
(8)

According to Eq. (6), a nonlinear constrained model can
be constructed to determine the plan criteria with the target
of minimizing the required sample size.

minimize
(n,ca, cr |LAPLL,LRPLL, α,β,m )

dne

Subject to

πc (n, ca, cr |LAPLL,m) ≥ 1− α

πc (n, ca, cr |LRPLL,m) ≤ β

n > 1, 0 < ca < cr , m ∈ Z+ (9)

where dne is the smallest integer greater than or equal to n.
The Le-MDS plan indicates better performance than the

ordinary Le-based single sampling plan (abbr. Le-SSP) in
terms of the cost-efficiency and the shape of OC curves
because of its manufacturing traceability. In the study of the
Le-MDS plan, onlym = 1, 2 and 3 conditions have been con-
sidered and discussed [25]. However, when more preceding
lots’ process records, i.e., m, are considered into the current
lot-disposition, more inspection costs are demanded, and the
process loss requirement is declined. This phenomenon can
be observed more clearly in Figure 1.

IV. DEVELOPMENT OF THE Le-AMDS PLANS WITH
MODIFIED-MANUFACTURING TRACEABILITY
To tackle the drawback of Le-MDS plans, we develop the
Le-AMDS plans with modified-manufacturing traceability,
which has a two-parameter mechanism (m, j). The Le-AMDS
plans allow at most j lots’ process loss records to situate
within the marginal admissible process loss level [ca, cr ]
to be incorporated. To receive the benefits of Le-AMDS
plans without enduring too many of the related management
burdens, we suggest j being limited in the range of j ∈
{0, 1, . . . , bm/2c}, where bm/2c is the largest integer less
than or equal to m/2.
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FIGURE 1. (a) Required n and lot-accepted criterion ca in Le-MDS plan with m = 1-50. Conditions are
(
LAPLL, LRPLL

)
= (0.06, 0.11)

and (α, β) = (0.05, 0.05) or (0.05, 0.10).

FIGURE 2. The flowchart of the Le-AMDS plan.

A. OPERATIONAL PROCEDURES AND FLOWCHART
Likewise, in the Le-AMDS plans, the estimator of each sub-
mitted lot, L̂e(i), also has three possible results, i.e., L̂e(i) ∈
{[0, ca] , (ca, cr ) , [cr , ∞) }. The operational procedures for
the disposition of the current lot and their corresponding
flowchart are shown as follows.

Step 1: Specify the Le-AMDS plan’s regulation, i.e.,
(LAPLL,LRPLL, α, β,m, j).

Step 2: Randomly draw n samples from the current lot with
normality check and compute its L̂e(c) value.

Step 3: Sentence the current lot with the following rules.

(i) While L̂e(c) ∈ [cr , ∞), reject the current lot
straightly.

(ii) While L̂e(c) ∈ [0, ca], accept the current lot
straightly.

(iii) While L̂e(c) ∈ (ca, cr ), go to Step 4.

Step 4: Consider preceding m lots’ process loss records
L̂e(c−1), L̂e(c−2), . . . , L̂e(c−m):

(i) Accept the current lot if thesem lots show nomore
than j lots with process loss L̂e(c) ∈ (ca, cr ) and
the other lots all straightly accepted at L̂e(c) ∈
[0, ca].

(ii) Otherwise, reject the current lot.

B. ACCEPTANCE PROBABILITY AND OPTIMIZATION
MODEL
Evidently, the sentencing of the current lot is made in
Step 3 and Step 4, respectively. In Step 3, by refer-
ring to Eq. (7), the acceptance probability of the current
lot is

π1
c (n, ca, cr |Le) = P

(
L̂e(c) ≤ ca |Le

)
(10)
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Nevertheless, the acceptance probability of the current lot
in Step 4, denoted as π2

c (n, ca, cr |Le,m, j), is somewhat
complicated. To be more precise, a system backtracking
m lots is from current lot l(c) to lot l(c−m). Let S =

{c− 1, c− 2, . . . , c− m} be a set of m backtracking lots’
numbers containing m elements. A j−combination of the set
S is a subset of j distinct elements from S, denoted as Sj. Since
S has m elements, the number of j−combinations is equal to
the binomial coefficient C (m, j). Let subset Shj be named as
the h − thj−combination, for h = 1, 2, . . . ,C(m, j). The j
elements of Shj is denoted as S

h
j =

{
shj (1), s

h
j (2), . . . , s

h
j (j)
}
.

Hence, the other subset S−Shj has m− j elements that can be

expressed as S − Shj =
{
s∗hj (1), s∗hj (2), . . . , s∗hj (m− j)

}
.

Therefore, the acceptance probability of the current lot in
step 4 is

π2
c (n, ca, cr |Le,m, j)

= P
(
ca < L̂e(c) < cr |Le

)

×



m∏
i=1

P
(
L̂e(c−i) ≤ ca |Le

)
+

j∑
i=1

(
m
i

)[
i∏

q=1
P
(
ca < L̂e(shi (q)) < cr |Le

) m−i∏
l=1

P
(
L̂e(s∗hi (l)) ≤ ca |Le

)]


(11)

In summary, the overall acceptance probability of the cur-
rent lot can be formulated as

πc (n, ca, cr |Le,m, j)

= π1
c (n, ca, cr |Le)+ π

2
c (n, ca, cr |Le,m, j)

= P
(
L̂e(c) ≤ ca |Le

)
+ P

(
ca < L̂e(c) < cr |Le

)

×



m∏
i=1

P
(
L̂e(c−i) ≤ ca |Le

)
+

j∑
i=1

(
m
i

)[
i∏

q=1
P
(
ca < L̂e(shi (q)) < cr |Le

) m−i∏
l=1

P
(
L̂e(s∗hi (l)) ≤ ca |Le

)]


(12)

Subsequently, according to Eq. (12), we can construct the
nonlinear constrained optimization based on economic con-
sideration, i.e., minimizes the required sample size, to further
determine the plan criteria.

minimize
(n,ca, cr |LAPLL,LRPLL, α,β,m,j )

dne

Subject to

πc (n, ca, cr |LAPLL,m, j) ≥ 1− α

πc (n, ca, cr |LRPLL,m, j) ≤ β

n > 1, 0 < ca < cr , m ∈ Z+,

j ∈
{
0, 1, . . . ,

⌊
m
/
2
⌋}

(13)

C. DETERMINATION OF THE UNKNOWN PARAMETER ξ
In practice, ξ = (µ− T )

/
σ is usually an estimate because

of the unknown µ and σ . To guarantee not only reliable
decision-making but also facilitate consistently designed
parameters, we plot the required sample size n (without
rounding) by solving the nonlinear constrained optimization
of Eq. (13) under the regulation (LAPLL,LRPLL, α, β,m, j) =
(0.04, 0.06, 0.01, 0.05, 6, 3) with different combinations of
ξAPLL = −1 (0.1) 1 and ξRPLL = −1 (0.1) 1, where ξAPLL
and ξRPLL are the ξ in the APLL and RPLL conditions,
respectively.

FIGURE 3. Required sample size n under the regulation (LAPLL, LRPLL,
α, β,m, j ) = (0.04, 0.06, 0.01, 0.05, 6, 3) with different combinations of
ξAPLL = −1

(
0.1

)
1 and ξRPLL = −1

(
0.1

)
1.

From Figure 3, we can find the combinations ξAPLL =
0.0 and ξRPLL = 0.0 have the largest required sam-
ple size n. The investigations for different regulations
(LAPLL,LRPLL, α, β,m, j) were also conducted but are not
reported here because they all show the same results. Con-
sequently, the nonlinear constrained optimization of Eq. (13)
can be rewritten as

minimize
(n,ca, cr |LAPLL,LRPLL,ξAPLL,ξRPLL,α, β,m,j )

dne

Subject to

πc(n, ca, cr |LAPLL,

ξAPLL = 0.0,m, j) ≥ 1− α

πc(n, ca, cr |LRPLL,

ξRPLL = 0.0,m, j) ≤ β

n > 1, 0 < ca < cr , m ∈ Z+,
j ∈

{
0, 1, . . . ,

⌊
m
/
2
⌋}

(14)

To further validate this secure viewpoint, we computed
the true producer’s risk α∗, and the true consumer’s risk β∗

with varying estimated values ξ∗ ∈ [−1, 1] for our pro-
posed Le-AMDS plans (see Figure 4), such as (n, ca, cr ) =
(109, 0.0473, 0.0713), (88, 0.0459, 0.0737), and (71, 0.0443,
0.0712) regulated at (LAPLL, LRPLL, α, β) = (0.04, 0.06,
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FIGURE 4. (a) The true producer’s risk α∗ and (b) the true consumer’s risk β∗ with varying estimated values ξ∗ ∈ [−1,1] for our proposed
Le-AMDS plans under a specified condition

(
LAPLL, LRPLL, α, β

)
= (0.04, 0.06, 0.01, 0.05).

0.01, 0.05) and (m, j) = (6, 1), (6, 2), and (6, 3). The results
shown in Figure 4 indicate both true risks α∗, and β∗ all lie
below the tolerable risks α = 0.01 and β = 0.05 specified in
the purchasing contract; therefore, our proposed methodolo-
gies and their results can truly safeguard both the supplier
and the buyer without sacrificing their mutual interests in
verification and validation of the quality of the products.

D. ESTABLISHMENT OF A WEB-BASED APP FOR
COMPUTATION OF PLAN CRITERIA
For the convenience of the practitioner to utilize our
Le-AMDS plans, we program Eq. (14) in the form of R
function [31] to obtain the optimal plan criteria, where the
optimization package ‘‘nloptr’’ in R software [32] is used
with a direct search algorithm [33]. Moreover, by using Shiny
package [34], we further created a web-based app for the
online computation of the Le-AMDS plans’ optimal criteria.
It can be connected through the hyperlink: https://quality-
and-reliability-lab.shinyapps.io/le-amds_calculator/.

V. THE DISCUSSION OF THE PLAN CRITERIA (n, ca, cr )

WITH ADAPTIVE MECHANISMS
(
m, j

)
Subsequently, we tabulated the plan criteria (n, ca, cr ) of
the Le-AMDS plans and illustrated an example in the first
sub-section. Next, in the second sub-section, we further
investigated the adaptive mechanism (m, j) in more detail to
demonstrate the superiority of our proposed plan.

A. THE PLAN CRITERIA (n, ca, cr ) OF THE Le-AMDS PLAN
In this sub-section, we tabulate the plan criteria (n, ca, cr )
under commonly used regulations (process loss levels and
risks) and some specified adaptive mechanisms in Table 5.

For example, if the regulations (LAPLL, LRPLL, α, β) are
set to (0.06, 0.11, 0.05, 0.10), and the adaptive mechanism is

(m, j) = (6, 2), we can obtain the plan criteria (n, ca, cr ) =
(23, 0.0702, 0.1483) by checking Table 5. Under this sit-
uation, we will straightly accept the current lot if the
23 inspected product items loss measurements with L̂e(c) ∈
[0, 0.0702] and straightly reject the lot if L̂e(c) ∈ [0.1272,∞);
otherwise, the preceding lots’ process loss information should
be considered into current lot disposition. The current lot
will be accepted if the preceding six lots on the condition
of no more than two lots with the process loss at L̂e(i) ∈
(0.0702,0.1483) and the other lots are straightly accepted
under L̂e(c) ∈ [0, 0.0702]. Otherwise, the current lot would
be rejected.

B. THE INTERACTION BETWEEN m AND j MECHANISMS
OF THE Le-AMDS PLAN
By checking Table 5, we can find the (m, j) mechanism
is a significant factor affecting the plan criteria under the
same regulation. To investigate the (m, j)mechanism in more
detail, we plot the required sample size n and lot-accepted
criterion ca under (LAPLL,LRPLL, α, β) = (0.04, 0.06, 0.05,
0.05) form ∈ {1, 2, . . . , 14} and j ∈ {1, 2, . . . , 7} in Figure 5.
From Figure 5, we point out three noted phenomena of

our proposed Le-AMDS plans. First, if j fixed, the required
n increases and the ca also increases as m increases. Second,
if m fixed, the required n decreases and the ca also decreases
as j increases. Third, the required n decreases and the ca also
decreases as m increases with j = bm/2c.
These phenomena indicate the (m, j) mechanism of

the proposed plan can not only reduce the required n
but also make process loss compliance stricter. In other
words, the (m, j) mechanism can help the proposed plan
include more historical lot-quality levels information into
current lot disposition without suffering the reduction of
cost-effectiveness like Le-MDS plans.
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TABLE 5. The plan criteria of the Le-AMDS plan with
(
m = 6, j ∈

{
1,2,3

})
.

FIGURE 5. (a) Required sample size n and (b) lot-accepted criterion ca under
(
LAPLL, LRPLL, α, β

)
= (0.04, 0.06, 0.05, 0.05) for m ∈

{
1,2, . . . ,14

}
and j ∈

{
1,2, . . . ,7

}
.

C. ADAPTIVE APPLICATIONS OF THE PROPOSED PLAN
Our proposed Le-AMDS planwith (m, j)mechanism is a flex-
ible and integrated ASP, which can be useful for a different
type of purchasing contract. First, as theoretical expected,

when ka = kr or m → ∞ with j = 0, then the Le-AMDS
plans will shrink to the Le-SSP, which established by Yen and
Chang [30], is suitable for those purchases that are made on
a nonrecurring or limited basis with few lots or no intention
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of developing an ongoing relationship with the supplier. Sec-
ond, the proposed plan with

(
m ∈ Z+, j = 0

)
will become

the Le-MDS plan, developed by Aslam et al. [25], which is
appropriate for those purchases that are routinely made over
relatively limited lots (limited period). Thirdly, the proposed
plan with

(
m ∈ Z+ ∩ m 6= 1, j ∈ {1, 2, . . . , bm/2c − 1}) is

useful for those purchases that are made continuingly for
relatively large specified lots.

TABLE 6. The applicability of Le-SSP, Le-MDS plans, and Le-AMDS plans.

Finally, as the proposed plan with (m ∈ Z+ ∩ m 6= 1,
j = bm/2c) becomes a long-term ASP, it is beneficial for
those purchases that are made continuingly for a long period.
We summarize the abovementioned points in Table 6 to
indicate the applicability of Le-SSP, Le-MDS plans, and
Le-AMDS plans. It can be discovered from Table 6 that the
proposed Le-AMDS plans are adaptive for the whole purchas-
ing type, especially for the longer-term partnership. These
outcomes indicate the proposed Le-AMDS plans are favor-
able for constructing a long-term supplier-buyer relationship.

VI. PERFORMANCE COMPARISONS
Generally speaking, the performance of ASPs can be com-
pared from two aspects, (i) cost-effectiveness and (ii) dis-
criminatory power. First, the cost-effectiveness is related
based on the required n for inspection, i.e., the less the
required n, the higher cost-effectiveness. Second, the discrim-
inatory power of ASPs can be discussed in the OC curve
and the average run length (ARL). The OC curve plots the
probabilities of accepting a lot versus the process loss level.
The greater is the inflection-point slope of the OC curve,
the higher the discriminatory power.

The ARL is used to represent the expected number of
inspections required to make a lot-rejection decision, which
is designed based on the plan’s acceptance probability by
using the mean of the geometric distribution of the run length,
that is ARL = [1− π (Le,m, j|n, ca, cr )]−1. Under the spec-
ified rejected process loss level, the smaller the ARL value,
the higher the discriminatory power because the faster the
lot-rejection decision can be made. On the contrary, under
the specified accepted process loss level, the higher the ARL
value, the higher the discriminatory power because the harder
is it to make the wrong decision [35].

A. COMPARISON OF COST-EFFECTIVENESS
In this sub-section, we tabulate the required n in four ASPs,
which are the basic Le-SSP, the most efficient Le-MDS
plan (i.e., m = 1), and two kinds of Le-AMDS plan

(i.e., (m, j) = (7, 3), (8, 4)), for various regulations
(LAPLL,LRPLL, α, β) in Table 7. Additionally, we also com-
pute the reduction rate of required n of Le-MDS plan and
Le-AMDS plans when comparing with the basic Le-SSP.
From Table 7, we can find the Le-MDS plan with m = 1

only reduces the required n from 32% to 38%, but the
Le-AMDS plan with (m, j) = (7, 3) reduces the required
n from 45% to 66% and the Le-AMDS plan with (m, j) =
(8, 4) reduces the required n from 50% to 70%. Consequently,
the proposed plans are more cost-efficient than the existing
Le-MDS plan and Le-SSP.

B. COMPARISON OF DISCRIMINATORY POWER
To validate the discriminatory power of ASPs, we first plot
the OC curves of the Le-SSP, Le-MDS plan with m = 1, and
Le-AMDS plan with (m, j) = (7, 3), (8, 4) under the regu-
lations (LAPLL,LRPLL, α, β) = (0.06, 0.11, 0.05, 0.05) and
(LAPLL,LRPLL, α, β) = (0.06, 0.11, 0.05, 0.10), respectively.

It is worthy to note from Figure 6 that the proposed
Le-AMDS plans can operate the less required n to obtain
the better shape of OC curves (i.e., more approach to ideal).
In other words, the proposed Le-AMDS plans have superior
discrimination with higher cost-efficiency than Le-SSP and
Le-MDS plans.
Second, we plot the ARL curves of these plans to fur-

ther investigate the discriminatory power in another aspect.
The regulations of process loss and risk are also set
to (LAPLL, LRPLL, α, β) = (0.06, 0.11, 0.05, 0.05) and
(LAPLL,LRPLL, α, β) = (0.06, 0.11, 0.05, 0.10), respectively.

Figures 7(a) and 7(b) display the ARL curves of proposed
Le-AMDS plans have a more significant upward trend than
the Le-SSP and Le-MDS plan under the evident acceptance
area. This outcome reveals the proposed plans are more dif-
ficult to reject a good lot than the other ASPs, i.e., more
difficult to make a wrong decision. Thence, the results of
both OC curves and ARL curves indicate the proposed plans
have superior discriminatory power, thereby sentencing the
submitted lot more efficiently and accurately.

VII. CASE STUDY
An organic light-emitting diode (OLED) are widely used to
create digital displays in devices such as television screens
and smartphone. OLED is a multi-layer structure, which is
shown in Figure 8. The emissive layer will emit light when
electricity is applied so that OLED can work without a back-
light. Hence, it can display deep black levels that achieve a
high contrast ratio, especially in low ambient light conditions,
and can be thinner and lighter than a traditional liquid crystal
display.

To obtain high working efficiency, balanced charge injec-
tion and transfer are required. Therefore, the thickness of the
electron transport layer is a critical quality characteristic of
OLED since it can be used to balance charge. We investigated
a specific OLED, which thickness of the electron transport
layer with the process target T = 40nm, upper and lower
specification limits of USL = 45nm, LSL = 35nm. Suppose
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TABLE 7. Required n in four ASPs under a variety of yield-and-risk regulations.

FIGURE 6. OC curves obtained by Le-SSP, Le-MDS plan with m = 1 and Le-AMDS plan with
(
m, j

)
= (7, 3), (8, 4) under the

regulations (a)
(
LAPLL, LRPLL, α, β

)
= (0.06, 0.11, 0.05, 0.05) and (b)

(
LAPLL, LRPLL, α, β

)
= (0.06, 0.11, 0.05, 0.10).

the pair of regulations are set to (LAPLL, 1− α) = (0.04,
0.95) and (LRPLL, β) = (0.06, 0.10), i.e., the proposed plan
should accept a submitted lot with at least 95% probability

if its process loss level LAPLL = 0.04. On the other hand,
a submitted lot with LRPLL = 0.06 should be accepted with
only a 10% probability at most.
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FIGURE 7. ARL curves obtained by Le-SSP, Le-MDS plan with m = 1 and Le-AMDS plan with
(
m, j

)
= (7, 3), (8, 4) under the regulations

(a)
(
LAPLL, LRPLL, α, β

)
= (0.06, 0.11, 0.05, 0.05) and (b)

(
LAPLL, LRPLL, α, β

)
= (0.06, 0.11, 0.05, 0.10).

FIGURE 8. The structure of an OLED.

In this case, suppose the supplier and buyer make a long-
term purchase agreement; we recommend conducting the
Le-AMDS plan with (m, j) = (16, 8) to take more capa-
bility records into lot-disposition. The plan criteria can be
determined (n, ca, cr ) = (33, 0.0419, 0.0985) by operating
the interactive web-based app https://quality-and-reliability-
lab.shinyapps.io/le-amds_calculator/, which wementioned in
Section 4. Then, the practitioner should draw 33 OLED prod-
ucts from the current submitted lot randomly and measure
their thickness. Firstly, we conduct a normality check for
these measurements. Subsequently, we compute the L̂e(c)
value and sentence the submitted lot. The submitted lot will
be accepted outright if the L̂e(c) shows L̂e(c) ∈ [0, 0.0419]
and rejected outright if L̂e(c) ∈ [0.0985, ∞). If L̂e(c) ∈
(0.0419, 0.0985), the preceding 16 lots’ capability records
should be considered. Meanwhile, the current lot will be
accepted if preceding 16 lots on the condition of no more than
eight lots with the process loss at L̂e(c) ∈ (0.0419, 0.0985)

TABLE 8. The measurements of the 33 samples (units: nm).

FIGURE 9. Q-Q plot of the 33 observed measurements.

and other lots were accepted under L̂e(c) ∈ [0, 0.0419]
directly; otherwise, the current lot will be rejected.

Table 8 lists the measurements of the 33 samples. By uti-
lizing the Anderson–Darling normality test, these 33 sam-
ples were approximately normally distributed with p-value=
0.4873 > 0.05. The theoretical quantiles against empirical
ones (Q-Q plot) are also displayed in Figure 9. According to
Eq. (4), the L̂e(c) can be computed as L̂e(c) = 0.0337. Hence,
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in this case, the current lot should be accepted outright since
L̂e(c) ∈ [0, 0.0419].

VIII. CONCLUSION
The existing MDS plan has manufacturing traceability that
can include historical lot-quality levels information into the
current lot disposition. However, the MDS plan’s manu-
facturing traceability has a drawback that cost-efficiency
decreases as more historical lot-quality levels information are
considered, which contradicts its initial development goal.
Meanwhile, this drawback is unbeneficial for the long-term
supplier-buyer relationship because it not only limits the
cost-efficiency of lot-disposition but also impliedly forces
practitioners to abandon valuable historical lot-quality levels
information.

To overturn this contradictory situation, we proposed the
AMDS plans based on the process loss restricted considera-
tion with combinatorial mathematical treatment that can cor-
rect the MDS plans manufacturing traceability of historical
lot-quality levels information, which is necessary for imple-
menting the manufacturing execution system. In other words,
the AMDS plan has reasonable manufacturing traceability
that can help practitioners freely include historical lot-quality
levels information into lot-disposition without enduring the
problem of cost-efficiency decrease. Additionally, since more
valuable historical lot-quality levels information can be con-
sidered, the proposed AMDS plans have shown superior per-
formance than both traditional SSP and MDS plans in terms
of the comparisons of the cost-efficiency and discriminatory
power.

On the other hand, the adaptive mechanism of the proposed
plan can integrate both the MDS plan and SSP by adjusting
the operational parameters (m, j), which have broad applica-
bility for different purchasing (stages) in the supplier-buyer
partnership. Additionally, we further developed a web-based
app for practitioners or any potential operator to execute our
proposed AMDS plan easily and quickly without bearing
any burden of table-checking or mathematical model solving.
These improvements can genuinely help buyers distinguish
reliable suppliers efficiently in the long run and build up a
strong partnership with them.
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