
Received June 20, 2021, accepted July 5, 2021, date of publication July 9, 2021, date of current version July 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3096043

Model-Driven Interoperability Layer for
Normalized Connectivity Across
Smart Grid Domains
ALAA S. ALAERJAN
Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Saudi Arabia

e-mail: asalaerjan@ju.edu.sa

This work was supported by the Deanship of Scientific Research at Jouf University under Research Grant DSR2020-02-2608.

ABSTRACT The connectivity of heterogeneous components is the key factor behind the notion of the Inter-
net of Things (IoT). Typically, IoT applications involve several communication protocols that are developed
based on heterogeneous data models. This has complicated the connectivity within IoT applications. It has
also caused significant interoperability issues. Therefore, in this paper we propose a novel connectivity
layer which we refer to as the Distributed Data Interoperability Layer (DDIL). DDIL aims at addressing the
connectivity issues that arise due to the heterogeneity of datamodels. In the approach, we construct DDIL into
different software components. We then describe these components as a set of configurable features to allow
DDIL to be tailored based on the requirements of each application. DDIL has the capabilities to address both
syntactic and semantic interoperability. The feature-oriented design of DDIL provides required flexibility
which is a key concern in several IoT applications. Additionally, DDIL supports backward compatibility.
It also allows utilizing preexisting technologies which supports rapid development of applications. We
implemented the approach in a simulated smart grid environment. The results prove that DDIL has the
capabilities to support the connectivity of different applications even if they are developed based on different
protocols and heterogeneous data models.

INDEX TERMS Applications, connectivity, feature-oriented, interoperability, IoT, model-based.

I. INTRODUCTION
The Internet of Things (IoT) has emerged due to the rapid
development in information and communication technology
(ICT). Several IoT applications (e.g., smart grids, smart
cities) start to realize the endless opportunities for improving
quality concerns such as productivity, reliability, and effi-
ciency. IoT promises to overcome the challenges that are cur-
rently being faced by several industrial and civil applications.
IoT aims at addressing the lack of monitoring and control. It
also aims at improving operational and predictive capabili-
ties [1]. IoT depends on connectivity to allow applications
to integrate physical objects with ICT [2]. This integration
enables communicating components to exchange real-time
information which improves domain awareness and enhances
decision making [3].

A cornerstone of the IoT notion is connecting differ-
ent domains within IoT applications. This requires exten-
sive efforts on understanding the connectivity nature of IoT

The associate editor coordinating the review of this manuscript and

approving it for publication was Bin Zhou .

applications. Several IoT applications are considered as mod-
ernization of current applications. For instance, smart grids
are modernization of current power grids [4]. Therefore, any
connectivity approach must consider the nature of current
applications as well as the requirements of modernized IoT
applications. Given that, one of the major challenges that are
currently being faced by industrial applications is commu-
nication interoperability [5]–[7]. This challenge also affects
several IoT applications. The communication interoperabil-
ity issues deteriorate the connectivity in IoT applications
and force different domains to operate in isolation which
contradicts the vision of IoT. In fact, interoperability is a
prerequisite for connectivity in large-scale systems, and con-
nectivity is not achievablewithout addressing communication
interoperability issues [8], [9].

There have been several proposals (e.g., The Industrial
Internet of Things Connectivity Framework, VolumeG5 [10])
for standardizing interoperability in IoT applications. How-
ever, many of those proposals abstractly describe the solu-
tions which does not totally resolve the current connectivity
issues. Typically, different domains within IoT applications

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 98639

https://orcid.org/0000-0003-2926-6083
https://orcid.org/0000-0002-1376-4531


A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

use different communication protocols. Each protocol uses
its own data model which is inherently different in terms
of structure and design. Additionally, the implementation
of data models is subjective to vendors interpretation [11].
As a result, the interoperability of domains is significantly
affected. Hence, the overall connectivity of IoT applications
is deteriorated.

In current practices, several applications are built upon
protocols that supports machine-to-machine communication
such as OPC-UA. These protocols are designed to support
local connectivity [12] which means they can not support
systems scalability. On the other hand, protocols such as the
Data Distribution Service (DDS) [13] are designed to enable
scalability and perform autonomously [14]. Unfortunately,
the data models of OPC-UA and DDS are heterogeneous.
Therefore, it is not feasible to allow applications that are
developed based on these protocols to exchange informa-
tion. This type of interoperability greatly affects connec-
tivity in future IoT applications. According to a report by
Manyika et al. [15], interoperability of communicating com-
ponents accounts to about 40%-60% of the total value of
IoT applications. It is worth mentioning that in this paper
the term ‘‘IoT application’’ indicates a system that integrates
physical objects, software, and communication technologies
(e.g., smart grids, smart cities, smart homes). On the other
hand, the term ‘‘application’’ means the software that is used
to perform specific functionalities (e.g., Supervisory Con-
trol and Data Acquisition [SCADA], Energy Management
System [EMS]).

In this paper, we present a novel layer for supporting
the connectivity in IoT applications. We refer to it as the
Distributed Data Interoperability Layer (DDIL). DDIL aims
at addressing the communication interoperability issues that
occur due to the heterogeneity of data models. DDIL also
aims at maximizing connectivity by allowing different appli-
cations to exchange data even if they use different communi-
cation protocols. In the approach, we combine two software
development techniques which are Model-Driven Engineer-
ing (MDE) and Feature-Oriented Modeling (FOM). We use
MDE to develop the components of DDIL into a set of mod-
els. We then use FOM to allow DDIL models to be config-
urable based on the requirements of each application. MDE
and FOM are used together because IoT applications consists
of a wide variety of applications and devices which requires
flexible connectivity solution to support rapid development
and integration [1], [3].

DDIL is developed to be placed under the application
layer and on top of communication protocols to maximize
connectivity. We experimented the implementation of DDIL
on a simulated smart grid environment. The results show that
DDIL supports connectivity even when it is used with het-
erogeneous ICT. Based on the above discussion, we observed
that introducing an interoperability layer on top of common
networking layers greatly benefits different domains in IoT
applications. Therefore, we summarize our contributions as
follows:

1) Providing DDIL which is an abstraction layer that com-
bines two different development techniques (i.e., MDE,
FOM) to support interoperability across different IoT
domains. DDIL permits configurability which allows
different applications to utilize the same layer yet tailor
it based on the required features. In this work, we sys-
tematically define the tailoring points by providing a
configurable feature model.

2) Defining several software models based on the notion
of separation of concerns to address connectivity issues
among IoT applications. Particularly, six models are
defined to address data transformation, data semantics,
data naming, and data integration issues. Those models
allow applications to exchange data even if they are built
upon heterogeneous protocols.

3) An implementation of the proposed layer is presented
to demonstrate the ability of DDIL to connect appli-
cations that are built upon heterogenous protocols in a
smart grid. The demonstrated use case allows four dif-
ferent applications that are built upon three heterogenous
protocols (i.e., DDS, MQTT, OPC-UA) to seamlessly
exchange data.

The rest of this paper is organized as follows. Section II
describes the connectivity challenges in IoT application. It
also provides an IoT context example to be used throughout
this paper. Section III provides an overview of some related
work. Section IV describes DDIL structure, models, and
design principles. Section V provides a use case illustrating
the viability of DDIL. Section VI provides an evaluation of
DDIL and describes the challenges that need to be addressed
in order to adopt DDIL. Finally, Section VII concludes this
paper and provides a discussion on future work.

II. IoT CONNECTIVITY ISSUES
This section provides an overview of the connectivity issues
that hinder the full realization of IoT applications and their
potentials. It also describes a context example to illustrate
the challenges in a smart grid which is one of the major IoT
application.

A. CHALLENGES
The rapid development of new technologies has enabled IoT
applications such as smart grids and smart cities to improve
efficiency of work, safety, and security. However, there is
still a demand for developing flexible connectivity solutions
for IoT applications to enable seamless data exchange [5].
IoT applications consist of multiple domains. For example,
a smart grid consists of domains such as power generation,
distribution, and consumption. Amajor requirement for smart
grids is enabling connectivity among objects (e.g., devices,
applications, sensors) not only within the same domain, but
also with other domains [3]. This is still a challenging task
due to the heterogeneity of communication protocols and
data models [1]. In fact, seamless connectivity is required
in all IoT applications not only smart grids, and the endless

98640 VOLUME 9, 2021



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

FIGURE 1. Different data models of common IoT communication protocols.

opportunities of IoT applications can not be realized without
addressing the connectivity issues.

Interoperability is a key challenge in realizing the connec-
tivity of IoT applications [7]. Typically, an IoT application
consists of several communication protocols each of which
uses a different data model [16]. This has caused signif-
icant interoperability issues and consequently deteriorates
the connectivity of IoT applications. For instance, consider
data generated from a protection sensor in a smart grid. The
same data is represented differently in a different domain
because different communication protocols are used. Even
when the same protocol is used, the representation of the data
might be inconsistent between different implementation since
structuring the data is subjective based on the interpretation
of each vendor [11], [17]. Based on that, applications in IoT
domains are forced to operate in isolation or use an ad-hoc
solution which is inefficient.

Figure 1 shows the data representations of three com-
mon protocols (i.e., DDS, OPC-UA, MQTT) in IoT appli-
cations [6], [18]. The figure illustrates the root cause which
attributes to several interoperability issues. It shows that the
data models of these protocols are inherently different. For
instance, DDS represents data as a structured topic with set of
interfaces, types, and properties. OPC-UA represents data as
set of hierarchical objects where objects inherent the proper-
ties of their superior objects.MQTT represents data as a block
of attributes referred to as a topic. Given these differences,
assume an application at a control center in a smart grid is
connected with three different domains each of which uses
a different data model as shown by the figure. Furthermore,
assume that each domain sends the same data (e.g., sensor
reading) to the control center application. It is evident that
there are data interoperability issues at the control application
since the data is structured and represented differently among
these three data models.

B. IoT CONTEXT APPLICATION
Given the above discussion on IoT connectivity challenges,
the following describes the challenges in the smart grid (SG).
SG is the future of the electric power grid and it is one of the
major applications of IoT [19]. It aims at leveraging ICT to
address the challenges that are currently being faced by the
current power system. SG depends on connectivity among
different domains to make smarter decisions and to create
an advanced energy system [20]. However, the connectivity

of different domains is still a major challenge in SG. This
is because SG consists of multiple power domains (i.e.,
operation, generation, distribution, and customer) each of
which uses its own connectivity protocols [21]. Additionally,
the diversity of data models and standards creates further data
interoperability challenges in SG [22]. All these challenges
result in deteriorating the connectivity of different power
domains in SG. Throughout the rest of this paper, we use SG
as an example for an IoT application.

Figure 2 illustrates the connectivity issues among differ-
ent domains in SG. It shows two types of interoperability
challenges: vertical and horizontal. The vertical interoper-
ability issues occur between lower domains (i.e., genera-
tion, distribution, customer) and management domain (i.e.,
operation). On the other hand, the horizontal interoperabil-
ity issues occur within the operation domain. All these
issues are due to the fact that each domain in SG uses its
own protocols and data models. For example, the customer
domain depends on lightweight communication protocols
such as ZigBee and MQTT [23]. These protocols produce
data based on their structured models. When power oper-
ators try to route data from customer domain to cloud or
operation domains, several interoperability issues arise due
to protocols heterogeneity [24], [25]. The same issues occur
between operation applications and generation/distribution
applications. Regarding the horizontal interoperability issues,
they occur between control systems at the operation domain
since those systems involve modern automation protocols
(e.g., DDS) and legacy systems based on protocols such as
OPC-UA [26], [27].

Table 1 shows a comparison between common utilized
protocols in SG. The protocols are described in terms of
Paradigm, Data Model, and QoS provision. The paradigm
criterion describes the data exchange mechanism among the
communicating components. The data model criterion speci-
fies whether if the data model of the protocol is standardized.
The QoS (quality of service) provision criterion indicates
whether the protocol is designed to consider quality aspects
in communication. From the table, it is obvious that SG
protocols are inherently different which illustrates the need
for a connectivity solution.

III. RELATED WORK
There has been a great effort towards improving the connec-
tivity of IoT applications. Several works have been trying to

VOLUME 9, 2021 98641



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

FIGURE 2. Connectivity issues among SG domains.

address the issues of data management among applications.
Other works are proposed to enable the connectivity and
allow applications to exchange data. The following provides
an overview of some related work.

The authors Girau et al. [28] propose a cloud based con-
nectivity platform which they refer to as Lysis. The platform
enables the development of distributed IoT applications. It
is described into four levels architectural model; include
real world level, visualization level, aggregational level, and
application level. Lysis describe the communicating objects
as autonomous social agents. Each agent controls its data and
has the ability to autonomously connect with other objects
through the virtualization layer. The authors claim that Lysis
supports software reusability since it fully exploits the plat-
form as a service (PaaS) model. The work provides a use case
illustrating the implementation of Lysis.

The work by Patti et al. [29] introduces a distributed infras-
tructure to support general purpose connectivity in SG. This
core purpose of this work is providing a peer-to-peer software
infrastructure to enable connectivity across different actors in
SG. The infrastructure is a middleware that consists of three
different layers which are application, service, and integra-
tion. Each layer is responsible for different functionalities.
For example, the service layer is responsible for providing the
middleware functionalities as web services. The integration
layer integrates the data from different actors and provides
it to the service layer. The application layer allows applica-
tions to developed and integrated with the lower layers. The
middleware relies heavily on the publish-subscribe paradigm
to connect different actors which imposes restrictions on the
communicating components.

The authors in [30] propose an IoT interoperability frame-
work to support communication within the smart home
domain. The framework is proposed to address interoper-
ability issues that arise among home area protocols and
communication technologies such as ZigBee, Bluetooth, and

TABLE 1. Comparison between utilized protocols in SG.

ZWave. The proposed framework includes three software
components. The first is a discovery model which is used
for biding and commissioning. The second is a device infor-
mation model which is used to identify each device within
the proposed framework. The third component is a transla-
tion model which consists of some submodules to perform
the actual translation between the different devices and data
representations. The authors demonstrate their approach by
showing the sequence of messages within a smart home
environment. It is obvious from the work that the approach
is designed only to address interoperability issues within a
smart home domain and it cannot be generalized to address
interoperability issues at larger scale.

The work by Mazayv et al. [31] proposes a vision for
addressing interoperability issues at the knowledge level. The
authors present a semantic profiling framework for discov-
ering the embedded functionalities within an object. These
objects then semantically categorized by their interaction
patterns. The framework consists of two layers, an upper
layer that is used to perform the semantic profiling, and a
lower layer used for identifying object objects functionalities.
In this work, the authors propose the Constrained RESTful
Environments (CoRE) related standards as the key driver for
integrating the data. The proposed work is limited in the
sense that it targets CoRE related technologies. Additionally,
the work requires applications to be smart in nature (i.e., they
have embedded smart functionalities) and this is not the case
in several IoT domains.

Peña and Fernández [32] propose an architectural model
for enabling connectivity among IoT components at three
levels fog, edge, and cloud. The core concept of the authors’
work is exploiting new technologies (e.g., fog and edge) to
enable greater IoT connectivity. The authors summarize their
contributions as first, defining the transparency that allows
the communicating edge and cloud nodes to dynamically
adopt with the changes in the communication topologies.
Second, defining the management aspects that govern the
connectivity topology to provide a global view for an IoT
system. Finally, defining the visualization systems to provide
a real-time information about data flow in an IoT system. The
work does not fully explain an implementation to validate
the proposed architecture. A comparison between the above
related works and DDIL is provided in Section VI.

IV. DISTRIBUTED DATA INTEROPERABILITY LAYER
This section describes the Distributed Data Interoper-
ability Layer (DDIL). DDIL is proposed to support

98642 VOLUME 9, 2021



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

seamless connectivity in IoT applications. It addresses
the interoperability issues that occur among heteroge-
neous data models. Hence, it allows applications to
communicate even if they have different communication
protocols.

DDIL is a data management and interoperability layer
developed based on MDE and FOM. It consists of multiple
software components referred to as models. DDIL is imple-
mented under the application layer and above communication
protocols (e.g., DDS, OPC-UA,MQTT) as shown in Figure 3.
This indicates that DDIL is developed to support multiple
data models. DDIL defines all data as objects which means
that the basic unit of information in DDIL is a ‘‘data object’’.
The remaining of this section describes the design decisions
and the models of DDIL.

A. DDIL OVERALL DESIGN
The design of DDIL promotes two quality attributes, which
are modularity and extendibility. DDIL has been developed
with a focus on modularity due to the fact that IoT commu-
nication systems are heterogeneous, and software modularity
is a key factor for addressing the heterogeneity of commu-
nication systems [33]. On the other hand, DDIL considers
extendibility due to the fact that most IoT applications are
still in a developing stage. Therefore, any proposed solution
should consider extendibility to accommodate new systems’
requirements [34]. The following describes these attributes in
the context of DDIL:

(a) Modularity: The structure of DDIL is described into
several models as API, Data Source, Data Semantics,
Data Naming, Data Integration, Service Configuration,
and Quality of Service. These models support the sep-
aration of concerns which allows them to handle dif-
ferent aspects of connectivity. In addition, the modular
design of DDIL allows for loose coupling among its
models which provides flexibility to tailor DDIL based
on the requirements of each application. Given that, all
DDIL models are built to handle the ‘‘data’’ part of the
communication. This means that DDIL is built based
on the assumption that the underlaying communication
structure is already configured to support multiple data
models. For instance, if an application is required to par-
ticipate in two communication protocols (e.g., DDS and
OPC-UA), then the assumption is that the underlying
communication structure is configured to support both
DDS and OPC-UA.

(b) Extendibility: DDIL is built to support the extendable
nature of applications in IoT domains. Meaning that
additional software components can be added with-
out affecting the entire layer. This is mainly because
DDIL models are loosely coupled, and they are inte-
grated through a set of APIs. In fact, the extendibility
of DDIL supports other qualities such as adaptability
which makes it capable of serving across heterogeneous
applications.

FIGURE 3. Structure of DDIL.

B. DDIL MODELS
DDIL models are described into two categories. Mod-
els used to provide functional requirements (i.e., API,
Data Source, Data Semantics, Data Naming, Data Integra-
tion, Service Configuration), and a model for controlling
non-functional requirements (i.e., Quality of Service). The
following describes each model in terms of functionalities
and relationships.

1) API
The API model is used to integrate applications with DDIL. It
provides a set of interfaces to allow an application developer
to utilize DDIL without having to know the implementation
details of each model. It provides functionalities such as data
management, QoS control, and service configurations. The
API model eases integrating DDIL with applications and
allows developers to focus on developing the applications
rather than focusing on the integration process. Eventually,
this increases the productivity and reduces applications devel-
opment cost.

2) SERVICE CONFIGURATION
This model is used by an application to configure DDIL. It
is based on FOM [35]. The model provides DDIL services
to an application a set of configurable features. A DDIL
feature is a software unit that is used to provide either a
functional or non-functional requirement. A feature can be
grouped with other features to provide a specific configura-
tion. Figure 4 shows the feature model of DDIL. It shows
that the root feature is refined into three features as: API,
Service_Configuration, and Data_Integration. These features
are required which is specified by the filled circles. They are
also used together which is specified by the filled triangle
under the DDIL feature. The dashed line between the features
specifies dependencies. For instance, the use of the Ser-
vice_Configuration feature depends on the API feature. Thus,
in order for an application to use Service_Configuration,
it first needs to properly use the API feature.

VOLUME 9, 2021 98643



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

FIGURE 4. Features of service configuration model.

The Service_Configuration feature is further refined
into four features as Data_Source, Data_Semantics,
Data_Naming andQuality_of_Service. Only theData_Source
feature is required, while the other three are optional which
is specified by open circles. The features under the Ser-
vice_Configuration feature can be used together which is
indicated by the filled triangle. The feature model of DDIL
is designed to be extendable. If further features (services)
are added to DDIL, they can be added to the feature model.
For example, if an application requires extra QoS features
to be added, then the new features can be defined under the
Quality_of_Service feature.

3) DATA INTEGRATION
This model facilitates receiving data with different modeling
structures. It allows an application not to be restricted to a
specific data model. It provides an integration proxy for each
data model. For instance, if an application requires data to
be received based on two data models (e.g., DDS topics and
OPC-UA objects), then the Data Integration model should
provide two proxies one for receivingDDS topics and another
for receiving OPC-UA data objects. The Data Integration
model acts as a bridge (interface) between the underlying
communication protocols and the Data Source model.

The Data Integration model consists of a set of software
components that are directly linked with the data models of
the underlying communication protocols. The model is built
to support transparency, hence when the integration proxy
is configured to receive data objects from a specific data
model, the application is not aware of how data is received
or reconstructed. This takes the burden off developers so they
can focus on developing applications rather than developing
integration proxies.

4) DATA SEMANTICS
This model is used to define any data semantics required
by an application. It provides data utility libraries including
data dictionaries. It is coupled with the Data Source model
to facilitate data construction and data reconstruction. Based
on the defined semantics, the model acts as a validation
unit. It ensures that the data produced by the Data Source
model follows the semantics defined by the application. For
example, suppose that data from an OPC-UA application

FIGURE 5. Information in an Object_ID.

needs to be propagated to DDS-enabled application. In this
case, the transformation from OPC-UA data model to DDS
topic is carried out by the Data Source model. However,
the validation is performed by the Data Semantics model. The
reason for separating out the validation from the Data Source
model is because that multiple applications may share the
same data model, yet they may require additional semantics
or constraints [14]. For instance, in a control center in a power
grid, two similar SCADA applications may treat the same
data objects differently [36], [37]. The first uses the data to
perform a rapid protection response, while the second uses
the data for analysis, logging, and storage. Therefore, each
application requires extra semantics for the same data.

5) DATA NAMING
This model is used to provide means for uniquely identi-
fying each data object in DDIL. It is required since data
object is the basic unit of information. Additionally, because
DDIL is capable of supporting heterogeneous data models
where different object identification techniques (e.g., Uni-
form Resource Identifier [URI], key attributes) are used.
The model is coupled with the Data Source model to pro-
vide the proper object naming. The reason for separating
out object naming from the Data Source model is to pro-
vide flexibility to an application to internally use its nam-
ing technique without affecting the source model of a data
object.

DDIL structurally identifies data objects within the notion
of a ‘‘data domain’’. A domain is used to categorize the type
of information that is exchanged among a group of applica-
tions. Each data object in a domain has a unique ‘‘Object_ID’’
which consists of two parts: one for identifying the data object
and another for identifying the domain as shown in Figure 5.
Data objects are identified by one of the following techniques:
attribute, classification, or URI. An attribute can be used to
identify a data object and if used, it must contain a unique
value for each data object. The classification can be also used
for providing description of a data object. It can be a name
or a type that explicitly defines an object. Furthermore, URI
can be used to identify a resource that contains a data object.
On the other hand, domains are identified by a domain_id.
Domain identification (e.g., name, type, number) is created
and shared among a group of applications. The setting of a
domain_id is performed during the initial configurations of
the applications.

98644 VOLUME 9, 2021



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

6) DATA SOURCE
This is the core model in DDIL since it is responsible for
managing data objects. It provides two functionalities which
are ‘‘constructing’’ and ‘‘reconstructing’’ data objects. Con-
structing data objects is performed based only on the utilized
data model of the underlying communication protocol. For
example, if an application is configured to participate in
DDS communication, then a data object must be constructed
based only on the standardized procedure of creating DDS
topics. Similarly, if an application is participating in OPC-UA
communication, then a data object must follow the standard
object creation of OPC-UA. Having said that, data construc-
tion is performed only when an application participates in one
communication protocol.

Reconstructing data objects on the other hand is performed
when an application participates in more than one communi-
cation protocol. A data object is reconstructed from a source
model to a target model. Once the reconstruction process
is completed, the syntax of the reconstructed data object
is in compliance with the target data model. Additionally,
the reconstructed object is semantically equivalent to the
source data object. To illustrate, assume that an application
is required to participate in two communication protocols,
DDS and OPC-UA. Furthermore, assume that the application
is required to pull data from an OPC-UA server and publish
the data through a DDS publisher. In this case, OPC-UA data
(i.e., source object) is reconstructed into a DDS topic (i.e.,
target object), and both are semantically equivalent.

In this work, MDE is used for reconstructing data objects.
The process follows the three-tiers model transformation
approach as shown in Figure 6. Ametamodel (M1) represents
structured data that is used to describe a specific model
(e.g., topic, object). A metametamodel (M2) is represented
by a metalanguage and it is used to provide the abstract
syntax for the metamodel (M1). A model (M0) represents an
instance of the defined structure at level (M1). In this work,
the reconstruction of data objects is guided by the following
transformation principles:

i Model-Driven Object Reconstruction: In order to recon-
struct a data object, a standardized approach should
be followed to insure consistency. Therefore, both the
source model and the target model are defined using
Unified Modeling Language (UML) [38].

ii Semantic Identification of Source and Target Objects:
Prior to performing a transformation, data types of a
target model are semantically mapped to source model.
This means that the target model describes the semantics
of a data object as represented by the source model even
when they have different syntax.

iii Reconstruction Grammar: Once the syntax and the
semantics of source and target data models are iden-
tified, transformation grammar is defined and con-
structed.

iv Systematic Object Reconstruction: The reconstruction
of data objects from source models to target models
should be performed using automatized tools to ensure

the consistency of the transformation process which
illustrates a need for developing support tools.

Algorithm 1 Data Source Model Operations
1: procedure DSM(InD:in: Input Data, InMdl:in: Source

Type, Trgt:in: Target Type)
2: while True do
3: if InMdl == Trgt then
4: Construct← Retrieve Input(InD)
5: Target_Struct← Get Dictionary(InMdl)
6: Object_ID← Object Naming (Target_Structure)
7: Execute (Construct, Target_Struct, Object_ID)
8: else
9: Reconstruct← Retrieve Input(InD)
10: Target_Struct← Get Dictionary(Trgt)
11: Object_ID← Object Naming (Target_Structure)
12: Execute (Reconstruct, Target_Struct, Object_ID)

Algorithm 1 abstractly describes the operations of the Data
Source model. The algorithm illustrates that the execution
of the procedure Data Source Model (DSM) requires three
values, which are input data, source model type, and target
model type. If the source type of the input data model is
the same as the target type, DSM executes data construction
(Construct). DSM first specifies the target structure of the
target type (Target_Struct) which should be the same as the
source structure. Then, DSM identifies the constructed data
object by an (Object_ID) based on the policies defined in the
Data Naming model. On the other hand, DSM executes data
reconstruction (Reconstruct) if the source type is different
from the target type. The same operations that are used for
constructing the data are carried for the reconstruction. How-
ever, with data reconstruction the target structure is different
than the source structure.

7) QUALITY OF SERVICE
This model is used to control data-related QoS requirements.
It is used only if the underlying communication protocol
is QoS-enabled (e.g., DDS, MQTT). The model allows an
application to control QoS requirements at DDIL level. For
example, if the underlying communication protocol is DDS,
the reliability policy is controlled (tuned) at DDIL level rather
than DDS level. This is because data reliability is a concern
that is mostly controlled at the application layer more than
lower layers. This work provides definitions for three QoS
policies since they are supported by some IoT communication
protocols:
• Data Availability: This policy specifies the state of the
data after it has been used in communication. It specifies
if a data object should be discarded immediately after it
has been sent. It is required when applications produce
data at high frequency. This policy is supported by pro-
tocols such as DDS.

• Data History: This policy specifies how to store data
objects after they have been sent/received – keep them

VOLUME 9, 2021 98645



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

FIGURE 6. MDE for reconstructing data objects.

for a specified time or keep them permanently. The
policy is supported by DDS.

• Data Reliability: This policy specifies the reliability of
data objects when they are used in the communication.
It specifies how to keep the data to insure the reliable
delivery. The policy is supported by protocols such as
DDS and MQTT.

V. USE CASE
This section presents a use case on the proposed approach
in Section IV. It describes implementing DDIL to multiple
communicating applications in SG. These applications are
distributed in four different domains (i.e., operation, gener-
ation, distribution, and customer). As described in Section II,
the heterogeneity of the communication protocols deterio-
rates the realization of SG. Therefore, in this use case we
demonstrate the ability of DDIL to enable seamless connec-
tivity among applications that are built upon heterogeneous
protocols and data models. We first developed four applica-
tions based on three different protocols – DDS, OPC-UA, and
MQTT. We then integrate these applications with DDIL. The
above protocols are used since they are commonly used in the
power system.

OPC-UA is widely adopted in the power system espe-
cially in the distribution domain (e.g., distributed energy
applications, monitoring/protection) [26]. Filed devices in
the distribution domain (e.g., data acquisition, protection
relays) communicate their data based on OPC-UA with local
servers. The servers in turn communicate the data with central
SCADA applications at the operation domain. However, sig-
nificant data interoperability issues occur between the opera-
tion domain and the distribution domain since they consist of
heterogeneous data models [11].

MQTT has been adopted in the customer domain due to its
ability to efficiently disseminate data especially when used
for constrained devices [23]. Smart devices (e.g., intelligent
electronic device [IED], smart monitors) use MQTT to com-
municate with data acquisition nodes in the customer domain.

Those nodes in turn communicate the data with SCADA
applications at the operation domain. However, the operation
domain utilizes more flexible protocols and different data
models such as DDS and the Common Information Model
(CIM) [27]. Consequently, the same issues that arise between
the operation and the distribution domains still occur between
the operation domain and the customer domain. Section V-A
demonstrates the ability of DDIL to address the above inter-
operability issues through model transformation.

The use case consists of two sections data related, and com-
munication related. The data related section (V-A) demon-
strates the functionalities provided by these models: Data
Source, Data Semantics, and Data Naming. The communi-
cation related section (V-B) demonstrates the functionali-
ties provided by: Service Configuration, Quality of Service,
and Data Integration. It also describes the simulated experi-
ment, the layout of the simulated environment, and the data
exchange scenarios.

A. DATA OBJECTS RECONSTRUCTION
Objects reconstruction is performed by the Data Source
model based on the described principles in Section IV-B(6).
The Ecore model is used for reconstructing data objects,
which means that in this work Ecore is used as the base of
the Data Source model. Ecore is an Eclipse Modeling Frame-
work1 for building structured data models. The algorithms
that are used for reconstructing data objects are described
by the Data Semantics model. They are developed based
on the Query/View/Transformation (QVT) language.2 QVT
is a model transformation language defined by the Object
Management Group (OMG). The Ecore model and the QVT
language are chosen since they are compatible. Additionally,
because they are supported by a set of development tools that
we leveraged in this work for developing DDIL. Given that,
two data object reconstruction cases are presented. The first
demonstrates reconstructing an OPC-UA data object into a
DDS topic, while the second demonstrates reconstructing an
OPC-UA data object into an MQTT topic.

1) RECONSTRUCTING OPC-UA OBJECT INTO A DDS TOPIC
This object reconstruction case demonstrates transforming
MMTR (Metering) which is an OPC-UA data object into a
DDS topic. MMTR is a logical node that represents a meter-
ing functionality of a device in the electric power system. It
consists of set of grouped values. The information provided
by MMTR is used for several purposes but mainly for billing.
The abstract data model of MMTR is defined based on IEC
61850 [39] which is a standard application protocol for elec-
trical substations.

Figure 7 shows the Ecore representation of MMTR. In
the figure, the Data Model object represents the root object
defined by the Data Source model. All children objects inher-
ent the properties of the Data Model. The MMTR Object and

1www.eclipse.org/modeling/emf/
2www.omg.org/spec/QVT/

98646 VOLUME 9, 2021



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

FIGURE 7. Ecore model of OPC-UA MMTR object.

ObjectType represent the type, properties, and structure of
the MMTR logical node. The BCR (Binary Counter Read-
ing) ObjectType defines the type of attributes (i.e., actVal,
pulsQty) that are used to describe the MMTR object. MMTR
consists of seven objects which are TotVAh, TotWh, TotVArh,
SupWh, SupVArh, DmdWh, and DmdVArh. These objects
represent properties such as apparent energy, real energy
supply, and real energy demand.

In the reconstruction process, MMTR ObjectType is trans-
formed into a UML class with a set of properties. The prop-
erties of the MMTR Object are also transformed into UML
classes representing the original content that is defined by the
OPC-UA data object. A DDS topic is created using the recon-
structed properties. Figure 8 shows the QVT generated trace
which results from transforming OPC-UAMMTR object into
a DDS topic. In this work, the auto-generated trace is used to
validate the correctness of the transformation process. DDS
defines each topic uniquely by a topic name and a type [13].
Therefore, two properties (topic_name and type_name) are
generated and attached to the reconstructed topic as shown in
the figure. The properties of MMTR are represented as set of
attributes by the new topic structure.

2) RECONSTRUCTING OPC-UA OBJECT INTO AN MQTT
TOPIC
This object reconstruction case demonstrates transforming
BACnetAnalogInputType OPC-UA object into an MQTT
topic. This object is based on the BACnet standard which
is a protocol for building automation systems [40]. The
BACnetAnalogInputType Object is used to represent sens-
ing data such as temperature readings and faults data.
BACnetAnalogInputType consists of several variables
and types as follows: device_type, object_identifier, pro-
file_name, present_value. They represent the actual reading
values as well as the device information. Figure 9 depicts
the Ecore model of the OPCU-UA BACnetAnalogInputType
object.

The BACnetAnalogInputType Object is transformed into a
UML class with a set of properties. These properties are used
to generate an MQTT topic. Each MQTT topic is uniquely

FIGURE 8. Trace of transforming OPC-UA object into DDS topic.

FIGURE 9. Ecore model of OPC-UA BACnetAnalog- InputType object.

identified within a broker. Therefore, a (topicID) is generated
and attached to the reconstructed topic. Figure 10 shows
the QVT auto-generated trace of transforming the OPC-UA
BACnetAnalogInputType object into an MQTT topic.

B. APPLYING DDIL FOR CONNECTIVITY
Given the above cases of objects reconstruction, the follow-
ing demonstrates applying DDIL for enabling inter-domain
connectivity in SG. SG requires all power domains to be
connected to the operation domain [41]. This is because the
operation domain is responsible of managing major power
functionalities such as maintenance, billing, and protection.
However, this connectivity is still not achievable due to the
challenges mentioned in Section II. DDIL aims at filling the
gap by allowing different applications to communicate even if
they are developed upon different communication protocols.

VOLUME 9, 2021 98647



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

FIGURE 10. Trace of transforming OPC-UA object into MQTT topic.

The following environment is built to simulate the interac-
tion between four different power domains (i.e., operation,
customer, distribution, generation) within SG. The data is
exchanged among four different devices. In the operation
domain, we simulated a distribution server which is a PCwith
augmented computing capabilities. In the customer domain,
we simulated a control computer, such as an automation
control computer (ACC) which is used to send and receive
control commands. In the distribution domain, we simulated
an OPC-UA server which is used for collecting data from
field devices. In the generation domain, we simulated a
SCADA computer which is typically used for automation and
protection.

The assumption in the following experiments is that all SG
domains are connected to each other in terms of networks
configuration. For instance, if an application in the operation
domain requires data to be retrieved from the distribution,
then the operation domain application is assumed to be con-
nected the distribution domain application. Another assump-
tion is that the devices that participate in the communication
(e.g., computers, embedded devices) support DDIL in terms
of operating systems, data models, and software models.
Finally, DDIL is assumed to be installed in a distributed
manner. This means that DDIL might be tailored to suit an
application’s requirements. Given that, we have developed
the simulated testbed based on the above profiled models. We
implemented the system using Java with the Ecore model.We
also implemented an API layer using Java to ease integrat-
ing the developed applications with DDIL. Throughout the
experiment, the exchanged/transformed data has been stored
in simple file system to provide data storage and retrieval.

The configuration of applications is provided through the
Service Configuration model. For performing the configu-
ration, we use FeatureIDE [42]. FeatureIDE is an Eclipse

FIGURE 11. Representation of DDIL features by FeatureIDE.

plug-in tool for enabling feature-oriented software develop-
ment. Figure 11 shows the implementation of DDIL features
in FeatureIDE. The features are developed based on the fea-
ture model in Section IV-B(2). The features under DataNam-
ingModel are used for identifying data objects. The features
under DataSourceModel are used to support data models of
three different protocols: DDS, OPC-UA, and MQTT. An
application can configure one or more of these data mod-
els. The Data_Semantics_Dictionary feature under DataSe-
manticsModel provides a semantics dictionary to guide the
process of objects reconstruction. The features under Quali-
tyOfServiceModel are used to configure quality requirements
in the underlying protocol. Based on the configuration of each
application, FeatureIDE generates a set of Java classes which
can be then compiled and linked with the application through
the API model.

In the use case, DDIL is configured to four different
applications in four different power domains as follows:
1) For a SCADA application in generation domain, DDIL
is configured to support DDS. 2) For a server application in
distribution domain, DDIL supports OPC-UA. 3) For a con-
trol application in customer domain, DDIL supports MQTT.
4) For a connectivity application in operation domain, DDIL
is configured to support all the communication protocols in
the other three domains. Hence, this application acts as a
connectivity hub among the domains. This means that the
connectivity application consists of three integration proxies
to facilitate integrating data fromDDS,OPC-UA, andMQTT.

Figure 12 presents a running example of the above four
configured applications. It shows two sets of communication
scenarios. The first set is labeled by steps (1, 2, and 3).
It outlines data exchange that occurs between connectivity
application, OPC-UA control server, and SCADA applica-
tion. In SG, power is generated and distributed only when

98648 VOLUME 9, 2021



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

FIGURE 12. Running DDIL-based applications for enabling inter-domain connectivity in SG.

there is demand [43]. Therefore, a SCADA application in
the generation domain should receive demand information
from an application at the distribution domain. However,
these applications utilize heterogeneous data models. The
SCADA application uses DDS data model, while the con-
trol server application uses OPC-UA data model. The con-
nectivity application is used to bridge the gap between
these applications. Data exchange occurs as follows: first
(step 1), the connectivity application requests data from the
application at the OPC-UA control server. The server then
(step 2) sends the reply to the connectivity application. In
the final step (3), the connectivity application reconstructs

the data object from OPC-UA into a DDS topic and sends
it to the SCADA application in the generation domain. The
reconstruction of the data follows the approach shown in
Section V-A(1). The figure shows the execution log on the
connectivity application. The top section describes the steps
(1, 2, and 3). It shows participant, machine ID, performed
action, timestamp of each action, and summary of time.

The second set of data exchange scenario is labeled by
the steps (4, 5, and 6). It describes communication that
occurs between connectivity application, OPC-UA control
server, and control computer. In SG, the customer domain
makes control decisions (e.g., power reroute, protective

VOLUME 9, 2021 98649



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

action) based on information received from the distribution
domain [44]. Therefore, in this scenario, first (step 4) the
connectivity application requests data from the application
at the OPC-UA control server in the distribution domain.
Then, response is sent back (step 5) from the control server.
Finally, the connectivity application reconstructs OPC-UA
data object into anMQTT topic and sends it to the application
at the control computer (step 6) at the customer domain. The
object reconstruction occurs based on the example described
in Section V-A(2). The bottom section of the execution log
in figure describes the steps (4, 5, and 6).

VI. EVALUATION
The ideal environment for testing DDIL is a real-world SG
system. However, SG is still in early development stages
as described by [45]. Additionally, there is no fully devel-
oped SG system. It is also difficult to utilize modern power
grids since they belong to the private sectors. Therefore,
we developed the simulated environment based on the con-
nectivity requirements of NIST [21] and the U.S. Depart-
ment of Energy [45]. First, we comprehensively reviewed
the relationships between the communicating components in
the power system.We studied communication functionalities,
paradigms, and data flow scenarios. We then developed the
layout to the environment as shown by Figure 12. Based on
the running examples of the four above applications, it can
be seen that DDIL has the capabilities of supporting seamless
connectivity in SG domains even when heterogeneous com-
munication technologies are used. The following describe the
major advantages of DDIL which can significantly improve
connectivity in SG:
• The modularity of DDIL design has led to addressing
the interoperability issues at different levels. For exam-
ple, data interoperability issues are tackled by the Data
Sourcemodel. On the other hand, protocol interoperabil-
ity issues are tackled by the Data Integrationmodel. This
separation of concerns allows for managing connectivity
challenges in more productive manners.

• The design of DDIL promotes rapid developments of SG
applications. This is because DDIL allows developers
to focus on building applications rather than address-
ing data interoperability and connectivity issues. For
instance, the provision of the API model allows devel-
opers to build their applications in a different context
and once they are fully developed, they can just integrate
them with DDIL.

• The design of DDIL promotes utilizing pre-existing
technologies. For instance, in this work, we used Ecore
as the base of the Data Source model. We also used QVT
as the base of the Data Semantics model. Furthermore,
we implemented the Service Configuration model using
FeatureIDE.

• The Service Configuration model allows DDIL to be
tailored based on the requirements of each application.
This provides flexibility which is one of the major
requirements in IoT applications.

TABLE 2. Comparison between DDIL and related work.

Table 2 provides an evaluation view of DDIL compared
to the related work described in Section III. The evaluation
criterions are illustrated in the left column. The Modular
Design specifies whether the proposed work supports mod-
ularity and separation of concern. Modularity is evaluated by
comparing if the platform is proposed as several modules or
it is introduced as one building block. The Backward Com-
patibility indicates if the proposed solution considers legacy
systems. In this work, we evaluated this criterion by studying
the exchanged data in SG. We observed that our proposed
approach deals with existing data as they are represented by
their original application without the need for modification.
Additionally, we implement DDIL based on an application
that utilizes a legacy protocol which is OPC-UA. The third
criterion Distributed, specifies if the proposal is designed to
be distributed on different applications or centralized on spe-
cific application. TheConfigurability indicates if the proposal
provides set of configurable features to accommodate appli-
cations’ requirements. Configurability in this work is enabled
since the work is designed based on FOM. The General
Purpose specifies whether the model is generic or specific
to a certain IoT application. Utilize Existing Technologies
indicates whether if it is possible to utilize existing technolo-
gies in developing the proposed solution. We evaluated this
criterion by utilizing existing technologies (e.g., Ecore, QVT)
in building DDIL. Finally, the QoS Support specifies if the
quality requirements are inherently considered in the design
of the proposed work.

The proposed approach in this work has been tested on
five different devices with different computing capabili-
ties (i.e., memory, CPU). Those devices represent equip-
ment that are currently used in power grids. Table 3 shows
the simulated devices where the Category column cate-
gorises the devices based on their hardware resources. In
the experiments, we use deferent data object size ranging
from 256 bytes up to 9600 bytes. These objects are cho-
sen since they are the typical data size that are exchanged
within power domains [14], [46]. For each device in the table,
the experiment is repeated 100 times. This means that each
device sends/receives 100 messages. Then, the performance
of DDIL is observed on both capable devices as well as
constrained devices.

We observed that DDIL performs well when implemented
with capable devices. For example, we measure the utilized
memory and CPU load when DDIL is implemented on ACC

98650 VOLUME 9, 2021



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

FIGURE 13. Resources utilization on Raspberry Pi.

FIGURE 14. Resources utilization on Raspberry Pi2.

TABLE 3. Utilized devices and their capabilities.

which has 3.3 GHz CPU power and 16 GB of memory. We
notice that the resource consumption was trivial. Particularly,
with the largest object size of 9600 bytes, the memory con-
sumption does not exceed 0.0003% of the device memory,
and the CPU load is less than 2.8% even with the largest
object size. Similar results, are observed with DCUwhich has
3.1 GHz CPU power and 8 GB ofmemory and AICwhich has
2.16 GHz CPU power and 4 GB of memory. In fact, with all
capable devices represented in the table, the utilized memory
does not exceed 0.0017% and the CPU load is less than 6.2%
even with the largest object size of 9600 bytes.

To further test the performance of the proposed approach,
we implemented DDIL on the constrained devices in Table 3.
Similar to the above experiments, we measure the perfor-
mance ofDDIL on these devices in terms ofmemory footprint
and CPU load. In the performance tests, DDIL is configured

to communicate based on either DDS or OPC-UA. We do
not consider MQTT since it is a lightweight protocol and
typically does not deplete the computing resources in a device
and that what we observed in this experiment.

For the first device WSN, DDIL is configured twice.
First, DDIL is configured to communicate based on DDS
to simulate a sensor that sends protection data in the distri-
bution domain. For the second configuration, DDIL is set
to communicate based on OPC-UA to simulate an energy
monitor in the customer domain. The performance of DDIL is
measured based on these two configurations. Figure 13 graph
(a) shows the memory footprint based on DDIL-DDS and
DDIL-OPC UA. It is seen that DDIL-DDS consumes more
memory than DDIL-OPC UA. This is expected due to the
nature of DDS since it requires more computing resources.
With the largest data object of 9600-bytes, DDIL-DDS con-
sumes 607 KB. Compare to DDIL-DDS, DDIL-OPC UA
consumes only 397 KB for the same data object size. In both
configurations, the memory consumption does not exceed
0.05% of the device memory which is 0.5 GB. The graph
(b) shows the CPU load of DDIL-DDS and DDIL-OPC UA.
Similarly, DDIL-DDS consumes more CPU than DDIL-OPC
UA. With DDIL-DDS, the highest CPU load with data object
9600-bytes is 41%, while with DDIL-OPC UA the highest
CPU load for same data object size is only 24%.

Figure 14 shows the performance of DDIL with WEM.
Similar to the above experiment, with DDIL-DDS, the device
is used to simulate a sensor device in the distribution domain,

VOLUME 9, 2021 98651



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

and with DDIL-OPC UA, the device is used to simulate an
energy monitor in the customer domain. The graph (a) shows
the memory footprint. With DDIL-DDS, the memory foot-
print with the largest data object of 9600-bytes is 543 KB.
On the other hand, DDIL-OPC UA, utilizes only 332 for the
same data object size. The graph (b) shows the CPU load. It
shows that with DDIL-DDS, the highest CPU load with data
object-9600 byte is 28%. Compare to that, DDIL-OPC UA
consumes only 16% for the same object size.

Based on the above experiments, we observe that commu-
nication protocols are inherently different and each protocol
requires certain computing capabilities. We also have con-
cluded that the configurability of a communication platform
greatly improves the communication since both application
and device requirements are considered. Overall, we observe
that DDIL has the capabilities to address the interoperability
issues that arise from the heterogeneity of the communication
protocols with acceptable performance.

A. CONNECTIVITY CONSIDERATION AND CHALLENGES
There are several challenges in adopting any connectivity
solution for IoT applications. Those challenges are due to
factors such as heterogeneity of data models, legacy systems
integration, and diversity of venders and service providers.
The following lists the challenges and the requirements that
should be addressed in the context of adopting DDIL to IoT
applications:
(a) Lack of knowledge of communication scenarios among

applications in IoT domains. In order to adopt DDIL,
the communication scenarios among applications need
to be well defined. This is because understanding the
communicating components and their communications
is a prerequisite for configuring DDIL.

(b) Legacy systems lack of flexibility. The majority of
legacy applications were developed with little consid-
eration for systems integration, which means they were
not designed to be integrated with new technologies.
Therefore, identifying the integration requirements is a
key factor for adopting DDIL.

(c) Comprehensive understanding of utilized data models.
Due to the diversity of IoT data models, it is essential
to understand the structure of each data model. This is
because constructing and reconstructing data objects is
the core of any connectivity model including DDIL.

(d) Comprehensive knowledge of functional requirements
in IoT applications. This is required to support proper
development of DDIL models.

(e) Comprehensive knowledge of quality requirements in
IoT applications. Different IoT applications have dif-
ferent quality requirements. Therefore, it is necessary
to understand what the non-functional requirements are
prior to adopting DDIL in any IoT application.

VII. CONCLUSION
In this work, we have presented DDILwhich is a connectivity
layer that allows applications in IoT domains to seamlessly

exchange data. The layer aims at addressing interoperabil-
ity issues that occur due to the heterogeneity of data mod-
els of the communication protocols. DDIL is constructed
based on two software development approaches (i.e., MDE,
FOM). It addresses data interoperability issues throughmodel
transformation techniques. DDIL is developed into set of
configurable features to support the flexibility requirements
in IoT applications. The viability of DDIL is tested in a
simulated smart grid environment. In this environment, four
applications are built upon three heterogeneous protocols.
The performance of the proposed approach has been tested
on two constrained devices. The results show that DDIL is
fixable to be implemented even on constrained devices. Over-
all, the results prove that DDIL enables the communicating
applications to seamlessly exchange data. In the future work,
we plan to extend DDIL to include application layer protocols
such as IEC 61850 and CIM. Additionally, there is a plan to
test the approach in other IoT applications such as the e-health
system. We also need to expand the QoS requirements to
include not only quality of data but also quality of communi-
cation to accommodate different applications requirements.

REFERENCES
[1] A.Ngu,M.Gutierrez, V.Metsis, S. Nepal, andQ. Sheng, ‘‘IoTmiddleware:

A survey on issues and enabling technologies,’’ IEEE Internet Things J.,
vol. 4, no. 1, pp. 1–20, Feb. 2017.

[2] S. Andreev, O. Galinina, A. Pyattaev, M. Gerasimenko, T. Tirronen,
J. Torsner, J. Sachs, M. Dohler, and Y. Koucheryavy, ‘‘Understanding
the IoT connectivity landscape: A contemporary M2M radio technology
roadmap,’’ IEEE Commun. Mag., vol. 53, no. 9, pp. 32–40, Sep. 2015.

[3] J. Ding, M. Nemati, C. Ranaweera, and J. Choi, ‘‘IoT connectiv-
ity technologies and applications: A survey,’’ IEEE Access, vol. 8,
pp. 67646–67673, 2020.

[4] A. Alaerjan, D. Kim, H.Ming, andH.Kim, ‘‘Configurable DDS as uniform
middleware for data communication in smart grids,’’ Energies, vol. 13,
no. 1839, pp. 1–29, 2020.

[5] M. Noura, M. Atiquzzaman, and M. Gaedke, ‘‘Interoperability in Internet
of Things: Taxonomies and open challenges,’’Mobile Netw. Appl., vol. 24,
no. 3, pp. 796–809, Jul. 2018.

[6] O. Givehchi, K. Landsdorf, P. Simoens, and A. W. Colombo, ‘‘Interop-
erability for industrial cyber-physical systems: An approach for legacy
systems,’’ IEEE Trans. Ind. Informat., vol. 13, no. 6, pp. 3370–3378,
Dec. 2017.

[7] A.Mazayev, J. A.Martins, andN. Correia, ‘‘Interoperability in IoT through
the semantic profiling of objects,’’ IEEE Access, vol. 6, pp. 19379–19385,
2018.

[8] Y. Li, X. Huang, and S. Wang, ‘‘Multiple protocols interworking with
open connectivity foundation in fog networks,’’ IEEE Access, vol. 7,
pp. 60764–60773, 2019.

[9] T. Hardjono, A. Lipton, and A. Pentland, ‘‘Toward an interoperabil-
ity architecture for blockchain autonomous systems,’’ IEEE Trans. Eng.
Manag., vol. 67, no. 4, pp. 1298–1309, Nov. 2020.

[10] Industrial Internet Consortium, ‘‘The industrial Internet of Things volume
G5: Connectivity framework,’’ Ind. Internet Consortium, Needham, MA,
USA, Tech. Rep. PB:20170228, Feb. 2017.

[11] B. Lee and D.-K. Kim, ‘‘Harmonizing IEC 61850 and CIM for connec-
tivity of substation automation,’’ Comput. Standards Interfaces, vol. 50,
pp. 199–208, Feb. 2017.

[12] J. Kim, J. Lee, J. Kim, and J. Yun, ‘‘M2M service platforms: Survey, issues,
and enabling technologies,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 61–76, 1st Quart., 2014.

[13] Object Management Group, Data Distribution Service (DDS), Standard
2015-04-10, 2015. [Online]. Available: http://www.omg.org

[14] A. Alaerjan, ‘‘A hybrid communication platform for supporting the inter-
operability in smart grids,’’ Ph.D. dissertation, Dept. Comput. Sci. Eng.,
Oakland Univ., Rochester, MI, USA, Apr. 2019.

98652 VOLUME 9, 2021



A. S. Alaerjan: Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains

[15] J. Manyika, M. Chui, P. Bisson, J, Woetzel, R. Dobbs, J, Bughin, and
D. Aharon, ‘‘The Internet of Things: Mapping the value beyond the hype,’’
McKinsey Global Inst., New York, NY, USA, Tech. Rep. 06-01-2015,
Jun. 2015.

[16] S. Sinche, D. Raposo, N. Armando, A. Rodrigues, F. Boavida, V. Pereira,
and J. S. Silva, ‘‘A survey of IoT management protocols and frame-
works,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 1168–1190,
2nd Quart., 2020.

[17] A. Eshpeter and P. Eng., ‘‘Resolving the challenges of multiple vendor
61850 implementations,’’ in Proc. IEEE/PES Transmiss. Distrib. Conf.
Expo. (T D), May 2016, pp. 1–7.

[18] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
Jun. 2015.

[19] L. Barbierato, A. Estebsari, E. Pons, M. Pau, F. Salassa, M. Ghirardi,
and E. Patti, ‘‘A distributed IoT infrastructure to test and deployreal-
time demand response in smart grids,’’ IEEE Internet Things J., vol. 50,
pp. 1136–1146, Feb. 2019.

[20] X. Fang, S. Misra, G. Xue, and D. Yang, ‘‘Smart grid—The new and
improved power grid: A survey,’’ IEEE Commun. Surveys Tuts., vol. 14,
pp. 944–980, 2012.

[21] NIST, ‘‘NIST framework and roadmap for smart grid interoperability
standards, release 2.0,’’ Nat. Inst. Standards Technol., Gaithersburg, MD,
USA, Tech. Rep. 1108R2, Feb. 2012.

[22] A. Alaerjan, D.-K. Kim, H. Ming, and K. Malik, ‘‘Using DDS based on
unified data model to improve interoperability of smart grids,’’ in Proc.
IEEE Int. Conf. Smart Energy Grid Eng. (SEGE), Aug. 2018, pp. 110–114.

[23] P. Jamborsalamati, E. Fernandez, M. Moghimi, M. J. Hossain, A. Heidari,
and J. Lu, ‘‘MQTT-based resource allocation of smart buildings for grid
demand reduction considering unreliable communication links,’’ IEEE
Syst. J., vol. 13, no. 3, pp. 3304–3315, Sep. 2019.

[24] R. Ma, H.-H. Chen, Y.-R. Huang, and W. Meng, ‘‘Smart grid communi-
cation: Its challenges and opportunities,’’ IEEE Trans. Smart Grid, vol. 4,
no. 1, pp. 36–46, Mar. 2013.

[25] B. Teixeira, G. Santos, T. Pinto, Z. Vale, and J. M. Corchado, ‘‘Application
ontology for multi-agent and web-services’ co-simulation in power and
energy systems,’’ IEEE Access, vol. 8, pp. 81129–81141, 2020.

[26] D.-K. Kim, B. Lee, S. Kim, H. Yang, H. Jang, D. Hong, andH. Falk, ‘‘QVT-
based model transformation to support unification of IEC 61850 and IEC
61970,’’ IEEE Trans. Power Del., vol. 29, no. 2, pp. 598–606, Apr. 2014.

[27] D.-K. Kim, A. Alaerjan, L. Lu, H. Yang, and H. Jang, ‘‘Toward interoper-
ability of smart grids,’’ IEEE Commun. Mag., vol. 55, no. 8, pp. 204–210,
Aug. 2017.

[28] R. Girau, S. Martis, and L. Atzori, ‘‘Lysis: A platform for IoT distributed
applications over socially connected objects,’’ IEEE Internet Things J.,
vol. 4, no. 1, pp. 40–51, Feb. 2017.

[29] E. Patti, A. L. A. Syrri, M. Jahn, P. Mancarella, A. Acquaviva, and
E. Macii, ‘‘Distributed software infrastructure for general purpose services
in smart grid,’’ IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 1156–1163,
Mar. 2016.

[30] M. O. Farooq, I. Wheelock, and D. Pesch, ‘‘IoT-connect: An interoperabil-
ity framework for smart home communication protocols,’’ IEEE Consum.
Electron. Mag., vol. 9, no. 1, pp. 22–29, Jan. 2020.

[31] A.Mazayev, J. A.Martins, andN. Correia, ‘‘Interoperability in IoT through
the semantic profiling of objects,’’ IEEE Access, vol. 6, pp. 19379–19385,
2017.

[32] M. A. L. Pena and I. Munoz Fernandez, ‘‘SAT-IoT: An architectural model
for a high-performance fog/edge/cloud IoT platform,’’ in Proc. IEEE 5th
World Forum Internet Things (WF-IoT), Limerick, Ireland, Apr. 2019,
pp. 633–638.

[33] S. Rajput and S. P. Singh, ‘‘Identifying Industry 4.0 IoT enablers by inte-
grated PCA-ISM-DEMATEL approach,’’ IEEE Trans. Power Del., vol. 57,
no. 8, pp. 1–34, Sep. 2019.

[34] S. K. Datta and C. Bonnet, ‘‘Next-generation, data centric and end-to-end
IoT architecture based on microservices,’’ in Proc. IEEE Int. Conf. Con-
sum. Electron. Asia (ICCE-Asia), Jeju, South Korea, Jun. 2018, pp. 1–4.

[35] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, ‘‘Feature-oriented
domain analysis (FODA) feasibility study,’’ Carnegie Mellon Univ., Pitts-
burgh, PA, USA, Tech. Rep. CMU/SEI-90-TR-021, Nov. 1990.

[36] F. Enescu and N. Bizon, ‘‘SCADA applications for electric power sys-
tem,’’ in Reactive Power Control in AC Power Systems (Power Systems),
N. M. Tabatabaei, A. J. Aghbolaghi, N. Bizon, and F. Blaabjerg, Eds.
Cham, Switzerland: Springer, 2017, doi: 10.1007/978-3-319-51118-4_15.

[37] K. Sayed and H. Gabbar, ‘‘SCADA and smart energy grid control automa-
tion,’’ in Smart Energy Grid Engineering. NewYork, NY, USA: Academic,
Jan. 2017, pp. 481–514.

[38] Object Management Group, OMG Unified Modeling Language, Standard
2015-03-01, Version 2.5, 2015. [Online]. Available: http://www.omg.org

[39] IEC 61850 Communication Networks and Systems for Power Utility
Automation—Part 7-2: Basic Information and Communication Structure-
Abstract Communication Service Interface (ACSI), document IEC 61850-
7-2, 2010. [Online]. Available: http://www.iec.ch

[40] BACnet Interest Group Europe and OPC Foundation, ‘‘OPC UA informa-
tion model for bacnet,’’ Nat. Inst. Standards Technol., Gaithersburg, MD,
USA, Tech. Rep. 0.17, May 2016.

[41] A. Alaerjan and D. Kim, ‘‘Adopting DDS to smart grids: Towards reliable
data communication,’’ Commun. Comput. Inf. Sci., vol. 738, pp. 154–169,
Apr. 2017.

[42] T. Leich, S. Apel, L. Marnitz, and G. Saake, ‘‘Tool support for feature-
oriented software development: FeatureIDE: An eclipse-based approach,’’
in Proc. OOPSLAWorkshop Eclipse Technol. eXchange (ECLIPSE), 2005,
pp. 55–59.

[43] J. F. Martinez, J. R. Molina, P. Castillejo, and R. Diego, ‘‘Middleware
architectures for the smart grid: Survey and challenges in the foreseeable
future,’’ Energies, vol. 6, pp. 3593–3620, Jul. 2013.

[44] J. Ekanayake, K. Liyanage, J. Wu, A. Yokoyama, and N. Jenkins, Smart
Grid Technology and Application. Hoboken, NJ, USA: Wiley, 2012.

[45] US-Department of Energy, ‘‘Communication requirements of smart grid
technologies,’’ US-DOE, Washington, DC, USA, Tech. Rep. 10-05-2010,
Oct. 2010.

[46] M. S. Almas and L. Vanfretti, ‘‘RT-HIL implementation of the hybrid syn-
chrophasor and GOOSE-based passive islanding schemes,’’ IEEE Trans.
Power Del., vol. 31, no. 3, pp. 1299–1309, Jun. 2016.

ALAA S. ALAERJAN received the B.S. degree
in computer and information sciences from Jouf
University, Saudi Arabia, in 2009, the M.S. degree
in computer science from Ball State University,
in 2013, and the Ph.D. degree in computer sci-
ence and informatics from Oakland University,
in 2019. He is currently an Assistant Profes-
sor with the Department of Computer Science,
College of Computer and Information Sciences,
Jouf University. His research interests include dis-

tributed systems, software engineering, the IoT, information security, and
smart grids.

VOLUME 9, 2021 98653

http://dx.doi.org/10.1007/978-3-319-51118-4_15

