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ABSTRACT In this article, an Extended State Observer (ESO) based Active Disturbance Rejection Control
(ADRC) scheme is applied to the Pendubot system for a trajectory tracking tasks. The tangent linearization
of the system allows to implement the control scheme taking advantage of the differential flatness property,
while including a cascade configuration. The proposed method assumes a limited knowledge of the
underactuated system where the control input gain and the order of the system are the only needed data.
The scheme is experimentally tested leading to accurate tracking results.

INDEX TERMS Active disturbance rejection, Pendubot, underactuated systems, extended state observers,
tangent linearization.

I. INTRODUCTION
Up to now, the use of underactuated systems in many
engineering applications (spacecraft, aerial robotic systems,
underwater vehicles, locomotive systems, flexible robotics,
etc) has been increased by virtue of their advantages such as
cost reduction, lighter structures, smaller dimensions, among
others. However, this class of systems lack of the capacity
of being controlled in a wide set of admissible trajectories as
in their completely actuated counterpart. Moreover, the main
tools of control synthesis such as canonical forms are not
general [1], which demand alternative aspects to deal with
practical problems as trajectory tracking.

Flatness based control [2]–[4] allows a natural scheme
for trajectory tracking control. Even when a wide class
of robotic and mechatronic systems satisfies the property
[5]–[7], the class of underactuated systems includes sev-
eral non-differentially flat systems [8]. This fact increases
the challenge of developing control laws leading to alter-
native schemes based on switching controllers [9], [10].
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Other well-known robust strategies which have been suc-
cessfully applied are sliding mode control [11], nonlinear
control [12], [13], passivity based control [14], etc. In [15],
the ball and beam stabilization was tackled through the direct
application of the Extended State Observer (ESO) based con-
trol, leading to a stability interval. In [16], a gain scheduling
ADRC control is designed for a class of underwater vehicles,
where the control coefficients are adjusted through a support
vector regression. Other schemes implement the ADRC in the
context of multiple loop control [17]. Most of these schemes
are valid on certain operation intervals, leading to an accurate
control tuning task. Besides, the aforementioned strategies
are normally used for regulation tasks, and trajectory tracking
is still an active area of research.

In [18], it has been shown that the tangent linearization
of a class of underactuated systems may lead to a local flat
system. Moreover, the tangent linearization lead to a cascade
structure where the system can be represented in terms of a
tandem set of second order systems connected by physically
measurable signals (overcoming amain drawback of flatness-
based controllers). This structure allows simple solutions
for trajectory tracking in a class of nonlinear underactuated
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systems but the locally of the solution needs to be overcome
in order to find a suitable practical methodology [19], [20].
Other benefits of the cascade structure allows to enhance
the high gain extended state observer based designs through
lower gain tuning schemes (see [21])

The increase of the operation region may be taken as a
robustness problem, which motivates as alternative the flat-
ness based ADRC control [22]. It consists in obtaining the
(flat) tangent linearization of the system which, to be used
as a reference model for controlling the actual nonlinear
model. The ADRC can equally compensate, both, the non-
linearities neglected in the linearization process as well as
the exogenous signals acting as external unknown distur-
bances. Since the resulting linearized system has the cascade
property, the observer order is naturally reduced by using an
auxiliary measurable variable, usually in terms of a known
position coordinate, instead of a high order time derivative of
the flat output. This alternative leads to a simpler observer
synthesis with improved results in light of additive noises
present in the measured outputs, among other advantages
which in practice can solve the problem of trajectory tracking
control in this class of underactuated systems. The described
control scheme, at least for extended state observers based
ADRC methods, has been less explored for underactuated
systems, which has encouraged the realization of this study.

In this article, an ESO disturbance observer based ADRC
scheme is proposed for the Pendubot in a trajectory tracking
task. Concerning the contributions of the article, it is shown
that the tangent linearization of the pendubot system satis-
fies to be flat and having the cascade property, allowing an
input-flat output cascade block control design in which the
control scheme assumes a simplified model of the Pendubot
consisting in a perturbed chain of integrators. The cascade
design avoids dealing with complete order controllers, which
are substituted by a set of lower order cascade controls that
reduce the overshooting effects of high gain designs such as
the one ADRC proposal, improving the transient response
and improving the trajectory tracking results. This approach
allows a control design that stabilizes the vertical equilibrium
of the system with large variations of the first link of the
robot, which is not common in traditional control approaches
of linear and nonlinear class. The control proposal includes a
set of extended states which improves the principle of gener-
alized disturbance estimation that is usually stated in terms of
a single state. The control scheme is evaluated via an exper-
imental prototype, showing good results in the stabilization
error, which is restricted to a small region of the origin. The
rest of the article is organized as follows: Section II presents
the mathematical model of Pendubot. Section III formulates
the problem in terms of a linear output feedback control law
using the Extended State Observer based ADRC scheme.
Section IV presents the controller and observer design details.
The description of a laboratory prototype, as well as the cor-
responding experimental results are presented in Section V.
Finally, a brief discussion of the results and the conclusions
are given in Section VI.

FIGURE 1. Pendubot system schematics and prototype.

II. DYNAMIC MODEL OF PENDUBOT
A. THE NONLINEAR MODEL
The Pendubot is a system consisting of a planar double
inverted pendulum as shown in Figure 1, the first link is
driven by a DC motor and the second link constitutes an
underactuated simple pendulum. The variables θ1 and θ2 are
the angular positions of the links, and τ1 represents the control
input of the system. The parameters m1 and m2 denote the
masses, l1, l2 represent the lengths of the links, lc1 and lc2
depict the locations of centers of mass, and I1 and I2 denote,
respectively, the moments of inertia of the first and the sec-
ond link, the parameter g being the gravitational constant.
The nonlinear model of the mechanical part of the system,
was obtained using the Euler-Lagrange formalism [1], [23].
In order to obtain the minimal set of parameters to describe
the dynamics of the Pendubot, let define the following
constants:

β1 = m1l2c1 + m2l21 + I1 β2 = m2l2c2 + I2
β3 = m2l1lc2 β4 = m1lc1 + m2l1
β5 = m2lc2

using the above terms, the mathematical model is:

M (q)q̈+ C(q, q̇)q̇+ G(q) = τ (1)

where

q =
[
θ1
θ2

]
, τ =

[
τ1
0

]
M (q) =

[
β1 + β2 + 2β3 cos(θ2) β2 + β3 cos(θ2)
β2 + β3 cos(θ2) β2

]
C(q, q̇) =

[
−β3θ̇1 sin(θ2) β3(θ̇1 + θ̇2) sin(θ2)
β3θ̇1 sin(θ2) 0

]
G(q) =

[
β4g cos(θ1)+ β5g cos(θ1 + θ2)

β5g cos(θ1 + θ2)

]
102664 VOLUME 9, 2021
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B. DIFFERENTIAL FLATNESS OF PENDUBOT SYSTEM
Consider the tangent linearization of the dynamics (1) around
of the following unstable equilibrium point.

θ̄1 =
π

2
θ̄2 = 0 τ̄1 = 0 ˙̄θ1 = 0, ˙̄θ2 = 0

One readily obtains:

(β1 + β2 + 2β3)θ̈δ1 + (β2 + β3) ¨θδ2 − β4gθ1
−β5g(θ1 + θ2) = τ1 (2)

(β2 + β3)θ̈δ1 + β2θ̈δ2 − β5g(θ1 + θ2) = 0 (3)

where θδ1 = θ1−θ̄1 = θ1− π2 , θδ2 = θ2−θ̄2 = θ2, and τδ1 =
τ1− τ̄1 = τ1 are the incremental states. The linearized system
(2)-(3) may be expressed in state space representation as,

ẋδ = Axδ + bτδ1 (4)

where A, b and xδ , as shown at the bottom of the page.
From the Kalman controllability matrix CK =[
b Ab A2b A3b

]
, the pair (A,B) is controllable since

det {CK } 6= 0, it implies that the system (4) is flat, see
[22], [24]. The flat output is computed as:

f =
[
0 0 0 1

] [
b Ab A2b A3b

]−1 xδ
f =

(β2 + β3)β3β5g

β22 (β
2
3 − β1β2)

θ1δ +
β3β5g

β2(β23 − β1β2)
θ2δ (5)

It is not difficult to verify by inspection of (2)-(3) that the
flat output can also be chosen as:

fδ =
β2 + β3

β2
θδ1 + θδ2 (6)

Let recall that, for linear systems, the flat output (5) is
unique up a constant factor fδ = 0f see [24], thus obtaining
(6), where

fδ = 0
[
0 0 0 1

] [
b Ab A2b A3b

]−1 xδ (7)

and 0 =
β2(β23−β1β2)

β3β5g
is a constant. The parameter 0 is

selected in order to simplify the calculation of the flat output
time derivatives. Let us define the row vector

cf = 0
[
0 0 0 1

] [
b Ab A2b A3b

]−1 (8)

the new flat output fδ and a finite number of its time deriva-
tives can be obtained using the observability matrix OK =[
cf cf A cf A2 cf A3

]T ,
fδ
ḟδ
f̈δ
f (3)δ

 =


cf
cf A
cf A2

cf A3

 xδ (9)

Computing (9), notice that the flat output (6) and its time
derivatives are completely parametrized in terms of the sys-
tem variables and its time derivatives as:

fδ =
β2 + β3

β2
θδ1 + θδ2 (10)

ḟδ =
β2 + β3

β2
θ̇δ1 + θ̇δ2 (11)

f̈δ =
gβ5
β2

(θδ1 + θδ2) (12)

f (3)δ =
gβ5
β2

(θ̇δ1 + θ̇δ2) (13)

The relative degree of the system (4) is n = 4. The flat
output fourth order time derivative is obtained as follows
(see [24]).

f (4)δ = cf A3bτδ1 + cf A4xδ

f (4)1 =
1
0
τδ1 +

β4g
0
θδ1 −

β1β5g
β30

(θδ1 + θδ2) (14)

Note that the second order time derivative of the flat output
in (12) can be expressed in terms of angular positions θδ1 and
θδ2, this property will be used in the control design proce-
dure in order to estimate the second order time derivative of
flat output and higher order derivatives, as a consequence,
the added noise to the control law, due to actual measure-
ments, is substantially reduced.

Due to the fact that the flat output is an observable output,
all state variables can be parameterized as differential func-
tions of the flat output fδ . This parametrization is computed
using the inverse of the observability matrix in (9).

θδ1 =
β2

β3
fδ −

β22

β3β5g
f̈δ (15)

A =



0 1 0 0
(β3β5 − β2β4)g

β23 − β1β2
0

β3β5g

β23 − β1β2
0

0 0 0 1
((β2 + β3)β4 − (β1 + β3)β5)g

β23 − β1β2
0 −

(β1 + β3)β5g

β23 − β1β2
0



b =



0

−
β2

β23 − β1β2
0

β2 + β3

β23 − β1β2

 and xδ =
[
θδ1 θ̇δ1 θδ2 θ̇δ2

]T
.
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θ̇δ1 =
β2

β3
ḟδ −

β22

β3β5g
f (3)δ (16)

θδ2 =
β2(β2 + β3)
β3β5g

f̈δ −
β2

β3
fδ (17)

θ̇δ2 =
β2(β2 + β3)
β3β5g

f (3)δ −
β2

β3
ḟδ (18)

τδ1 = 0f
(4)
δ +

β2(β1β5 + β2β4)
β3β5

f̈δ −
β2β4g
β3

fδ (19)

The input-to-flat output relation is obtained using (19) and
denoted as:

f (4)δ =
1
0
τδ1 −

(β1β5 + β2β4)g

(β23 − β1β2)
f̈δ +

β4β5g2

(β23 − β1β2)
fδ (20)

As shown in Figure 2, using the second order time deriva-
tive of the flat output (12) and the input-to-flat output relation
(20), the linearized system can be divided into a cascade
connection of 2 blocks: the first one is controlled via the
torque input τδ1 whose output is given as the second order
time derivative f̈ . This output coincides with a linear com-
bination of the pendubot link angular positions, scaled by a
constant factor f̈δ =

gβ5
β2

(θδ1 + θδ2). This variable is used as

an auxiliary input to the second block, which contains a pure
chain of two integrators, where fδ is the output of the second
block and it represents the output of the overall system.
The cascade block property simplifies the controller design.
Indeed, instead of measuring higher order time derivatives of
the flat output that could be substantially affected by non-
modeled additive noises, such differentiations are synthesized
using measurable angular positions θδ1,θδ2 and its first order
time derivatives, θ̇δ1 and θ̇δ2.

FIGURE 2. Input-flat output cascade block connection.

III. AN ESO BASED ADRC APROACH
A. A LINEAR PERTURBED MODEL REPRESENTATION
In order to apply the Active Disturbance Rejection Controller,
and exploiting the flatness property, an additively perturbed
chain of integrators representation is necessary. Let us define
the trajectory tracking error as:

ef δ = fδ − f ∗(t) (21)

The dynamics of the trajectory tracking error is given by,

e(4)f δ =
1
0
(τδ1 − τ ∗δ1)−

(β1β5 + β2β4)g

(β23 − β1β2)
ëf δ

+
β4β5g2

(β23 − β1β2)
ef δ + H .O.T . (22)

where H .O.T . stands for the higher order terms neglected by
the linearization. The trajectory tracking error dynamics is
represented as a simplified perturbed pure integration system.
This is a key step in the flatness based ADRC controller
design process:

e(4)f δ =
1
0
τδ1 + ψ(t) (23)

where ψ(t) is the total disturbance [25], [26] which consists
of the effects the neglected internal linear dynamics and the
neglected nonlinearities collected in the higher order terms
allowing also the possibility of unknown external distur-
bances.

ψ(t) = −
1
0
τ ∗δ1 −

(β1β5 + β2β4)g

(β23 − β1β2)
ëf δ

+
β4β5g2

(β23 − β1β2)
ef δ + H .O.T . (24)

Define, e(j)f δ = efj. The trajectory tracking error dynamics
(22) is represented in a state space model as follows:

ėf 0 = ef 1

ėf 1 = ef 2

ėf 2 = ef 3

ėf 3 =
1
0
τδ1 + ψ(t) (25)

B. A CASCADE ESO
At this point, the cascade property is used by partitioning the
state space model of (25) into two subsystems :

ėf 0 = ef 1

ėf 1 = ef 2 =
gβ5
β2

(θδ1 + θδ2)− f̈ ∗δ (26)

The perturbation ψ(t) is algebraically observable [27] and
represented by time-varying signal z1 = ψ(t). This distur-
bance is estimated by a set of six extended states (yielding
a fifth order time-polynomial approximation). The second
subsystem of (25) may be rewritten as follows:

ėf 2 = ef 3

ėf 3 =
1
0
τδ1 + z1

żi = zi+1, i = 1, 2, 3, 4, 5

ż6 = 0 (27)

As shown in the Figure 3, the cascade property allows us to
build a set of two decoupled observers: a Linear Luenberger
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FIGURE 3. Cascade decoupled observer.

observer for (26) and an ESO for (27).

˙̂ef 0 = êf 1 + γ1(ef 0 − êf 0)
˙̂ef 1 = ef 2 + γ0(ef 0 − êf 0)
˙̂ef 2 = êf 3 + λ7(ef 2 − êf 2)

˙̂ef 3 =
1
0
τδ1 + ẑ1 + λ6(ef 2 − êf 2)

˙̂zi = ẑi+1 + λ6−i(ef 2 − êf 2), i = 1, 2, 3, 4, 5
˙̂z6 = λ0(ef 2 − êf 2) (28)

The above decoupled observers simultaneously estimate
the phase variables associated with the flat output tracking
error ef δ , as well as the total disturbance ẑ1 = ψ . The
observation error: ẽ1 = ef 0 − êf 0, for the incremental flat
output tracking error, generates the following linear injected
estimation error dynamics:

¨̃e0 + γ1 ˙̃e0 + γ0ẽ0 = 0 (29)

An appropriate choice of the design coefficients [γ0, γ1],
places the roots of the corresponding characteristics poly-
nomial deep into the left half of the complex plane. Hence,
a second order stable, dominant, characteristic polynomial,
may be chosen for the corresponding poles

s2 + γ1s+ γ0 = s2 + 2ζoωos+ ω2
o (30)

where γ1 = 2ζoωo and γ0 = ω2
o, for ζo, ωo real positive

constants. The tracking error velocity for the flat output ėf 0 is,
thus, accurately estimated by ê2 for feedback purposes. The
observation error, ẽ2 = ef 2 − êf 2, generates the following
reconstruction error dynamics:

ẽ(8)2 + λ7ẽ
(7)
2 + λ6ẽ

(6)
2 · · · + λ1

˙̃e2 + λ0ẽ2 = 0 (31)

Hence, a suitable choice of the design coefficients
{λ7, . . . , λ1, λ0} renders an exponentially, decreasing esti-
mation error, ẽ2. Similarly, this result holds for all its time
derivatives modulo a small error due to the approximate
nature of signal z1 with respect to the actual total disturbance.
The coefficients for the ESO are chosen in accordance with
the procedure developed in [28] this methodology for tuning

gains has been successfully applied in [29] and [30]. Consider
a characteristic polynomial p(s) of the form:

p(s) = ansn + an−1sn−1 + · · · + a2s2 + a1s+ a0,

ai > 0, i = 1, 2, . . . , n (32)

and let αi be the characteristic ratios of p(s). It has been
shown [28] that if the following two conditions are satisfied,
the polynomial (32) is Hurwitz

A) α1 > 2; (33)

B) αk =
sin
( kπ
n

)
+ sin

(
π
n

)
2 sin

( kπ
n

) α1 (34)

for k = 2, 3, . . . , n − 1. The construction of the all-pole
stable characteristic polynomial involves only α1 which we
require to be larger than 2. The pole placement procedure is
as follows: For an arbitrary positive a0, and T > 0, set,

a1 = Ta0 (35)

ai =
T ia0

αi−1α
2
i−2α

3
i−3 · · ·α

i−1
1

for i = 2, 3, . . . , n (36)

The gains can be chosen as:

λj =

(
aj
an

)
for j = 0, 1, , 3, . . . , n− 1 (37)

Thus, the result allows us to characterize the reference all-
pole systems by adjusting the parameters α1 and T to achieve
the desired damping.

IV. ADRC CONTROL DESIGN
The control input can be synthesized including an active
disturbance canceling strategy for the total disturbance ψ in
terms of the estimated ẑ1 The output feedback control is given
as follows:

τδ1(t) = −0
[
κ3êf 3 + κ2ef 2 + κ1êf 1 + κ0ef 0 + ẑ1

]
(38)

where, naturally, the tracking errors, ef 0 and ef 2, themselves
are used instead of their redundant estimates. Notice that the
coefficients of the controller should be chosen in accordance
with the fact that, asymptotically, the tracking error is being
approximately governed by close-loop differential equation:

e(4)f 0 + κ3e
(3)
f 0 + κ2ëf 0 + κ1ėf 0 + κ0ef 0 = z1 − ψ(t) (39)

the set of design coefficients, [κ0, κ2, κ3, κ4], should render
the underlying Hurwitz characteristic polynomial

s4 + κ3s3 + κ2s2 + κ1s+ κ0 = 0 (40)

The control gains were tuned as follows: κ0 = ω4
c , κ1 =

4ζcω3
c , κ2 = ω

2
c + 4ζ 2c ω

2
c and κ4 = 4ζcωc.
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FIGURE 4. The rest to rest maneuver accomplished by Pendubot system.

FIGURE 5. Flat output fδ closed loop performance.

V. EXPERIMENTAL RESULTS FOR THE
PENDUBOT SYSTEM
Figure 1 shows the experimental Pendubot prototype.
It consists of a Brushed servomotor from Moog, model
C34L80W40, which drives the link 1 through a synchronous
belt with a 4.5:1 ratio. The angles of both links are mea-
sured with incremental optical encoders of 2500 Counts Per
Revolution. A Copley Controls digital amplifier model Junus
90, working in current mode driving the motor. The Data
acquisition is carried out through a data card from Quanser
consulting, model QPIDe terminal board. This card reads
signals from the optical incremental encoders and supplies
control voltages to the power amplifier. The control strat-
egy was implemented in the Matlab-Simulink platform with
sampling time set in 0.001[s]. The Pendubot parameters
are: Link 1, I1 = 0.0481[Kg-m2], m1 = 1.64 [Kg], l1 =
0.33[m] and Link 2, I2 = 0.0036 [Kg-m2], m2 = 0.141 [Kg],

FIGURE 6. Link 1 and Link 2 angular position performance.

FIGURE 7. Control input torque and lumped on-line disturbance
estimation.

l2 = 0.55[m]. The observer gain parameters for the observa-
tion error ẽ1 were set to be : ζo = 2, ωo = 20. The observer
gain parameters for the observation error ẽ2 were set to be as
follows: n = 8, T = 10, a0 = 4, α = 4.4. The controller
design parameters were specified to be: ζc = 0.9, ωc = 6.3.
The test starts with initial conditions of the joint variables at
unstable equilibrium point: [θ1 = π

2 , θ2 = 0], this implies
that flat output is fδ(0) = 0 as is shown in Figure 4 a), when
the time is t = 3.5[s], the flat output move to a rest position
shown in Figure 4 b) with fδ(5.5) =

β2+β3
β2

π
5 −

π
5 in 2 seconds,

it remains in this position 4.5 seconds, when t = 10.5 flat
output move to a another rest position shown in Figure 4 c)
with fδ(13.5) = −

β2+β3
β2

π
5 +

π
5 in 2 seconds, it remains in

this position 4.5 seconds, finally at t = 18[s] returns to initial
rest position fδ(20) = 0 and remains there until the test is
finished at t = 50[s]. Figure 5 shows the performance of flat
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output, ESO based differential flatness allows us carry out
tracking trajectories far from the equilibrium point as shown
in Figure 4, which states the difference with respect to a
simple linear control for the linearized system. The proposed
controller acts robustly in spite of the external disturbance
forces on Link 2 for t > 22[s]. Figure 6 shows Link 1 angular
position θ1, it is moved between a range [−π5 ,

π
5 ][rad] from

equilibrium point π2 [rad], Figure 6 also depicts link 2 angular
position θ2 with similar range between [−π5 ,

π
5 ][rad] from

equilibrium point 0[rad]. Control torque input and estimation
of total disturbance are depicted in Figure 7, we can notice
that the external disturbances forces are estimated on line and
canceled effectively with the controller.

In contrast with the classic linear control (state feed-
back or PID-based controllers [31]), this approach is oriented
to provide trajectory tracking solutions which are enhanced
by the use of the disturbance observer in combination with
the cascade flat structure. Even when the ADRC approach
has been successfully applied in underactuated nonlinear sys-
tems [15], the control effort and the robustness of the scheme
can be enhanced since the order of the observers is reduced
by the cascade observer design, which improves the response
in presence of noisy measurements.

VI. CONCLUSION AND REMARKS
In this article, the effectiveness of the Extended State
Observer based ADRC scheme was experimentally assessed
for a rest-to-rest maneuver taking the system far from the
unstable equilibrium point used in the linearization of the
nonlinear Pendubot system dynamics. The output feedback
controller exhibited an excellent behavior in the presence
of unknown external disturbances coupled with a lack of
a knowledge of the system. An extension of the problem
suggested for further study consists in dealing with the prob-
lem of simultaneously swinging up and stabilizing the Pen-
dubot within the ESO based ADRC philosophy. The ADRC
problem can be enriched if some additional aspects such as
quantization effects are addressed [32]. This structure can
be focused on a class of mobile robots which satisfy to be
underactuated. In this sense, the idea of the cascade prop-
erty can be used for a more complex problem involving a
group of underactuated systems with possible even triggered
constraints [33]–[35] which is closely related to Markovian
jump systems [36], [37] that can be a wide topic for future
investigations.
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