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ABSTRACT This study focused on a control system of the nonlinear micro-electro-mechanical sys-
tems (MEMS) gyroscope. First, sector nonlinearity was used to model a MEMS gyroscope in the
Takagi-Sugeno (T-S) fuzzy system. Second, a state observer was designed based on linear matrix inequal-
ity (LMI) to identify the optimal eigenvalues of the state tracking error function. Then, full-state fixed-time
sliding mode control (FTSMC) was constructed to control the system. Third, a case study of a harmonic dis-
turbance observer was used to address the unknown disturbance of the system. A disturbance observer (DOB)
was simply designed based on the error signals of the system outputs and observer outputs. The output
signals precisely converged to the predefined trajectories in a very short time, with no overshoots and small
of steady-state errors. Moreover, the estimated output states were precisely tracked by the system outputs.
These important factors were used to confirm that the control of the T-S fuzzy MEMSwas effective and easy
to achieve. The study used MATLAB simulation to archive the verification. The maximum of tracking error
was e4 ∈ [−4.657 : 5.565] × 10−11, and the maximum settling time was Te3 ∼ 0.144 for the error of the
ẏ− axis and the settling time of the ẋ− axis, respectively.

INDEX TERMS Takagi-Sugeno fuzzy system, micro-electro-mechanical systems gyroscope, fixed-time
sliding mode control, linear matrix inequality, disturbance observer.

I. INTRODUCTION
In recent years, the development of robotics, artificial intel-
ligence, and automobile devices have resulted in a need for
micro-electro-mechanical systems (MEMS) gyroscope need
to be used with high-precision requirements. The MEMS
gyroscopes can be used to measure the rotation angular
velocity due to their size and cost. However, fabrication of
a MEMS gyroscope is the main reason for the disturbance
sensitivity, parameter variations, and environmental temper-
ature effect inverse problems. To increase the precision of a
MEMS gyroscope system, some papers investigated the con-
trol methods, such as robust control with active disturbance
rejection was proposed for MEMS gyroscope [1]. Robust
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control with a combination of proportional-derivative and
fractional-order sliding mode control (SMC) was designed
to control MEMS [2]. An adaptive sliding mode control and
fuzzy compensator were introduced for theMEMS gyroscope
in [3]. The investigations of neural networks for a MEMS
gyroscope can be found in [4]–[7]. Wang et al. [8] proposed
the control of the z-axis of aMEMS gyroscope by using adap-
tive fractional-order sliding mode control. Zhang et al. [9]
investigated SMC with the updating law of a neural network
for the MEMS gyroscope. All of these papers achieved good
performances for tracking problem of theMEMS gyroscopes.
However, disturbance observers for the MEMS gyroscopes
have received aminimal attention. In [10] proposed the output
feedback control for MEMS gyroscope by using neural net-
work and DOB. Furthermore, theMEMS can be more precise
in tracking if its mathematical model can be corrected as a
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nonlinear model. In [11], [12] the T-S fuzzy model with the
linearization modeling method was introduced. To the best
of our knowledge, no investigation of the sector nonlinear-
ity method of T-S fuzzy modelling for MEMS gyroscopes
has been conducted. Furthermore, a fixed-time sliding mode
control and a harmonic disturbance observer also may not
be available. These factors are the main motivations of this
work. In this work, a system states observer was obtained
by LMI with vertical spaces. These estimated states were
used to construct sliding mode surfaces. The output tracking
errors were used to design a disturbance observer, and a
disturbance observer error was exponentially convergent. The
mathematical model of the system was represented by the
combination of the outer fuzzy membership functions and
inner sublinear systems. The system was then called the T-S
fuzzy MEMS gyroscope.

The Takagi-Sugeno model was proposed in 1985 [13]. T-S
fuzzy modeling of the nonlinear system was investigated in
detail as sector nonlinearity and linearization by Tanaka and
Wang [14]. The development of T-S fuzzy modeling was
described in previous papers [15]–[22]. By using the T-S
fuzzy model, the mathematical model of a MEMS gyroscope
can be changed into the combination of four fuzzy mem-
bership functions and four sublinear systems. Estimating the
system states of MEMS can be easier with the linear observer
design. After modeling, the disturbance observers can easily
apply the requirements of the linear-based model.

Linear matrix inequality (LMI) is well known as the poles
placement control method. With any pole of the control
system expressed as λ = −a + bi, a > 0 is required to
help the system state remain stable; this can be understood
as the control system remaining stable if all its poles are
located in the left-half of the complex plane. The eigenvalues
are important factors for defining the performance of the
control system with the damping, overshoot, settling time,
and steady-state [23], [24]. This study used LMI with a
vertical boundary to obtain the eigenvalues of the state error
function. After estimated states were obtained, a slidingmode
for position and velocity control was designed for a MEMS
gyroscope system.

Sliding-mode control is the nonlinear control technique
that consists of switching and equivalent controls; these con-
trol values are used to force the states to converge on the
predefined surface and stabilize these states on this sur-
face [25]. Chattering is the main caused of decreased sys-
tem performance, and it is sourced by the switching control
[26]–[30]. This paper applied fixed-time sliding mode con-
trol with the aim of obtaining small settling time and small
chattering. The basic concept of fixed-time control was intro-
duced in 2012 [31]. Applications of the fixed-time concept
can be found in [32]–[36]. To the best of our knowledge,
investigations of fixed-time control for a MEMS gyroscope
are limited. Furthermore, fixed-time control for the double
loops of the position and velocity of the MEMS gyroscope
might not be available. This study designed the fixed-time
for controlling the position and velocity values of the MEMS

gyroscope. Under harsh working condition, the disturbance
observer is highly recommended for MEMS gyroscopes.

The disturbance observer is a special case of unknown
input estimation, where the disturbance and uncertainty
can be suppressed to zero to improve the precision of
the control system. In [37], a nonlinear basic disturbance
observer (NDOB) was introduced very effectively. The appli-
cation of a basic disturbance observer was found to achieve
synchronization and secure communication in [20] and [22].
The application of NDOB for motor control was described
in [38]. The development of NDOB on pendulum system
can be found in [39]. Otherwise, some advanced disturbance
compensations based on a neural network system were inves-
tigated in [6], [40]–[43]. To simplify the procedure of the
design of a disturbance observer, this study proposed a new
DOB to scope the disturbance and uncertainty of a MEMS
gyroscope under the conjunction of an unknown disturbance
in exogenous form. The exogenous disturbance observer
can be found in previously published papers. An exogenous
disturbance observer was proposed for the T-S fuzzy sys-
tem [44]. The problem of the exogenous inputs of a wind
turbine system was investigated [45]. The problem of the
exogenous disturbance observer of a robot system was dis-
cussed in [46]. In [47], an adaptive DOB was proposed to
handle an unknown exogenous disturbance value. In this
paper, the disturbance observer was constructed with a high
convergence speed. The support of a low-pass filter was
presented. These introduced control technique, such as the
LMI, the fixed-time sliding mode control, and the distur-
bance observer, will be introduced to control the MEMS
gyroscope system with the motivation of the following pub-
lished papers. In [48], a new hybrid fractional sliding mode
control was introduced to a MEMS gyroscope system. Their
paper ignored the disturbance observer. In [9], a neural net-
work was used to compensate for the imprecision of the
modeling error of the MEMS system. In [49], the neurody-
namic approximation-based quantized control was consid-
ered for a MEMS gyroscope subjected to disturbance and
uncertainty values. In [50], the disturbance, uncertainty, and
chattering could be suppressed by the novel control tech-
nique of the state observer-basedminimal learning parameter.
In [51], the disturbance and uncertainty sigmoid functions
were provided to estimate the disturbance. A hysteresis
quantizer-based neural estimator to estimate the perturbations
of a vehicle was proposed in [52]. The fixed-time of an
extended states observer with the function of uncertainty
estimation was introduced in [53]. However, the settling time
remains high, and there exists overshoot values. Furthermore,
among the previously published studies [1]–[9], few investi-
gated disturbance observers. To estimate the disturbance of
a MEMS system, a neural network was used to archive the
goal [54]. The adaptive neural network with full-states feed-
back of a MEMS gyroscope was discussed in [55]. In [56],
the minimum learning parameter-based neural network was
proposed to estimate the perturbations of a MEMS system.
The linear extended states observer was used to construct the
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lumped disturbance of MEMS system [57]. These mentioned
papers that investigated a MEMS gyroscope design have
few disturbance observers. Furthermore, the discussions of
the exogenous disturbance observer for a MEMS gyroscope
are limited. Based on these motivations, this paper proposed
a new disturbance observer for a MEMS system. The dis-
turbance is finite convergence. The benefits of finite time
were described in [58]–[61]. Furthermore, sector nonlinearity
modeling for a MEMS gyroscope was not found. To over-
come this limitations, this paper addresses the problem of the
DOB based on the FTSMC of the T-S fuzzy MEMS gyro-
scope. Designing the control for a MEMS gyroscope with the
nonlinear characteristics of the springs considered is simple
work. However, designing a DOB for a nonlinear MEMS
gyroscope is a complicated task. To solve this problem, a non-
linear MEMS gyroscope should be considered as sublinear
systems. Furthermore, the fixed-time with the states feedback
is good control to reject the chattering problem. Obtaining
the mass body velocities of MEMS is a complicated task if
physical sensors are used. For these values, estimation by
using the states observer is easier but costly work.

The contributions of this study are as follows
1. The MEMS gyroscope model was changed into the for-

mat of the T-S fuzzy system with the support of the
sector nonlinearity method. Nonlinear springs on the
MEMS gyroscope were considered with the nonlinear
mathematical model of the MEMS system. The new
model of the MEMS gyroscope was built to simplify the
control design for the MEMS system. The originality of
the control of the new model is as follows: a control with
full-states and disturbance observer designs is easier to
archive.

2. The system states of the MEMS gyroscope as the x- and
y-coordinates and the velocity of the mass body can be
precisely estimated by the support of the linear matrix
inequality method. These estimated states were used to
construct the sliding mode surface for the double loops
control of position and velocity. This approach is also a
new control technique for the MEMS gyroscope.

3. The fixed-time sliding mode control was designed for
controlling the MEMS gyroscope with a simple and
effective structure. In the sliding mode design, the esti-
mated state and reference input are used to build the
sliding mode surface. Furthermore, the generous distur-
bance observer is based on the errors of the measured
and estimated outputs. The disturbance observer was
exponentially convergent with the simple structure.

4. To verify the proposed theory, the Lyapunov candidate
was used for theoretical proof. Moreover, MATLAB
software was used by simulation that to confirm the
proposed theories are good for controlling the MEMS
gyroscope and robustness with the disturbance and
uncertainty effects.

The novelties of this paper are as follows. The nonlinear
springs of the MEMS gyroscope were mentioned. To design
the controller for the nonlinear MEMS system, T-S fuzzy

modeling was used to reduce the cost of the control and
observer designs. The full states were known by the observer
with the support of the linear matrix inequality. The positions
and velocity controls are perfectly obtained via the feedback
of the estimated states. The fixed-time sliding mode control
was perfectly designed to obtain the precision tracking val-
ues of position and velocity values. The proposed control
algorithms are large suggestions of the full-states feedback
control, robustness control, and disturbance rejection control.
The outline of this paper is as follows. The introduction
of the trends of the research topic, method concepts, and
contributions of the paper were given in the first section.
In the second section, the mathematical modeling of aMEMS
gyroscope into the T-S fuzzy system, the preliminary mathe-
matical operation of the fixed-time sliding mode control, lin-
ear matrix inequality and the proposed disturbance observer
are shown. In section III, the proposed theories for the T-S
fuzzy MEMS gyroscope system is shown. In section IV,
an illustrative example is given to show the effectiveness and
correctness of the proposed methods for a MEMS gyroscope.
Finally, the conclusion and future works are given in the
last section.
Notes: A > 0 and A < 0 are the positive and negative

matrices, respectively. I ∈ Rm×m is the identity matrix
with m × m dimension. s ∈ Rn, s = [ s1, .. .. , sn ]T then
sign(s) = [sign(s1), .. . . . , sign(sn)]T sigα(s) = |s|α sig(s),
and sign(s) = [ s1

|s1|
, .. .. , sn

|sn| ]
T .

II. MATHEMATICAL MODEL OF A MEMS GYROSCOPE
AND PRELIMINARY MATHEMATICS
This section is used to show the mathematical model of a
MEMS gyroscope and preliminary mathematical operations.
In this study, the complexity of the nonlinear springs of the
MEMS gyroscope was shown. Designing a control for the
nonlinearity of the MEMS gyroscope is still easy. However,
designing the disturbance observer or applying the full-states
feedback control is complicated work. To meet these difficult
requests, the mathematical model of the MEMS gyroscope
should be changed into combinations of the sub-linear sys-
tems. Because the T-S fuzzy modeling method consists of
combinations of the sub-linear systems and outer fuzzy mem-
bership functions, the control design for a nonlinear MEMS
gyroscope is equivalent to the design of a controller for the
sublinear systems. The mathematical modelling of a MEMS
gyroscope is first given as follows:

A. MATHEMATICAL MODELING OF THE MEMS
GYROSCOPE
This paper reused themathematic and parameters of [12]. The
MEMS gyroscope model [12] is written as
mẍ + dxx ẋ + (dxy − 2m�∗z )ẏ+ (kxx−m�∗2z )x+kxyy
+ kx3x

3
= u∗x

mÿ+ dyyẏ+ (dxy + 2m�∗z )ẋ+ (kyy − m�∗2z )y+kxyx
+ky3y

3
= u∗y

(1)
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where x and y are the coordinates of the system. m is mass of
the rigid body of the MEMS gyroscope. dxx and dyy are the
damping terms. kxx and kyy are the stiffness coefficients for
x- and y- axes, respectively. kx3x

3 and ky3y
3 are the stiffness

coefficients of the x- and y- axes, respectively. u∗x and u
∗
y are

the control signal for the x- and y- axes, respectively. �∗z
input is the angular velocity. The MEMS gyroscope can be
represented as Figure 1 below.

FIGURE 1. MEMS gyroscope structure.

Remark 1: In previously published papers, the position
controller was introduced to control a MEMS gyroscope.
In this work, we proposed the theoretical position and veloc-
ity control algorithms.

By dividing both sides of Eq. (1) by the reference mass m,
reference length q0 and resonant frequency �0, the mathe-
matical model of MEMS gyroscope is written as follows:

ẍ
q0
+

dxx ẋ
m�0q0

+
(dxy − 2m�∗z )ẏ

m�0q0
+

(kxx − m�∗2z )x

m�2
0q0

+
kxyy

m�2
0q0
+

kx3x
3

m�2
0q0
=

u∗x
m�2

0q0
ÿ
q0
+

dyyẏ
m�0q0

+
(dxy + 2m�∗z )ẋ

m�0q0
+

(kyy − m�∗2z )y

m�2
0q0

+
kxyx

m�2
0q0
+

ky3y
3

m�2
0q0
=

u∗y
m�2

0q0

(2)

System (2) can be simplified as follows:{
ẍ + a1ẋ + b1ẏ+ c1x + d1y+ e1x3 = u1
ÿ+ a2ẏ+ b2ẋ + c2y+ d2x + e2y3 = u2

(3)

where the parameter of system (3) can be calculated as
x → x

q0
, y → y

q0
, a1 =

dxx
m�0

, b1 =
(dxy−2m�∗z )

m�0
, c1 =

(kxx−m�∗2z )
m�2

0
, d1 =

kxy
m�2

0
, e1 =

kx3q
2
0

m�2
0
, u1 =

u∗x
m�2

0q0
, a2 =

dyy
m�0

, b2 =
(dxy+2m�∗z )

m�0
, c2 =

(kyy−m�∗2z )
m�2

0
, d2 =

kxyx
m�2

0q0
,
ky3q

2
0

m�2
0
,

and u2 =
u∗y

m�2
0q0
. The system parameters are as follows:

m = 0.57 × 10−8 kg, ω0 = 1 kHz, q0 = 10−5 m, �z = 5
rad/s, dxx = 0.429× 10−6 Ns/m, dyy = 0.429× 10−6 Ns/m,
dxy = 0.429 × 10−6 Ns/m, kxx = 80.98 N/m, kyy = 71.62
N/m, kxy = 5 N/m, kx3 = 3.56 × 106 N/m, and ky3 =
3.56 × 106 N/m. System (3) with full position and velocity
control can be modeled as follows:
ẋ
ẏ
ẍ
ÿ

 =


0 0 1 0
0 0 0 1

−c1 − e1x2 −d1 −a1 −b1
−d2 −c2 − e2y2 −b2 −a2



x
y
ẋ
ẏ



+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



uẋ
uẏ
u1
u2

 (4)

where u1 and u2 are position control for x- and y-axes, respec-
tively. uẋ is velocity control of x-axis and uẏ is velocity control
of the y-axis
Remark 2: In Eq. (4), the velocity control values uẋ for the

x-axis and uẏ for the y-axis are added to help improve the
precision control of the full-states feedback.

Designing the controller for system (4) is a simple task.
However, the number of controllers that can be applied to
system (4) may be limited due to its nonlinear format. Fur-
thermore, the DOB design for this nonlinear system is com-
plicated work. To alleviate these control requests, this paper
used the sector nonlinearity to convert system (4) into the
form of the T-S fuzzy system, which will be called T-S fuzzy
MEMS gyroscope system. To represent the sector nonlinear-
ity method, the system{

ż = gm(z, u)z+ hm(z, u)u
y = lm(z, u)z

(5)

is considered, where z is a state variable vector. gm, hm,
and lm are the smooth functions. y is the output vector. The
scheduling variable is zj ∈ [zmin, zmax], where j = 1, .., p.
The weighting functions for zj are nj0(·) =

zmax − zj(·)
zmax − zmin

nj1(·) = 1− nj0(·)
(6)

These weighting functions are no longer less than zero. The
fuzzy membership function is the product of the weighting
functions as follows:

ϕi(z) =
p
5
j=1
ϕij(zi) (7)

where ϕij(zi) is either nj0(·) or n
j
1(·). Because of these con-

cepts, system (5) can be easily modelled as follows:
ż =

m∑
i=1

ϕi(z)(Aiz+ Biu)

y =
m∑
i=1

ϕi(z)Ciz

(8)
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Hence, the system states in (4) are assumed to be x ∈
[ xmax, xmin ] and y ∈ [ ymax, ymin ], and then, system (4) can
be converted into the T-S fuzzy system as follows:
ẋ
ẏ
ẍ
ÿ



=

 x2

x2max

y2

y2max


0 0 1 0
0 0 0 1

−c1 − e1x2max −d1 −a1 −b1
−d2 −c2 − e2y2max −b2 −a2



+ (1−
x2

x2max
)
y2

y2max


0 0 1 0
0 0 0 1
−c1 −d1 −a1 −b1
−d2 −c2 − e2y2max −b2 −a2



+
x2

x2max
(1−

y2

y2max
)


0 0 1 0
0 0 0 1

−c1 − e1x2max −d1 −a1 −b1
−d2 −c2 −b2 −a2



+(1−
x2

x2max
)(1−

y2

y2max
)


0 0 1 0
0 0 0 1
−c1 −d1 −a1 −b1
−d2 −c2 −b2 −a2




x
y
ẋ
ẏ



+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



uẋ
uẏ
u1
u2

 (9)

The MEMS gyroscope mathematical model is now calcu-
lated as the combination of four fuzzy membership functions
and four sublinear systems. To control the MEMS gyroscope
in (9), this paper proposed the fixed-time slidingmode control
based on the state feedback. To obtain the system states,
the LMI is used to obtain the goal. x̂ and ŷ are used to
represent the observer system states. The goal of the sliding
mode control is to force these x̂ → x → xr , ŷ → y → yr ,
˙̂x → ẋ → ẋr , ˙̂y → ẏ → ẏr , where r is used to mark
the reference term. To this end, the preliminary mathematical
operation is presented in the next section.

B. PREMILINARY MATHEMATICS
This section is used to describe the mathematical operations
of fixed-time sliding mode control, linear matrix inequal-
ity, and exponential convergence disturbance observer. First,
to consider the fixed-time concept, the system

ẋ = f (x, t) (10)

where x(0) = x0.x ∈ Rn, and f (x) ∈ Rn.
Definition 1: Fixed-time stability [32]
System (10) is called fixed-time stable if the settling time

T is globally bounded and T ≤ Tmax.Tmax is a constant value.
The system is then called fixed-time stable.
Lemma 1: Consider the equation [32]

ṡ = −α1sig
a1
b1 (s)− α2sig

a2
b2 (s) (11)

where δ(0) = 0, a, b, m, n are positively defined. a1 >

b1, a2 < b2, α1, and α2, are positive values, and the settling
time is bounded as follows:

T < Tmax =
1
α1

b1
a1 − b1

+
1
α2

b2
b2 − a2

(12)

Proof: The Lyapunov candidate can be chosen with one
dimension as follows:

V (s) =
1
2
ssT (13)

Taking derivative of both sides of Eq. (13) yields

V̇ (s) = sT ṡ

= sT (−α1sig
a1
b1 (s)− α2sig

a2
b2 (s))

= −α1δ
2 a1+b12b1 − α2δ

2 a2+b22b2

= −α1V (s)
a1+b1
2b1 − α2V (s)

a2+b2
2b2

= [−α1V (δ)
a1+b1
2b1
−
a2+b2
2b2 − α2]V (δ)

a2+b2
2b2

≤ 0 (14)

Because V̇ (s) ≤ 0 system (10) is globally bounded. V (s) =
0 is a simple case. V (δ) 6= 0 leads to

1

V (s)
a2+b2
2b2

dV (s)
dt
= −α1V (s)

a1+b1
2b1
−
a2+b2
2b2 − α2 (15)

or

1

V (s)
a2+b2
2b2

dV (s)
dt

= −α1V (s)
a1+b1
2b1
−
a2+b2
2b2 − α2

1

α1V (s)
b2a1−b1a2

2b1b2 + α2

dV (s)
b2−a2
2b2

dt
=
b2 − a2
b2

(16)

Integrating (17) over the time from zero to T yields

∞∫
0

dV (δ)
b2−a2
2b2

α1V (δ)
b2−a2
2b2

[ (b2a1−b1b2)b1(b2−a2)
+1]
+ α2

=
b2 − a2
2b2

T (17)

or

T <
1

b2−a2
b2

1∫
0

dς
α2
+

1
b2−a2
b2

∞∫
1

dV (δ)
b2−a2
2b2

α1V (δ)
(b2a1−b1b2)

2b1b2
+
b2−a2
2b2

=
1
α2

b2
b2 − a2

+
1
α1

b2
b2 − a2

b1(b2 − a2)
(b2a1 − b1b2)

(18)

or

Tmax =
1
α2

b2
b2 − a2

+
1
α1

b1
(a1 − b1)

(19)

This completes the proof of lemma 1.
Remark 3: For help the reader understand the paper,

the proof of the lemma 1 needs to be redone. Lemma 1 is
used to illustrate the settling times of each control values
in Eq. (55).
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FIGURE 2. Vertical LMI region.

Definition 2: Linear matrix inequality [23]. Consider the
system

ẋ(t) = Ax(t) (20)

where x(t) is the system state vector and A is an approx-
imated matrix of x(t). System (20) is called LMI stable if
the eigenvalues of the system are located in the region of the
LMI condition, and then, there exists a positive matrix P that
satisfies

ATP+ PA < 0 (21)

This paper used the vertical area to find the eigenvalues of
the system states errors. The vertical area is referred to as

V = {z ∈ C : fV (z) < 0} (22)

where

fV (z) = a+ zb+ z̄b (23)

The V area can be shown as follows:
Lemma 2: For eigenvalues of (20) located in the V area,

the eigenvalues of A satisfy −b < eig(A) < −a, which can
be represented as follows:{

ATP+ PA+ 2aP < 0
ATP+ PA+ 2bP > 0

(24)

Proof: The Lyapunov candidates for system (20) are
selected as follows:

V (x) = xTPx (25)

Taking the derivative of both sides of Eq. (25) yields

V̇ (x) = ẋTPx + xTPẋ

= xTATPx + xTPAx

= xT (ATP+ PA)x (26)

V̇ (x) < 0 and −b < eig(A) < −a, if{
(A+ Ia)TP+ P(A+ Ia) < 0
(A+ Ib)TP+ P(A+ Ib) > 0

(27)

or {
ATP+ PA+ 2aP < 0
ATP+ PA+ 2bP > 0

(28)

This completes the proof of lemma 2.
Remark 4: Lemma 2 is used to define the observer gains

of Eq. (40), where the states observer gains are placed in the
LMI region.

The advantages of the LMI with the vertical area are as
follows: The LMI with the vertical area is a simple control
method that can support the system and obtain the stable
eigenvalues in the specific area gap, where the eigenvalues
can be archived with the best characteristics of overshoot,
damping ratio, and settling time performances.
Definition 3: Disturbance observer-based state observer

error.
To show the disturbance observer for this state observer

error-based system, the state-space equation is as follows:{
Ẋ = AX + Bu+ Dd
y = CX

(29)

where X ∈ Rm×n is the state vector, y ∈ Rk×n is the system
output vector, A ∈ Rm×m,B ∈ Rm×p, C ∈ Rk×m, and D ∈
Rm×q, are the approximated matrices of states, control input,
and perturbations vectors, respectively, and u ∈ Rp×n is the
control input vector. System (29) can work if the disturbance
and uncertainty are bounded assumedly as |d | < κ, where κ
is positively defined. The estimated system of (29) can be
designed as follows:{

˙̂X = A ˙̂X + Bu+ LC(X − X̂ )
ŷ = CX̂

(30)

First, consider the case of no disturbance effects on sys-
tem (29). The state error can be represented as

ė = (A− LC)e (31)

By applying the LMI tool box, the observer gain L is found
with {

(A− LC)TP+ P(A− LC)+ 2aP < 0
(A− LC)TP+ P(A− LC)+ 2bP > 0

(32)

where P, a, b are positively defined. Then, the disturbance
observer can be design as follows:

d̂(s) =
γ

Ts+ β∗
Ce(s) (33)

or

sd̂(s) = −
β∗

T
d̂(s)+

γ

T
Ce(s) (34)

By subtracting both sides of (34) by sd(s) yields

sd(s)− sd̂(s) = sd(s)+
β∗

T
d̂(s)−

1
T
γCe(s) (35)

This paper supposes that the source of disturbance can be
modeled as {

d(t) = vξ (t)
ξ̇ (t) = −ωξ (t)

(36)

Eq. (35) can then be modified as follows:

˙̃d(t) = −vωξ (t)+ vωv−1d̂(t)−
γ

T
Ce(t)

= −vωv−1d(t)+ vωv−1d̂(t)−
γ

T
Ce(t)
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= −vωv−1d̃(t)−
γ

T
Ce(t) (37)

where a suitable value of the vωv−1 = β∗

T . The disturbance
error goes to zero in finite time. This completes the proof of
the proposed disturbance observer stability of an exogenous
disturbance observer. The details of the applications of these
proposed theories to a MEMS gyroscope are shown in the
next section.
Remark 5:Definition 3 is used to estimate the perturbation

value of the MEMS gyroscope control system in Eq. (43).
The low-pass-filter was used to reduce the high-frequency of
disturbance value.

III. PROPOSED APPROACH
This section used to show the application of these proposed
method on the T-S fuzzy MEMS gyroscope. The structure of
this part is as follows: First, states and disturbance observers
is designed to the MEMS gyroscope. Second, the fixed-time
sliding mode control is designed with full states feedback for
controlling the system.

A. STATES AND DISTURBANCE OBSERVER FOR T-S FUZZY
MEMS GYROCSOPE
The MEMS gyroscope with full disturbance and uncertainty
can be written as follows:

X =
2∑
(

i,j=1

ωij(xi, yj)[(Ai +1Ai)X

+(Bi +1Bi)u+ Did])
y = CX

(38)

with xmax = 2um, ymax = 2um, ω11(x, y) =

x2

x2max

y2

y2max
, ω21(x, y) = (1 − x2

x2max
) y2

y2max
, ω12(x, y) = x2

x2max
(1 −

y2

y2max
), and ω22(x, y) = (1− x2

x2max
)(1− y2

y2max
). System (38) can

work if the variation of approximated matrices of the distur-
bance and uncertainty is bounded as assumption 1 below.
Assumption 1: System (38) can work as its original char-

acteristics if |1AiX | < τi1, |1Biu| < τi2, and |Did | <
τi3, where i = 1 ÷ 2, all τi1, τi2, and τ i3 are positively
defined. To easy obtain the information of the disturbance
and uncertainty values, these values should be grouped as a
unique term of 1AiX +1Biu+ Did = Eil.
System (38) can be modified as follows:

Ẋ =
2∑

i,j=1

ωij(xi, yj)[(Ai)X + (Bi)u+ Eil]

y = CX

(39)

Remark 6: Matrix Ei should be identity defined and
all these Ei should be identical. The variations of these

parameters are unknown.

˙̂X =
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai)X̂ + (Bi)u+ LijC(X − X̂ )]

y = CX̂

l̂(s) =
2∑

i,j=1

ωij(xi, yj)[
δ

Ts+ ς

× (ETi Ei)
−1ETi εC(X (s)− X̂ (s))]

(40)

Remark 7: The estimated disturbance observer was used to
compensate the disturbance of the MEMS gyroscope via the
control input channel.

By combining of systems (39) and (40), the tracking error
equation can be modeled as follows:

ė =
2∑

i,j=1

ωij(xi, yj)[(Ai)X + (Bi)u+ Ei(l − l̂)]

−

2∑
i,j=1

ωij(x̂i, ŷj)[(Ai)X̂ + (Bi)u+ LijC(X − X̂ )] (41)

or

ė =
2∑

i,j=1

ωij(xi, yj)
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai)X + (Bi)u

+Ei(l − l̂)− (Ai)X̂ + (Bi)u+ LijC(X − X̂ )]

=

2∑
i,j=1

ωij(xi, yj)
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai − LijC)e+ Ei l̃]

(42)

where Lij is the observer gain and l̃ is the disturbance error.

Because,
2∑

i,j=1
ωij(xi, yj)

2∑
i,j=1

ωij(x̂i, ŷj)Ei l̃ =Ei l̃, the tracking

error value can be modified as

ė =
2∑

i,j=1

ωij(xi, yj)
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai − LijC)e]+ Ei l̃ (43)

By applying the LMI to solve the stability of Eq. (43)
without disturbance effects, the tracking errors of themeasure
states and observer converge to each other if{

(Ai − LijC)TP+ P(Ai − LijC)+ 2aijP < 0
(Ai − LijC)TP+ P(Ai − LijC)+ 2bijP > 0

(44)

where bij < eig(Ai − LijC) < −aij, and P is positively
defined. After archiving the precision of the state observer,
the disturbance need to be converged to zero, such as l̃ = 0,
in finite time. By applying the disturbance observer in Eq.
(40) to the system (43)

ė =
2∑

i,j=1

ωij(xi, yj)
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai − LijC)e]+Ei

× (l −
2∑

i,j=1

ωij(xi, yj)[L−1(
δ

Ts+ ς
(ETi Ei)

−1ETi εCe(s))]

(45)
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By combining Eqs. (44), (45) and
2∑

i,j=1
ωij(xi, yj) = 1,

Eq. (45) is archived if

l = l̂ = L−1(
δ

Ts+ ς
(ETi Ei)

−1ETi εCe(s)) (46)

Taking the Laplace transform of both sides of Eq. (46)
leads to

l̂(s) =
δ

Ts+ς
(ETi Ei)

−1ETi εCe(s) (47)

With the exogenous disturbance as Eq. (36), where l(s) =
vξ (s) and sξ (s) = −ωξ (s), system (47) can be changed to

(s+
ς

T
)l̂(s) =

1
T
δ(ETi Ei)

−1ETi εCe(s) (48)

Subtracting both sides of (48) by the sl(s) yields

sl(s)− (s+
ς

T
)l̂(s) = sl(s)−

1
T
δ(ETi Ei)

−1ETi εCe(s) (49)

Eq. (49) can be simplified as follows:

sl̃(s) = sl(s)+
ς

T
l̂(s)−

1
T
δ(ETi Ei)

−1ETi Ce(s)

= −vωξ (s)+
ς

T
l̂(s)−

1
T
δ(ETi Ei)

−1ETi Ce(s)

= −vωv−1l(s)+
ς

T
l̂(s)−

1
T
δ(ETi Ei)

−1ETi Ce(s)

= −ρ l̃(s)−
ς

T
δ(ETi Ei)

−1ETi εCe(s) (50)

or

˙̃l(t) = −ρ l̃(t)−
1
T
δ(ETi Ei)

−1ETi εCe(t) (51)

With the condition of Eq. (44) and vωv−1 ∼ ς
T → ρ, the

disturbance error goes to zero in finite time. This completes
the proof of the disturbance observer stability. This study used
the estimated states to design the sliding mode control, which
is shown in the next section.

B. FIXED-TIME SLIDING MODE CONTROL FOR THE MEMS
GYROSCOPE
To archive the fixed time of the reaching phase, the sliding
mode surface is proposed as follows:

si = Xri − X̂i (52)

where i = 1÷ 4 is used to represent the element of the states
and estimated states. Note that Xr =

[
xr yr ẋr ẏ r

]T
,X =[

x y ẋ ẏ
]T and X̂ =

[
x̂ ŷ ˙̂x ˙̂y

]T
.

Differentiating for both sides of Eq. (52) leads to

ṡi = Ẋri −
˙̂Xi

= Ẋri −
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai)X̂i + (Bi)u+ LijC(X − X̂ )]

(53)

Since
2∑

i,j=1
ωij(x̂i, ŷj) = 1, the equivalent control value is

ueqi = (BTi Bi)
−1BTi (Ẋri −

2∑
i,j=1

ωij(x̂i, ŷj)[(Ai)X̂i

+LijC(X − X̂ ))] (54)

To archive the fixed time for the reaching phase, the switch-
ing control value is proposed as follows:

uswi = ηisig
pi
qi (s)+ χisig

mi
ni (s) (55)

where i = 1 ÷ 4 is used to represent the element of sliding
mode surfaces. The control values for velocity controls are

uẋ = Ẋr1 −
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai1)X̂ + Lij1C(X − X̂ )]

+ η1sig
p1
q1 (s1)+ χisig

m1
n1 (s1) (56)

for the x-axis, and

uẏ = Ẋr2 −
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai2)X̂ + Lij2C(X − X̂ )]

+ η2sig
p2
q2 (s1)+ χ2sig

m2
n2 (s2) (57)

for the y-axis. The position controls are

u1 = Ẋr3 −
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai3)X̂ + Lij3C(X − X̂ )]

+ η3sig
p3
q3 (s3)+ χ3sig

m3
n3 (s3) (58)

and

u2 = Ẋr4 −
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai4)X̂ + Lij4C(X − X̂ )]

+ η4sig
p4
q4 (s4)+ χ4sig

m4
n4 (s4) (59)

for the x- and y-axes, respectively. Ai1,Ai2,Ai3,Ai4 are rows
1 to 4 of matrix Ai.Lij1, Lij2,Lij3,Lij4, are rows 1 to 4 of
matrix Lij.

C. STABILITY OF THE PROPOSED METHODS
To theoretically verify that the proposed methods are correct,
the Lyapunov candidate is assumed as follows:

V (s) =
1
2
sT s (60)

Differentiating of both sides of Eq. (56) yields

V̇ (s) = sT ṡ

= sT (Ẋr −
2∑

i,j=1

ωij(x̂i, ŷj)[(Ai)X̂ + (Bi)u

+LijC(X − X̂ )]) (61)
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Combining Eqs. (54), (59), and (61) leads to

V̇ (si) = −sTi (ηisig
pi
qi (si)+ χhsig

mi
mi (si)) < 0 (62)

By using lemma 1 for Eq. (58), the settling time for the
reaching phase is then the fixed-time stability. The general
settling time can be represented as follows:

Ti < Tmax i =
1
ηi

qi
pi − qi

+
1
χi

ni
ni − mi

(63)

The illustration of the proposed methods by MATLAB
simulation is given in the next section.
Remark 8:The control parameters selection is themain fac-

tor effecting the control output performances. This paper has
procedures for parameter selection, as LMI gains should be
used to obtain small overshoots, damped, small settling times.
The source of chattering and overshoot of sliding-mode con-
trol is switching control gain. Therefore, the fixed-time slid-
ing mode control gain should be suitably chosen to obtain
small settling times, small chattering. The high disturbance
observer gains will occur the high oscillation but a fast
response, while small gains lead to a slower the disturbance
response.

The details of the proposed control algorithms for the
MEMS gyroscope are represented in the below diagram.

IV. AN ILLUSTRATIVE EXAMPLE
Through the simulation sign ∧ is replace by the word ‘‘hat’’.
The simulation performances of the proposed method, named
the disturbance observer based on fixed-time sliding mode
control for the T-S fuzzy MEMS gyroscope is shown in this
section. With the system parameters as Eq. (38), where

B1 = B2 = B3

= B4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

C = [ 1 0 0 0
0 1 0 0

]
,

L11 =


-0.0300 -0.0000
-0.0000 -0.0300
7.1061 0.4386
0.4386 6.2851

 .103,

L12 =


-0.0200 -0.0000
-0.0000 -0.0200
7.1030 0.4386
0.4386 6.2851

 .103,

L21 =


-0.0125 -0.0000
-0.0000 -0.0125
7.1061 0.4386
0.4386 6.2820

 .103,

L22 =


-0.0160 -0.0000
-0.0000 -0.0160
7.1030 0.4386
0.4386 6.2820

 .103.

FIGURE 3. Diagram of the proposed algorithms for MEMS gyroscope.

the LMI condition parameter are as follows:
a11 = 10, b11 = 50, a12 = 10, b12 = 30, a12 = 5, b12 =

20, a22 = 2, and b22 = 30. The eigenvalues of measured and
estimated states are as follows: eig(A1−L11C) are−15.0350
+ 84.1035i, −15.0350 - 84.1035i, −15.0064 + 76.6228i,
and −15.0064 - 76.6228i. eig(A2 − L12C) are -10.0350 +
84.8258i, −10.0350 - 84.8258i, −10.0064 + 77.4305i, and
−10.0064 - 77.4305i. eig(A3−L21C) are -6.2850+ 85.1953i,
−6.2850 - 85.1953i, -6.2564 + 77.8090i, and -6.2564 -
77.8090i. eig(A4 − L21C) are -8.0350 + 85.0340i, -8.0350 -
85.0340i, -8.0064+ 77.6456i, and -8.0064 - 77.6456i. These
parameters are used for two cases of study. In both cases,
the fixed-time control gains and disturbance control gains are
tuning. The details are shown below.
Case 1:
The disturbance observer gains are selected as follows:

T = 0.00001, ς = 1, ε = 1000, and δ = 100. By
referring s1 = xr − x̂, s2 = yr − ŷ, s3 = ẋr − ˙̂x, and
s4 = ẏr − ˙̂y are the sliding surfaces of the state and the
velocity of the MEMS rigid body. The initial conditions are
X (0) = X̂ (0) = [ 0.005, 0.015, 0, 0 ]T . The fixed-time
parameters are as follows: η1 = 10, χ1 = 5, p1 = 3, q1 =
4,m1 = 7, n1 = 4, η2 = 3, χ2 = 2, p2 = 4, q2 = 5,m2 =

7, n2 = 5, η3 = 20, χ3 = 15, p3 = 3, q3 = 4,m3 = 5,
n3 = 4, η4 = 30, χ4 = 20, p4 = 7, q4 = 8,m4 = 3, and
n4 = 2. The performances of the proposed control theories
on a MEMS gyroscope are shown as the figures below.

These estimated outputs are good at tracking the measured
outputs. The impression of the tracking values are shown
in Figure 6.

The settling times on the position of the x-axis and y-axis
are Te1 ∼ 0.1056 seconds and Te2 ∼ 0.09 seconds, respec-
tively. The settling times on the velocity of the x-axis and
y-axis are Te3 ∼ 0.144 seconds and Te4 ∼ 0 second,
respectively. The steady-states of the position on x-axis and
y-axis are e1 ∈ [−5.618 : 5.619] × 10−12 m and e2 ∈
[−4.358 : 4.358] × 10−12m, respectively. The steady state
of the velocity on the x-axis and y-axis are e3 ∈ [−4.657 :
5.656] × 10−11 m and e4 ∈ [−2.238 : 2.236] × 10−12(m),
respectively. The steady states are quite small. The estimated
and measured outputs are quite similar to each other. In [3],
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an adaptive SMS and fuzzy compensator were introduced to
a MEMS gyroscope; the settling was given as approximately
0.2 second, and the magnitude scale of the tracking error
was 10−3. With the high-magnitudes tracking error values,
the energy consumption values of the position controls in [3]
are smaller than those of our paper. However, our paper can
obtain better control factors as small as of those of steady
states and settling times. In [5], the results are intuitively
larger than our obtained results. In [5], the adaptive neural
backstepping PID global SMC was introduced to a MEMS
with high-oscillation control input, while the control input for
the position control values of this paper is smooth, as shown
Figure 8a. Their paper showed that the simple controller
consumed less energy. Thus, the energy consumptions values
are mostly smaller and smoother than that of [5]. Otherwise,
the comparison of this study with the earlier studies [5] is
shown in the table below.

The performance of the disturbance is shown in
Figure 7 below.

The functions of dx = sin(2π t) and dy = 1.5 sin(2.75π t)
were tested on the x- and y- axes of the MEMS system,
respectively. To completely reject the disturbances on the x-
axis and y-axes is difficult for a nonlinear MEMS gyroscope.
In this paper, the tested disturbances were mostly deleted by
the estimated disturbances compensation. The control inputs
are shown in Figure 8.

The position control was precisely archived by the good
position tracking error values on x-, and y-axes. Beyond that
point, the inner velocity control input signals are very small
compared with the control inputs of the position control. This
result shows that the proposed disturbance observer has a
strong effect on the unknown exogenous disturbances value,
and the proposed fixed-time control method is effective with
the T-S fuzzy MEMS gyroscope system. In Figure 8 (b),
the control system of MEMS gyroscope exhibits chattering.
However, using double loops of position and velocity controls
obtains smooth position tracking responses on the x- and y-
axes, respectively. The chattering in this paper is very small
by using suitable fixed-time control gains.

FIGURE 4. Referenced and estimated states: (a) states on the x-axis,
(b) states on the y-axis, (c) states on the x-dot-axis, and (d) states on the
y-dot-axis.

Case 2:
To obtain better control outputs of MEMS gyroscope con-

trol system, the parameters are tuned with suitable of the
MATLAB-based hardware system as digital signal processor
(DSP), field-programmable gate array (FPGA) device. The
detail of experiment setup can be found in [62]. Some param-
eters of the controller and disturbance observer are tuning as
T = 0.00001, ς = 1, δ = 100, and ε = 10000. The initial
conditions are X (0) = X̂ (0) = [ 0.05, 0.15, 0, 0 ]T . The
fixed-time parameters are as follows: η1 = 10, χ1 = 5, p1 =
3, q1 = 4,m1 = 7, n1 = 4, η2 = 3, χ2 = 2, p2 = 4, q2 = 5,

VOLUME 9, 2021 96399



V. N. Giap et al.: Robust Observer Based on FTSMC of Position/Velocity

FIGURE 5. Measured and estimated states: (a) states on the x-axis and
(b) states on the y-axis.

FIGURE 6. Tracking errors of position (a) and velocity (b).

m2 = 7, n2 = 5, η3 = 20, χ3 = 15, p3 = 3, q3 = 4,m3 =

5, n3 = 4, η4 = 30, χ4 = 20, p4 = 7, q4 = 8,m4 = 3,
and n4 = 2. The performances of control input and severe
disturbance observer are better these values in case 1. These
values are as follows:

With the small gains of fixed-time control, chattering will
be suppressed. However, the response will last longer than
that case of high gains control. The estimated disturbances
are as follows:

FIGURE 7. Tested and estimated disturbances on x- (a) and y-axes (b).

FIGURE 8. Control input signals: (a) control input of the position on the
x- and y-axes and (b) control input of the velocity on the x- and y-axes.

The sine functions of dx = 20. sin(2π t) and dy =
15. sin(2π t) were tested on the x- and y-axes for case 2.
In the comparison of the two cases, the sine function was
estimated more easily because the original point of the sine
functions and the disturbance observer are identical. For the
cosine function, the oscillation will occur for the estimated
disturbance in response to the tested disturbance. The oscil-
lation of the estimated disturbance is realistic. To show the
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FIGURE 9. Control input signals: (a) control input of the position on the
x- and y-axes and (b) control input of the velocity on the x- and y-axes.

FIGURE 10. Tested and estimated disturbances on the x-axis (a) and
y-axes (b).

independence of the tracking error on the initial states, this
case tested the initial on x- and y-axes are ten times in
compare with these initial in the first case. The tracking errors
are shown as follows:

The settling times on the position of the x-axis and y-axis
are Te1 < 0.17 seconds and Te2 < 0.1 seconds, respectively.
The settling times on the velocity of the x-axis and y-axis
are Te3 < 0.151 seconds and Te4 ∼ 0 second, respectively.

FIGURE 11. Tracking errors of position (a) and velocity (b).

These values are used to confirm that the tracking error values
are weaken dependence on the initial states.

V. CONCLUSION
This paper modeled a nonlinear MEMS in the T-S fuzzy
model, and this is an important step for the design of the
robust control techniques forMEMS gyroscope systems. Fur-
thermore, a new exogenous disturbance observer based on the
FTSMC for aMEMS gyroscope systemwas investigatedwith
exponentially convergent speed. The novelties of this study
are the design of the slidingmode control by the reference and
estimated states and the disturbance was simple and effective
disturbance observer via the tracking error values of the mea-
sured and estimated states. The tracking error values are very
small, and without overshoots, and the settling times are very
short. AMATLAB simulation was used to verify that the pro-
posed control theories are correct and powerful for T-S fuzzy
MEMS gyroscopes. In the near future, the fixed-disturbance
based on robust control of a T-S MEMS gyroscope will be
considered to improve the performance of MEMS control
systems. The direction of a new state observer and new state
feedback control will also be considered.
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