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ABSTRACT We develop an optimization approach for the planning problem of configuring the positions of
sensors within a sensor network for minimization of the travel length required to service the sensor locations.
This is in contrast to existing approaches whereby the coverage of the sensor network is an objective
of the optimization; in this new optimization approach the level of coverage is treated as a constraint.
By beginning with an over-populated sensor network and then alternating between sensor repositioning and
sensor removal, we create an optimization procedure that solves this difficult practical planning problem.
A formal rule for switching between the repositioning and removal components of the optimization strategy
is developed. Numerical example problems are presented to illustrate the method and show its performance
against a heuristic optimization approach.

INDEX TERMS Genetic algorithms, optimal planning, Q-coverage, traveling salesman problem, wireless
sensor networks.

I. INTRODUCTION
The planning of the positions of sensors within a large-scale
sensor network is a common problem in many areas of appli-
cation, ranging from climate monitoring and wildlife track-
ing, to the surveillance of sensitive areas against intruders.
Historically, the configuration of these positions has been
determined by optimizing the coverage performance of the
sensor network for some fixed number of available sensors.
As the sensor technology hasmatured, the sensors are becom-
ing more complex and, maintaining a sensor network over
time can involve the need for a servicer to visit each of
the sensor locations. In addition, when communications are
difficult or expensive, a servicer may need to visit each sensor
location as a ‘‘data mule’’ to collect information from the
sensors. Such systems have been developed for applications
in long-term underwater monitoring of coral reefs and fish-
eries [1] as well as land-based monitoring of agricultural
fields [2]. In such cases, the serviceability of the sensor
network, defined as the minimal tour length required to visit
each of the sensor locations, is a critical design consideration
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that is overlooked in current sensor network configuration
procedures. Even when not visiting for maintenance, often-
times the initial deployment calls for careful visitation of each
site, as many applications require precise positioning to meet
performance goals. Such deployments have been performed
with autonomous helicopters deploying ground sensors [3].

A unique aspect of this type of sensor positioning prob-
lem is that the optimization of the positions of sensors is
performed not to optimize a network performance objective
(such as coverage), but instead to optimize the serviceability
of the network under a constraint (such as meeting a cover-
age demand). This leads to a different type of optimization
problem that has not been previously examined, and a reli-
able optimization approach to achieve good solutions to such
problems is required.

In this article, we solve this novel sensor placement
problem, wherein the objective under consideration is the
serviceability of the deployed sensors. We create a genetic
algorithm based solution approach to positioning these sen-
sors to optimize the serviceability under a coverage con-
straint. In addition, we consider the removal of any redundant
sensors (sensors that are close enough to others that they
do not contribute significantly to coverage yet their presence
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increases the serviceability) as an additional heuristic proce-
dure that couples with the genetic algorithm. Two variations
of this optimization approach are developed for solving this
problem, and the efficacy of the approaches are compared
relative to a direct heuristic sensor placement optimization
approach on numerical examples.

II. BACKGROUND ON SENSOR NETWORK
CONFIGURATION OPTIMIZATION
When sensors are placed for use in a sensor network,
the resulting group of sensor positions corresponds to some
spatial pattern or configuration.We thus refer to the optimiza-
tion of these configurations to achieve some performance
goal as the sensor placement problem. The sensor placement
problem (or Q-coverage problem) is a probabilistic variant
of the facility location planning problem [4]. Q-coverage
is a sensor network performance metric in which specific
locations must be covered by (potentially multiple) sensors to
achieve a desired quality of service [5]. In particular, the sen-
sor placement problem is a cooperative covering problem
[6], [7], whereby the ‘‘coverage’’ of regions by a sensor is
not a binary effect (i.e. covered or not-covered) but instead is
represented by a probability of coverage that depends upon
the probabilistic combination of all sensors within range of
that region. Reference [8] provides an overview of the variety
of coverage problem formulations that have been developed
for sensor network placement problems.

While Q-coverage is important in sensor network planning
for surveillance applications, there are other metrics that have
been applied to sensor network placement in other applica-
tion contexts. When visual sensor networks are employed,
the planning optimization includes not only the location of the
sensors but also their orientation (as the field of view is not
omnidirectional). In many of these visual sensor networks,
there is a goal to place the network in a configuration so as
to optimize network lifetime [9], [10]. In other applications,
network lifetime is treated as a constraint [11]. However,
we posit that lifetime can also be improved in situations by
explicitly considering the serviceability of the sensor nodes
as an objective.

The general Q-coverage planning problem has been shown
to be NP complete and, for that reason, a variety of meta-
heuristic optimization approaches have been examined for
planning sensor placements. Reference [12] separates the
existing types of placement optimization techniques into four
categories: (i) genetic algorithms, (ii) computational geom-
etry, (iii) artificial potential fields, and (iv) particle swarm
optimization. Genetic algorithm approaches represent the
largest number of the methods surveyed. Other metaheuristic
approaches that have been used include a simulated anneal-
ing optimization approach to place sensors on a grid for a
problem ofminimizing target discrimination error [13]. Addi-
tionally, ant colony optimization has been used [14] to main-
tain both sensor connectivity and coverage while reducing
the load level across individual sensors (to increase network
lifetime).

Reference [15] developed a basic genetic algorithm for
sensor placement and showed that it is efficient compared
to greedy solution techniques. This result is similar to other
studies on using genetic algorithm approaches for the related
facility location planning problem [16]. These genetic algo-
rithm approaches can function with improved efficiency
by careful tuning of the genetic algorithm parameters. For
instance, by examining the relationship between the sensor
network phenotype representation and the associated geno-
types, more efficient genetic algorithm approaches have been
developed for sensor placement to optimize coverage [17].
Reference [18] shows various Q-coverage problems where
they combine a genetic algorithm and integer linear pro-
gram (ILP) to have the genetic algorithm first develop a
‘‘master problem’’ that is then solved by the ILP. This com-
bined approach allows the genetic algorithm to get to a neigh-
borhood of the global optimum and then the ILP performs the
local optimization.

There are also a few specific sensor placement optimiza-
tion problems that can be solved by linear programming
methods without the need to initially run a metaheuristic. For
example, an ILP approach was used to select a minimal set
of sensors from a dense set of potential sensor locations on
a grid [19]. In addition, the submodularity inherent in sensor
placement problems (i.e. diminishing returns for adding addi-
tional sensors) allows a mixed integer programming (MIP)
approach to achieve performance within known bounds of
the true optimum [20]. Following this line of reasoning,
reference [21] shows that a greedy placement of sensors can
still provide near optimal positions even with non-uniform
sensor range (i.e. not submodular) when there exists a dense
enough coverage region. Other heuristic-style sensor place-
ment approaches utilize a genetic algorithm to select a set of
sensors from a dense set of potential sensor locations in order
to achieve a coverage constraint with the smallest number of
sensors [22]. Recent work includes using both coverage and
connectivity as objectives, and these approaches either select
sensor locations to activate [23] or else select specific sensors
to deploy [24].

As with most practical engineering problems, the sensor
placement problem often has multiple competing objectives.
While most studies limit focus to one of the objectives,
there have been some studies that examine the trade-off
problem directly through Pareto optimization. Reference [25]
surveyed various trade-offs that have been studied in the
wireless sensor network optimization literature. The prior
studies that were surveyed in that article look at a vari-
ety of objectives, however, none of those surveyed look
at the objective that we refer to as serviceability. Much
like the single objective approaches, the Pareto optimiza-
tion approaches fall into broad categories of either local
optimization methods or metaheuristics for approximate
global optimization. For example, in one case a Proxim-
ity Avoidance Coverage-preserving Operator (PACO) was
used to provide local optimization for a Pareto optimiza-
tion problem [26]. That problem was to jointly minimize
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the number of nodes while also minimizing the energy uti-
lization of the most-utilized node. For global optimization,
differential evolution (DE) has been applied as an opti-
mization approach to compute Pareto trade-off surfaces for
sensor placements using coverage, connectivity and life-
time/energy [27]. In our prior work [28], we have used genetic
algorithm approaches to determine sensor placement patterns
that achieve a trade-off between coverage and false alarms.

Once the sensors are placed in a location to be utilized
for an extended period of time, there is often a requirement
to periodically visit each of the sensors. This can be done
to serve many purposes: such as to extract the collected
data, to perform limited basic maintenance, to provide battery
charging, and/or to replace the sensors’ batteries. When in a
difficult environment, the use of a mobile unmanned agent
to perform these visits is preferable, and therefore making
the visits with a minimal amount of travel is beneficial.
Reference [29] used a set of mobile robots to collect the
data from the sensors and return to a centralized sink node.
In a similar study [30], an approach was developed to use a
mobile sink to visit each of the sensors to collect that data
directly. In any such application, there is an additional design
objective that the total path length for visitation of all of the
sensors is to beminimized (or at least held below some design
threshold).

For some data gathering applications, the visitation of
neighborhoods of the sensors can be more efficient than visit-
ing all of the sensors directly [31]. This type of tour planning
problem has been referred to as the single-hop data gathering
problem [32] wherein the NP-hard routing problem is solved
heuristically. Other approaches for finding the optimal tour
for visiting a fixed set of sensor locations include combining
a genetic algorithm with a 2-Opt heuristic [33], applying
artificial bee colony algorithms [34], and applying discrete
firefly algorithms [35]. Yet another type of sensor network
visitation problem involves routing to a fixed set of locations
based on temporal demands from the sensors in periodic
recharging; methods to solve such problems involve gravi-
tational search [36] and PSO/GA hybrids [37]. All of these
approaches involve visitation of a fixed set of locations, they
do not consider adjusting the sensor placements (locations)
to improve the visitation route.

There are multiple application areas in which the place-
ment of sensors needs to be made with consideration of
both the coverage and the cost of visiting the set of loca-
tions. In wildlife monitoring networks, data is often extracted
physically from each of the sensors and therefore there
is a requirement to visit each node periodically, yet the
sensors must still be positioned to achieve the required
coverage. Thus, in that example, positioning sensors to opti-
mize visitation while maintaining a coverage constraint is
an important system-level optimization problem. Another
example is in extreme physical environments, such as under-
water networks, periodic maintenance is a requirement and
movement to visit spatially separated locations is costly and
time-consuming. Thus, in that application the positioning of

sensors to optimize visitation is an important goal (while
also maintaining the coverage quality that the network was
created for). Hence, the multiobjective problem of position-
ing to achieve both coverage and serviceability is a practical
engineering design/deployment concern.

In this article we solve a multiobjective sensor placement
problem where the objectives under consideration are the
Q-coverage and the serviceability of the sensors. We han-
dle the multiobjective nature of the problem by treating
the Q-coverage part of the problem as a constraint. This is
a practical consideration in that most sensor networks are
deployed only when coverage can be obtained at a given
minimal level.We then focus on optimizing the serviceability,
which we define as the distance required for a servicing
agent to visit each of the sensors in sequence. A further
complication to our problem is that serviceability can often be
improved by reducing the number of sensors included. Thus
we optimize both the number and placement of sensors to
achieve these goals. To our knowledge this is the first example
of solving such a problem in sensor network configuration
optimization.

III. PROBLEM FORMULATION
The problem to be solved is to optimize the placement of
sensors (and also select the number of sensors to place) in
order to minimize the travel distance to service the sensors,
while providing the best coverage for the sensor network over
the domain. These goals are typically in conflict, as provid-
ing extensive coverage typically requires a large number of
sensors placed at spatially varying locations, whilst such a
configuration requires a significant travel distance to visit
each sensor location for service. On the other hand, a network
of fewer sensors placed in either a single location or a simple
configuration (such as a single ring) has much improved ser-
viceability, albeit at a cost of decreased coverage. To handle
this conflict, we formulate the problem as an optimization of
the system’s serviceability under a coverage constraint.

Consider the placement of m sensors {S1, . . . , Sm} that are
to be located in a closed planar domainW ⊂ R2. Each sensor
Si is to be placed at a fixed location xi ∈W . The sensors are
omnidirectional and are all of identical performance, and we
assume the coverage range ri = rcov(xi) of each sensor Si
depends only on its location xi. Like most sensor placement
studies, we assume the sensors to be omnidirectional; how-
ever, the effects of sensor directionality have been previously
examined in other placement studies [38], its impact on this
problem is a subject of future interest. The sensors perform
coverage by observing within a disk of radius ri centered
at xi with a probability pd (where 0 < pd ≤ 1). That is,
the subset Wi of the domain W given by Wi(xi) = {x ∈
W : ||x − xi||2 ≤ r2i } is provided service with a coverage
quality of pd . We use the service coverage quality C(x) as a
spatially-dependent measure of performance for any location
x ∈W; for example,C(x) = 0.9 implies location x is covered
with 90% effectiveness. In regions of overlapping coverage
frommultiple sensors, the performance of the sensor network
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within the domain is given as follows [12]:

C(x; x1, . . . , xm) = 1−
m∏
i=1

(1− Ci(x; xi)), ∀ x ∈W (1)

where

Ci(x; xi) =

{
pd , x ∈Wi(xi)
0, otherwise

(2)

and the aggregate coverage of the entire domain is given by

CW (x1, . . . , xm) =

∫
W C(x; x1, . . . , xm) dx∫

W 1 dx
. (3)

We note that the coverage formulation in equation (1)
explicitly accounts for the effects of overlapping coverage.
There is a performance requirement that, as a group, the sen-
sors maintain a minimal quality of coverage Cmin, which we
refer to as the coverage demand. The number of sensors that
are to be used is also bounded by the number of available
sensors mmax , such that m ≤ mmax .
In addition to meeting the coverage demand, there is a

requirement to minimize the cost to service the sensors. This
service cost is given as the minimum required travel distance
to reach each of the sensors sequentially, coming from a
defined entry point into the domain and exiting from that
same point. We refer to this cost as the service length L. Thus,
the service length L for a specific configuration of sensors
{S1, . . . , Sm} is given by the minimal tour length between the
m+ 1 locations given by the m sensor locations {x1, . . . , xm}
plus an additional depot at location x0. The minimum tour
length that meets these requirements for a given configura-
tion is a solution to the classic traveling salesman problem
(TSP) [39].

The optimal TSP solution for the service length L associ-
ated with a configuration is specifically given by the solution
to the following optimization problem:

L(x0, x1, . . . , xm)

= min
m∑
i=0

m∑
j6=i,j=0

dij(xi, xj)zij (4)

s.t. 0 ≤ zij ≤ 1, i, j = 0, . . . ,m (5)
m∑

i=0,i6=j

zij = 1, j = 0, . . . ,m (6)

m∑
j=0,j6=i

zij = 1, i = 0, . . . ,m (7)

∑
i∈Z

∑
j∈Z

zij ≤ |Z | − 1, ∀Z ⊆ {1, . . . ,m} (8)

where dij(xi, xj) is the distance between sensors Si and Sj
(given by dij(xi, xj) = ||xi − xj||) and zij is an indicator
variable that has a value of zij = 1 if the service tour includes
a direct link between sensor Si and sensor Sj, and zij = 0
otherwise. We utilize the Dantzig-Fulkerson-Johnson formu-
lation [40] in the above, which is a well-known integer linear

programming formulation of the classic TSP that includes a
constraint (8) for subtour elimination. Another formulation
that includes subtour elimination, the Miller-Tucker-Zemlin
formulation [41], is more commonly used for TSP route opti-
mization because it is often computationally preferable when
applied to complete TSP problems. However, we have found
that in this application, an iterative solution with increasing
numbers of constraints of the above form provides a much
faster solution. In particular, we apply an iterative relaxation
of subtours [42], whereby only those subtours that appear
in a solution are added in a constraint of the form (8) and
the ILP is solved again, with the process repeating until no
subtours exist. This iterative relaxation is very efficient in this
application, as the increasing number of constraints that are
added is typically orders of magnitude smaller than the initial
consideration of all potential subtours. This approach still
retains the full integer linear program nature of the problem
and thus provides global solutions that can be found with a
standard ILP solver.

The general sensor placement problem is thus to find an
optimal configuration of sensors {S1, . . . , Sm} (given by their
locations {x1, . . . , xm}) that solves the following optimization
problem:

{x1, . . . , xm} = argminL(x0, x1, . . . , xm)

s.t. CW (x1, . . . , xm) ≥ Cmin (9)

where L(x0, x1, . . . , xm) is the service length given by
the solution of the TSP problem in equations (4)-(8) and
CW (x1, . . . , xm) is the coverage quality given by equation (3).
The number of sensorsm that are to be deployed in the sensor
network is an additional parameter of the optimization, which
is to be chosen under the simple constraint m ≤ mmax .
The selection of the number m is achieved jointly with the
optimization problem given by equation (9).

IV. OPTIMIZATION APPROACH
The service length minimization problem posed in equa-
tion (9) has an objective function of which the numerical
evaluation requires the solution of a secondary optimization
problem (specifically, to determine the length of the service
route for a set of locations requires the solution of a TSP
optimization problem) with a constraint given by a non-
linear function representing the Q-coverage. Additionally,
the problem has the added complexity of achieving this pre-
scribed coverage demandwith the smallest number of sensors
possible. To handle the complexity of this optimization we
propose a solution technique based upon a modified genetic
algorithm. This approach alternates between using a genetic
algorithm to find sensor placements that lower the service
length L, and removing sensors that are redundant to meeting
the coverage demand. This additional step of removing sen-
sors provides a heuristic approach to meeting the coverage
demand constraint with a smaller number of sensors, when
possible, where the sensor removal process is separated from
the sensor placement process.
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To alternate between the two optimization procedures
(placing available sensors and removing sensors that are
redundant to coverage) we apply a stopping criteria to the
genetic algorithm. The stopping criteria that we use is to
stop the genetic algorithm procedure when its convergence
slows significantly. To formalize evaluation of the slowdown
in convergence, we utilize a measure of diversity of the pop-
ulation in the genetic algorithm and stop when it is degraded
by a set amount. The combined optimization procedure for
alternating between the genetic algorithm for sensor place-
ment and the heuristic for removal of sensors is shown in
flowchart form in Fig. 1, which we refer to as the move-
first optimization procedure. This procedure assumes the
genetic algorithm procedure is run first; obviously, one can
alternatively begin with the removal heuristic and that leads
to a slight variant of the combined optimization procedure as
shown in flowchart form in Fig. 2, which we refer to as the
subsample-first optimization procedure.

FIGURE 1. Flowchart of the move-first optimization procedure.

To maintain high quality optimization solutions from a
genetic algorithm, the algorithm must maintain a level of
diversity across the members of the population at each gen-
eration. The maintenance of diversity across the population
of individuals as genetic algorithms progress has been recog-
nized as important to convergence since early in their appli-
cation [43]. If the diversity degrades too much, there will be
toomany replicates of similar individuals in a population, and
that can lead to premature convergence. Usually, the analysis
of a genetic algorithm uses a genotypic measure of diversity
given by the Hamming distance between members of the
population [44]. That measure is genotypic in that it measures
the distance between individuals in the space of the genome
representation (typically a binary string). Alternatively, it is
possible to consider phenotypic measures of diversity that

FIGURE 2. Flowchart of the subsample-first optimization procedure.

measure the distance is a more natural/physical interpreta-
tion of the distance between individuals. The method that
we utilize for diversity measurement is a phenotypic mea-
sure called inertia [45]. We have previously had success
in using this measure to examine genetic algorithm perfor-
mance for the optimization of spatially distributed nodes
on a grid [46].

The measurement of inertia for the group of individuals in
a population for a specific generation of a genetic algorithm
is related to the moment of inertia for mass distribution in
high-dimensional spaces. Particularly, consider a set of P
members in a population with γ characteristic traits. Let the
value of the i-th trait of individual p be given by tip. Then the
centroid of the value of the i-th trait is given by

ci =
1
P

P∑
p=1

tip, (10)

and the inertia of the group of P individuals across all i traits
is given by

I =
1
γP

γ∑
i=1

P∑
p=1

(tip − ci)2. (11)

The computation of this particular measure is linear in P
and is thusmore efficient to compute on-line during optimiza-
tion code execution than other measures which are typically
quadratic in P. In this application, the traits considered by
the genetic algorithm are the (x, y) position of each sensor.
As a practical consideration, we consider the genetic algo-
rithm to be losing significant diversity once the diversity
measure I reaches a value that is less than 50% of the initial
value.

For the procedure of removing sensors, we follow a simple
greedy heuristic algorithm. Specifically, at a given step iwith
mi sensors {S1, . . . , Smi} placed, we begin with proposing the
removal of each sensor individually. Specifically, we develop
mi new proposed sets of mi − 1 sensors each, where the sets
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are given as follows:

{S2, S3, S4, . . . , Smi}

{S1, S3, S4, . . . , Smi}
...

{S1, S2, . . . , Smi−2, Smi}

{S1, S2, . . . , Smi−2, Smi−1}

and for each proposed new set we compute the resulting
coverage CW . The set of sensors with the highest coverage
CW is chosen as it provides the least impact on the system
for removing a sensor. We thus remove that sensor from the
list, re-number of the order, and repeat the procedure. This
process stops when the highest coverage CW that can be
achieved for removal no longer meets the coverage constraint
of CW ≥ Cmin. When that happens, we do not remove any
more sensors and the sensor removal heuristic completes.
This process is a greedy approach to incrementally removing
the most redundant sensors and will remove as many sensors
as allowed to maintain the coverage constraint. Since no
sensor placements are changed in this procedure, the service
length L can only be decreased under the removal heuristic.

V. NUMERICAL RESULTS
To illustrate the performance of the proposed optimization
procedure, we execute the optimization strategies on two sim-
ulated sensor placement example problems. The first problem
we consider consists of a square domainW of size 100 units
by 100 units. There are a maximum of mmax = 36 sensors
to place in the domain to maintain a Q-coverage quality of
at least Cmin = 98.0%. Each sensor has a coverage radius
of rd = 22 units (such that the coverage region Wi of an
individual sensor is given by a disk of radius 22 units) with
a coverage quality of pd = 0.95 within Wi. The cover-
age for this example is independent of the sensor position
in the space, modeling a homogeneous environment where
sensor placement has no effect on rd nor pd . Since each
sensor covers to only 95% quality and the problem requires
Cmin = 98% overall quality, overlap must occur between the
sensors, making the problem significantly more complicated
than simple packing problems. This sensing problem employs
a probabilistic sensing model with fixed probability over a
fixed range, extensions to other probabilistic sensing models
(such as [47]) are a straightforward numerical extension.
These examples are performed to illustrate the tour length
optimization problem under a Q-coverage constraint, exten-
sions to other objectives and constraints are a subject of
future work.

For the genetic algorithm, we apply standard binary encod-
ing of the sensor positions in two-dimensional space. We rep-
resent each sensor’s location xi ∈ R2 by a 10-bit binary
string, the first 5 bits of which correspond to its position on
the x-axis and the second 5 bits correspond to its position
on the y-axis. Thus, there are 25 = 32 potential positions
along each axis, corresponding to a resolution of 3.125 spatial

units for positioning. The genetic algorithm is run with a
population size of P = 50 individuals, and we apply a
standard single-point crossover operator with a mutation rate
of 2%. In addition, an elitist strategy of keeping the best
population member from each generation is adopted, and
remaining members are created by crossover (98% crossover
rate). The inertia I as shown in equation (11) is computed at
the end of every generation, yet we only consider the genetic
algorithm stopping criteria at every tenth generation. This was
chosen to avoid premature stopping in cases where the inertia
drops significantly at a single generation (due to random
effects in the population after mating) as opposed to following
the general trend in inertia over multiple generations.

The m = 36 initial sensor placements are configured
according to a regular grid at locations given by x =
[xval, yval]T where

xval ∈ {1/2, 31/2, 41/2, . . . , (
√
m− 1)1/2}

and

yval ∈ {1/2, 31/2, 41/2, . . . , (
√
m− 1)1/2}.

In this expression, 1 = L/
√
m is the initial sensor-

to-sensor spacing for a domain W of size L × L (Note: for
this example, we have 1 = 100/

√
36 = 16.67). To generate

some diversity in the initial population, we keep one copy of
the initial configuration as given, and make P − 1 perturbed
copies, where the perturbation is independently applied to
each xval and yval value, according to xval → xval(1 + ε) for
ε ∈ U (−0.02, 0.02), and similarly for yval . For this size of
problem, that level of perturbation overm = 36 initial sensors
provides for a level of diversity given by an inertia value of
I ≈ 4.0 (where I is computed as given in equation (11)).
The initial configuration alongwith its corresponding optimal
service route are shown in Fig. 3.

FIGURE 3. Initial configuration for the homogeneous environment
examples. Sensor locations are represented as dots, the thick line
represents the optimal service route of length L and the shaded circles
represent the sensor coverage regions.

The description of one particular realization of apply-
ing the move-first optimization strategy (as outlined in the
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FIGURE 4. Configuration obtained from moving the m = 36 sensor
positions in Fig. 3 to reduce the service route length L.

flowchart in Fig. 1) follows. When applied to this initial
configuration, that algorithm allowed repositioning of the
m = 36 sensors for 50 generations until the stopping criteria
of a 50% reduction in inertia I was reported. The configu-
ration after 50 generations is shown in Fig. 4, where it can
be clearly seen that the service route length L is reduced
by moving the sensors to a rough circle that is pushed out
near the corners (to maintain coverage). At this point only the
best configuration from the genetic algorithm is kept and the
greedy heuristic for redundant sensor removal is performed.
The greedy heursitic removed 18 of the 36 sensors, leaving
a pattern of m = 18 sensors as shown in Fig. 5. From this
configuration, we restart the genetic algorithm by again cre-
ating a new population of P = 50 individual configurations,
where 49 of the configurations are simple perturbations of
the configuration shown in the figure. Running the genetic
algorithm to reposition these m = 18 sensors leads to a
configuration as shown in Fig. 6 after an additional 50 gener-
ations. In this case we do not achieve the reduction of 50%
for the inertia I , but rather we terminate due to 100 total
generations of the genetic algorithm. We again check for
any redundancy with the sensor removal heuristic and find
that all m = 18 sensors are required to meet the coverage
requirement of CW ≥ 98%. Thus we conclude that the
configuration in Fig. 6 is the optimized configuration for this
scenario.

In Figs. 7 and 8 we show the reduction in the diversity
(measured by inertia I ) and the convergence in the service
route length L, respectively, for this example. As the opti-
mization approach is stochastic, we ran multiple realizations
on the same problem to generate performance statistics. Run-
ning 100 independent realizations of the move-first algo-
rithmic approach on this homogeneous problem resulted in
solutions summarized by the first line of Table 1. In the table,
we report nonparametric statistics on the results (specifically,
we show the quartiles of the service route length values L
and the final sensor countm), as the 100 solutions did not fit a

FIGURE 5. Configuration obtained from heuristic removal
of 18 redundant sensors from the configuration shown in Fig. 4.

FIGURE 6. Configuration obtained from moving the m = 18 sensor
positions in Fig. 5 to reduce the service route length L.

TABLE 1. Sensor configuration measures of the number of required
sensors m and tour length L for various optimization approaches in the
homogeneous environment.

measure of normality to statistical significance.We also com-
pute the correlation ρ between the two statistical quantities
m and L, and show that in the last column of Table 1. As the
value of ρ is not large, we conclude that the statistics ofm and
L are independent, and that is why the quartiles {Q1,Q2,Q3}

for each are reported separately.
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FIGURE 7. Diversity of the genetic algorithm population (as measured by
the inertia I from equation (11)) for the move-first strategy in the
example shown in Figs. 3 through 6. The line colors separate the different
runs of the genetic algorithm that occur between sub-sampling stages.

FIGURE 8. Convergence of the service route length objective L for the
move-first strategy in the example shown in Figs. 3 through 6. The line
colors separate the different runs of the genetic algorithm that occur
between sub-sampling stages.

To demonstrate how the subsample-first strategy compares
with the move-first strategy, we apply the subsample-first
strategy to the same homogeneous environment example pre-
sented above. We again begin with m = 36 sensor locations
on a regular grid for a homogeneous environment as shown
in Fig. 3. For this strategy, we follow the flowchart in Fig. 2
that begins with the heuristic removal of redundant sensor
locations. Results of the subsample-first strategy being run
over 100 independent realizations is shown as the second row
of Table 1. Comparing the results show comparable results
with the move-first strategy, although the subsample-first
does result in slightly fewer numbers of sensors m at the cost
of a slightly larger service route length L. To compare these
strategies with a more standard heuristic approach, we con-
sider the greedy removal of sensors from an overpopulated
grid of sensor locations to achieve the required coverage. The
removal is continued until the coverage requirement is no

longer met. It is different than our approach in that there is
no changing of sensor positions, only removal from a more
dense initial grid. We refer to this approach as ‘‘heuristic’’
in Table 1, and show results for initial grid sizes of m0 =

64 and m0 = 100. The heuristic approach yields smaller
numbers of sensors than our new algorithm (m = 14 versus
m = 16 or m = 18), yet the service tour length is larger
by between 4% and 12%. Also, there is no improvement
for further increasing the initial dense grid resolution as
both m0 = 64 and m0 = 100 yield similar results. Thus,
we conclude that our algorithm provides improved service
tour lengths over the heuristic approach.

While the previous example illustrated the features of the
optimization approach, it did not solve a physically realistic
example. In practice, environmental conditions vary across
the domain, and that may lead to areas of restriction (where
sensors cannot be placed) or limited performance (where the
sensor detection range is decreased). Since restricted loca-
tions can be readily modeled by setting the local rd to zero,
we consider both cases to be situationswhere the environment
causes the sensor detection range to be dependent on the
location x, such that rd → rd (x). In this way, changing a
sensor’s placement not only changes the location where its
coverageWi is applied, but it also changes the size ofWi.

To demonstrate how the optimization approach works on
such problems, we consider the placement of sensors in a
heterogeneous environment that consists of a square domain
W of size 100 units by 100 units, where the range rd (x) of
the sensors is dependent on their location in the environment,
according to the spatial range map shown in Fig. 9. The
coverage radius of each sensor as shown in Fig. 9 is defined
as a range for which the coverage quality is pd = 0.95
within Wi. There are a maximum of mmax = 36 sensors
to place in the domain that is now designed to maintain a
Q-coverage quality of at least Cmin = 95.0%. The initial
position of them = 36 sensors and their coverages are shown
in Fig. 10. Note that the coverage in the upper left region is
significantly smaller than the other parts of the domain, thus
we expect that optimal configurations will have more dense
sensor positioning in that subset of the domain. Also note
that the service route is only dependent on the locations of
the sensors, and thus is the same as shown in the previous
example (see Fig. 3).

The description of one particular realization of apply-
ing the move-first strategy of Fig. 1 to the heterogeneous
environment example follows. In this realization, the initial
genetic algorithm led to repositioning of the m = 36 sensors
for 20 generations until the genetic algorithm was stopped
for diversity reduction. Then the redundant sensor removal
heuristic removed 2 sensors and the remaining m = 34
sensors were repositioned using the genetic algorithm for
another 50 generations (until the diversity reduction stopping
criteria was met). From there another 2 sensors were removed
using the redundant sensor removal heuristic and an addi-
tional 10 generations of the genetic algorithm were run to
reposition the m = 32 sensors. From that point there was
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FIGURE 9. Detection range map for the heterogeneous environment
example. The range at each (x, y ) position is represented by the color
level.

FIGURE 10. Initial configuration for the heterogeneous environment
example for the environment shown in Fig. 9.

no redundancy to be removed and the algorithm completed.
The resulting configuration is shown in Fig. 11, where the top
left of the configuration accepts much more back-and-forth
motion in the service route in order to maintain coverage in
the region of the domain with smaller rd . The diversity mea-
sure and service length L convergence are shown in Figs. 12
and 13, respectively. Running 100 independent realizations
of the move-first algorithmic approach on this heterogeneous
problem results in solutions summarized by the first line
of Table 2. As in the homogeneous case, the correlation ρ
between the two statistical quantities m and L is low, so we
report quartiles {Q1,Q2,Q3} independently to summarize the
statistics.

We also apply the subsample-first strategy of Fig. 2 to
the heterogeneous environment example and the resulting
statistics from 100 independent realizations are presented in
the second row of Table 2. In addition, the approach of heuris-
tic removal of sensors from a densely populated grid of sizes
m0 = 64 and m0 = 100 were also run for the heterogeneous

FIGURE 11. Final configuration obtained from reducing the service length
L using the move-first strategy for the heterogeneous environment
example.

FIGURE 12. Diversity of the genetic algorithm population (as measured
by the inertia I from equation (11)) for the move-first strategy in the
example shown in Figs. 10 and 11. The line colors separate the different
runs of the genetic algorithm that occur between sub-sampling stages.

TABLE 2. Sensor configuration measures of the number of required
sensors m and tour length L for various optimization approaches in the
heterogeneous environment.

case, and those results are shown in the final two rows of
Table 2. From these results, it is seen that the two variants of
our algorithm (move-first and subsample-first) both provide
similar results with comparable mean values of m and L.
However, the heuristic approach provided results with 3 fewer
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FIGURE 13. Convergence of the service route length objective L for the
move-first strategy in the example shown in Figs. 10 and 11. The line
colors separate the different runs of the genetic algorithm that occur
between sub-sampling stages.

sensors (m = 25 as compared to m = 28) but at the cost of
an approximately 6% increase in service tour length. Thus,
if service tour length is a priority, our algorithm once again
provides improved results over the heuristic approach.

The examples that were presented above considered tens
of sensors in a region. As the optimization approach embeds
a traveling salesman problem within a genetic algorithm,
the former of which is known to be NP-hard, there is a
concern that the algorithm run-time may grow unreasonably
large for increasing numbers of sensors (corresponding to
larger applications). To address this issue, we have run a
sequence of problems of increasing size, and computed how
much additional computational time the TSP solution took
as the problem size increased. The results of this study are
shown in Fig. 14, where we plot the time spent on the TSP
solution (which is the dominant portion of the method as
the problem gets large) as a function of the problem size,
which is given by the area of the region to be covered by
the sensors (sensor range is fixed for this plot). It is clear
from the figure that there is an exponential growth to the
computation time, in fact, the dashed red curve shows an
exponential fit to the TSP computation times tTSP given
by tTSP = 0.093 exp(3.72 A/A0), where A0 is the nomi-
nal area corresponding to the other examples given in this
paper. Thus, for problems of the scale given in this paper,
the computation can be computed within seconds. How-
ever, as the region gets to be even three times as large,
the run-time grows to nearly 10,000 seconds (or 2.78 hours).
Clearly for anything much larger than that, the run times
may become unreasonable for some particular applications.
However, as a planning tool, it may be reasonable to wait a
significant amount of time to find the best configuration for
placing sensors that are to be used for long-term monitoring
applications.

The numerical approach that has been presented can be
applied to other extensions of sensor networks for which
optimizing the serviceability is desired. In particular, while

FIGURE 14. Computational run time for the initial serviceability (tour
length) computation as a function of problem size. Solid black line is
numerical results; red dashed line is an exponential curve fit. The
nominal area size (given by an area size of one) corresponds to the
examples in the paper.

the examples presented were for domains that were rectangu-
lar, the use of a location-dependent detection range rd (x) (as
shown in the second example) allows the direct consideration
of sub-regions of the space W to have rd (x) = 0. In that
way, any non-rectangular domain is handled by considering
a bounding rectangle and ‘‘zeroing out’’ those portions of the
bounding rectangle that are not in the domain. Additionally,
features such as range-dependent sensors or directional sen-
sors can be handled numerically by creating more complex
regionsWi in the formulation in equation (2). The joint opti-
mization of sensor look-angles in a directional sensor network
would also necessitate the extension of the binary encoding of
each sensor in the genetic algorithm to incorporate this extra
variable. These topics are subjects of future work.

VI. CONCLUSION
A new method for optimizing the service route length for
a sensor network, while maintaining a prescribed coverage
demand, has been developed. The method uses an alternating
optimization procedure, which alternates between optimizing
the positions of a fixed number of sensors to reduce the ser-
vice route length and removing any sensors that are redundant
for the coverage demand. The sensor position optimization
utilizes a genetic algorithm with a stopping criteria based on
the diversity of the population, while the sensor removal pro-
cedure employs a greedy heuristic to remove redundant sen-
sors that are not required to meet the coverage demand. This
approach is shown to converge to similar solutions regardless
of whether it starts with sensor removal or sensor reposition-
ing. Numerical examples for both a homogeneous environ-
ment as well as a practical environment (i.e. an environment
with sensor performance that has variability depending on
sensor positions) were shown to illustrate the effectiveness
of the approach, and it compares favorably against a heuristic
approach.
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