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ABSTRACT Designing a run-length-limited (RLL) code for a visible light communication (VLC) system
requires consideration of several performance factors including hardware overhead, transmission efficiency,
and direct current (DC) balance. This paper proposes a novel RLL code called bit-shuffle block codes for
high-rate multiple-input multiple-output (MIMO)-VLC systems that can offer excellent constant illumina-
tion and transmission efficiency with extensively-optimized hardware resources. Due to the structure of
the Omega network, the proposed bit-shuffle block coding method can increase transmission efficiency
and significantly reduce hardware overhead. In addition, it can generate codewords dynamically, which
guarantees DC balance with multiple LEDs to serve the dual purpose of illumination and communication.
Experimental results confirm that the proposed bit-shuffle block coding demonstrate excellent performance
in resource optimization, and can be a viable solution for MIMO-VLC applications that can send large
volumes data with limited hardware resources.

INDEX TERMS Multiple-input multiple-output (MIMO), visible light communication (VLC), run-

length-limited (RLL) codes, hardware resource optimization, bit-shuffling.

I. INTRODUCTION

Recently, visible light communication (VLC) has emerged as
a valuable communication technology because it supports the
use of light-emitting diodes (LEDs) for simultaneous services
of illumination and information transmission [1]-[4]. The
fast-switching capability of LEDs enables data transmission
by modulating the light signal via an optical wireless channel.
While conventional wireless frequency bands are constrained
by various regulations, VLC provides many advantages, e.g.,
huge and unregulated spectrum, potentially high data rate,
high security, low-cost implementation and no electromag-
netic interference. Therefore, VLC has the potential to realize
massive human-to-machine and machine-to-machine com-
munication (M2M) in 6G applications [5], [6]. Typically,
M2M devices are required to be small and low cost; thus,
implementing a VLC device with minimum hardware is an
important issue in providing the expansion and flexibility of
M2M communication networks.
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VLC modulates the intensity of LED signals to transmit
data, and the use of multiple LEDs can increase communica-
tion capacity by exploiting the advantages of multiple-input
multiple-output (MIMO) technology. As shown in Fig. 1,
multiple luminaires provide lighting and act as a transmitter
for communications. The receiver consists of optical lens,
filters, and the detector array to uncorrelate optical MIMO
channel matrix coefficients to achieve parallel data streams.
Given that LEDs are used simultaneously for illumination
and communication in MIMO-VLC, direct current (DC) level
balancing is important in terms of maintaining consistency
in brightness. In previous VLC studies, run-length-limited
(RLL) codes were widely adopted because they makes
the brightness maintained 50% constantly by eliminating
sequences of the continuous 0’s or 1°s. According to the VLC
standard [7], PHY I and PHY II leverage Manchester, 4B6B,
and 8B10B codes to support consistent LED brightness.
These DC balanced codes have an equal number of 0’s and
1’s in all of their codewords. In addition, several RLL codes
have been applied for single-input single-output (SISO) VLC
systems to enhance performance in terms of transmission
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FIGURE 1. MIMO-VLC system model.

efficiency, flicker mitigation, and dimming support [8]-[13].
Several studies on MIMO-VLC systems have investigated
methods to increase the capacity of VLC using multiple
LEDs [14]-[21]. Among the various MIMO transmission
techniques, spatial multiplexing is the most widely adopted in
band-limited MIMO-VLC systems where independent data
streams are transmitted from each transmitter, thereby offer-
ing multiplexing gains and greatly enhanced communica-
tion capacities. In [14], a superposed odd-order 32 QAM
constellation scheme for 2 x 2 MIMO-VLC systems was
proposed to improve BER performance and dynamic range
of the driving voltage. An optimal constellation design for
the 2 x 2 MIMO-VLC system has been presented in [15],
and it improved error performance compared to existing
methods. The singular value decomposition (SVD)-based
low-complexity scheme for point-to-point MIMO-VLC was
proposed to enhance achievable rates [16]. Angle diver-
sity transmitters and receivers and an optimal signal vector
design [17] have been introduced to MIMO-VLC systems.
In [18], an space-division multiple access (SDMA) tech-
nique for multiuser MIMO-VLC systems was proposed to
improve the available bandwidth of each user and enhance
the achievable rate. Mathematical modelling of positioning in
MIMO-VLC systems has been developed [19], and a secure
MIMO-VLC system based on the user’s location and encryp-
tion without affecting efficiency has also been designed.
Spatial modulation schemes with dimming control have been
proposed [20], and additional compensation symbols in the
RLL codes have been proposed for VLC systems [21]. The
abovementioned methods increase the data rate using multi-
ple LEDs; however, these studies did not consider situations
where both hardware resource consumption and transmission
efficiency are strongly constrained. Considering the trend of
requiring compact hardware and portable communications
devices for massive M2M applications, a new type of RLL
code for MIMO-VLC should be studied.

Therefore, in this paper, we propose a novel bit-shuffle
block coding scheme to provide a resource-optimized solu-
tion for MIMO-VLC systems. To support multi-stream
transmission using multiple LEDs, a block coding archi-
tecture comprising an Omega network-based encoder and
decoder was designed. Using the weighted Hamming dis-
tance, it is possible to dynamically generate codewords that
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can significantly reduce hardware overhead while balanc-
ing the dimming levels of multiple LEDs. Our experimen-
tal results demonstrate that the proposed bit-shuffle block
codes achieve superior resource optimization performance
compared to existing RLL codes. Our primary contributions
of this paper are summarized as follows:

o We propose bit-shuffle block codes for MIMO-VLC that
reduces hardware resource consumption and maintains a
dimming level of approximately 50% while minimizing
transmission overhead.

o« We confirm that the proposed bit-shuffle block cod-
ing scheme reduces transmission overhead to 11.1%
in 64-bit MIMO-VLC, i.e., transmission efficiency can
be improved by 4.5x, 3.0x, and 1.8 x over Manchester,
4B6B, and 8B10B, respectively.

« We present the detailed structure of the bit-shuffle block
coding scheme for compact hardware implementation
and demonstrate that it requires much fewer hardware
resources and power consumption than the 4B6B and
8B10B codes.

The remainder of this paper is organized as follows.
In Section II, we introduce the encoder and decoder struc-
ture of the proposed bit-shuffle block coding scheme.
In Section III, we present a hardware implementation of the
proposed scheme. In Section IV, we present the results of
performance comparisons of the proposed scheme to con-
ventional RLL schemes in terms of transmission efficiency,
hardware overhead, and DC balance. Finally, we conclude the
work in Section V.

II. BIT-SHUFFLE BLOCK CODING FOR MIMO-VLC

In this section, we present the encoding and decoding algo-
rithms of the proposed bit-shuffle block coding, which is
optimized in terms of both hardware resource consumption
and DC balancing for MIMO-VLC. In addition, the codeword
generation and selection methods based on the weighted
Hamming distance are described.

A. OVERALL ARCHITECTURE

Figure 2 shows the structure of the encoder and decoder
in the proposed resource optimized bit-shuffle block cod-
ing for MIMO-VLC. The encoder transforms the input data
D™ to the encoded data and metadata {D|M}*" through the
following steps: XORing, bit shuffling, weighted Hamming
distance, and codeword selection. Note that XORing means
to perform an exclusive OR (XOR) operation on two inputs.
Also, metadata usually indicates additional data for data,
and in our proposed method, it means a combination of
hash and XOR bits excluding shuffled data bits from the
encoded output. To reduce the hardware resource consump-
tion, the encoder is designed to repeatedly perform these steps
for producing the encoded output. First of all, we transform
the input data to a different bit sequence by XORing with
an XOR pattern selected by the XOR index X““*. This step
enables to change the numbers of 0’s and 1’s of the input
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FIGURE 2. Overall architecture of the resource-optimized bit-shuffle
coding for MIMO-VLC. N represents the input data width.

data so that it contributes to producing more diverse bit
sequences in the subsequent bit shuffling step. Note that the
diverse bit sequences are required to maintain constant illu-
mination while multiple LEDs are used for communications.

Second, bit shuffling is the core step of the proposed encod-
ing algorithm that generates several candidates by shuffling
the XORed bit sequence using an Omega network [13] routed
by the hash index H““". The term XORed is used to mean that
an XOR operation has already been applied or to indicate its
result. The Omega network is a multistage interconnection
network composed of multiple stages of switches, supporting
a perfect shuffle connection where the output of each stage is
connected to the input of the next stage. The equation for bit
shuffling is presented as follows:

b), = bygn foralln where 0 <n < N. (1)

Here, each bit position b, of the N-bit input data is shuf-
fled to a new bit position 5], by XORing with a specific
hash &, where @ indicates an XOR operation between its
two operands. The binary signal of the newly obtained bit
position is expressed by the light intensity of each LED at the
transmitter, and the multi-stream data is transmitted through a
wireless optical channel. Figure 3 shows an example in which
8-bit input b is shuffled to output ’ by a hash index 101 in an
8 x 8 Omega network. Next, we calculate the weighted Ham-
ming distance of the current bit-shuffled candidate {D|M }<*"
against the previous encoded output. The distance is com-
puted by applying different weights to compensate for the
dimming level difference between the encoded data and the
metadata. Finally, in the codeword selection step, we select
the one candidate with the maximum weighted Hamming
distance among the candidates so that we can find the bit
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FIGURE 3. An example of an 8 x 8 Omega network. The white box
indicates that the switch passes two inputs to the output without
swapping if h is 0, and the gray box does that the switch exchanges two
inputs and outputs them if his 1.

sequence most opposite to the previous encoded output. Thus,
we can maintain the dimming level of approximately 50% at
each bit position. Note that a single encoding repeats these
four steps iteratively for 4 x N shuffled candidates when the
input data is N-bit. After the iterations, the encoded output
{D|M}¢" is selected and transmitted wirelessly in visible light
wavelengths from multiple LEDs.

On the receiver side, multiple photo-detector (PD) arrays
are employed to detect the light signal and convert the light
photons into digital signals. As shown in Figure 1, one of
the significant advantages of bit-shuffle block coding is that
we can implement the decoder in a very simply design. It is
sufficient for the decoding algorithm to only perform the fol-
lowing two steps sequentially: bit shuffling and XORing. To
obtain the decoded output D%, we first apply bit shuffling to
the encoded data using the hash index H*" from the metadata.
We can then output the decoded data by XORing with a bit
pattern selected by the XOR index X¢".

B. ENCODING AND DECODING ALGORITHMS

Algorithm 1 presents the block encoding algorithm of
our resource-optimized bit-shuffle coding for MIMO-VLC.
When the input data width is N-bit, the inputs of the proce-
dure are the previously encoded data and metadata {DIM }°%,
which is the encoded output produced from the previous
input data, and the new input data D™. It also returns a
concatenation of the encoded data and metadata {DIM }¢" as
output.

To reduce the use of redundant hardware resources,
the encoding algorithm is designed to repeatedly perform
the four steps of the bit-shuffle coding for different XOR
and hash indexes, i.e., p and h, with a nested iteration.
We name the four steps as XORing, bit shuffling, weighted
Hamming distance, and codeword selection, respectively.
First of all, the input data D™ is XORed into a new D"’ by
the Bit-pattern,, selected by the XOR index p in the XORing
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step. Thus, we can obtain at most K different D" fora single
D™ when we employ K bit-patterns through this procedure.
After then, we iterate the remaining three steps N times for
each D™ to find the bit-shuffled candidate with the largest
weighted Hamming distance against the previously encoded
data and metadata {DIM}°"_ For each iteration, we produce
a bit-shuffled data candidate D by shuffling D™ with the
hash index H“" in the bit shuffling step. We also calculate
the weighted Hamming distance of the shuffled candidate
{DIM }““* against {DIM Jold " and select one candidate of the
maximum Hamming distance by comparing with the other
candidates. Finally, we return the encoded data and metadata
{DIM }" by repeating the previous steps for K different D"

Algorithm 1 Block Encoding Algorithm

INPUT {D|M}°!: previously encoded data and metadata, D™: input
data
OUTPUT {D|M}¢": encoded data and metadata.
1: procedure Encode({D|M}°d, Di")
2: Dist™™* =0
3 /I Repeat for K bit patterns
4 forp < 0to K-1do
5: /I Diverge D™ using XORing
6.
7
8

D" = pin Bit-pattern,,
// Repeat for N candidates

: for h <~ 0to N-1do
9: H“ =h

10: X=p

11: /I Shuffle D" bits by H"

12: D = ShuffleBit(D™', Hean)

13: Mean = (H|X )ean

14: // Calculate weighted Hamming distance
15: Dist®@ = WHDist({D|M }¢", {D|M}°!d)
16: // Find a candidate of max Hamming distance
17: if Dist™™ < Dist“™" then

18: {D|M}¢" = {D|M }<"

19: Dist™™ = Dist“"

20: end if

21: end for

22: end for
23: end procedure

Algorithm 2 Block Decoding Algorithm
INPUT {D|M}°": encoded data and metadata
OUTPUT D%: decoded data.

1: procedure Decode({D|M }")

2 // Shuffle D¢ bits by H"

3: D" = ShuffleBit(D", H")

4: // Perform XORing
5

6
7:

p = Xen
D = per’ D Bit-pattern,,
end procedure

As shown in Algorithm 2, the block decoding algorithm of
the proposed bit-shuffle coding is more straightforward com-
pared to the encoding algorithm. It consists of only the two
sequential steps of bit shuffling and XORing. The algorithm’s
input is an encoded data and metadata {D|M }*"* and the output
is a decoded data bit sequence D% . We obtain both the
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FIGURE 4. LED emission of an encoded output, i.e., shuffled data and
metadata bits, in MIMO-VLC when the input data is 8-bit.

hash and XOR indexes, i.e., H¢"* and X", from the encoded
metadata M¢". First, we produce D" from the encoded data
D" by shuffling with hash index H¢" in the bit shuffling step.
Second, the decoded output D% is transformed from D" by
XORing with the bit-pattern of the given XOR index X°".
As aresult, the hardware complexity of the proposed decoder
can be significantly lower than that of the encoder since the
decoding algorithm requires bit-shuffling and XORing only
once in sequence.

C. WEIGHTED HAMMING DISTANCE
Figure 4 illustrates how the input data is transformed into
the shuffled data and metadata by successive XORing and
bit-shuffling for data transmission from multiple LEDs. In
detail, the input data bits b are XORed and bit-shuffled by
the given XOR and hash indexes, i.e., x and A, respectively.
and the encoded output comprises the shuffled data bits, hash
bits, and XOR bits. The bit-flip frequency of the metadata
bits is thus constrained relative to that of the shuffled data
bits because the hash and XOR bits are returned without any
manipulation. If we do not handle the metadata bits separately
from the shuffled data bits when calculating the Hamming
distance, the dimming level will become unstable at the bit
positions of the metadata as shown in Figure 5. Note that
the generated codeword of SISO-VLC is the time-domain
signal and expressed as light intensity in a single LED. On the
other hand, in MIMO-VLC, the codeword is expressed in
the space-domain where multiple LEDs are located. Here,
if the bit distribution of the upper and lower regions of the
codeword generated for MIMO-VLC is not similar, unbal-
anced illumination for multiple LEDs is perceived to the
human eye.

To mitigate this issue, we employ the weighted Hamming
distance of the shuffled candidate from the previously
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encoded output in the codeword selection. The weighted
Hamming distance is calculated by multiplying three dif-
ferent weights to the number of bit-flips of the shuffled
data, hash, and XOR bits, respectively, and accumulating
them. Since the codeword selection takes a shuffled candidate
of the maximum Hamming distance as an encoded output,
we can increase the bit-flip frequency of the metadata bits
by applying a higher weight to them. For example, if we
apply the weights of 1, 2, and 4 to the bit-flips on the data,
hash, and XOR bits, respectively, a bit-flip on XOR bits
becomes four times more dominant than that on the data
bits in calculating the Hamming distance; thus, it promotes
more bit-flips on the XOR bits. Therefore, we can obtain the
stable DC balance along the multiple LEDs by setting the
dimming ratio of approximately 0.5 at the bit positions of
the metadata by adopting the weighted Hamming distance. In
order to maintain constant illumination when LED is used for
communication, most of the VLC-based DC balance coding
schemes aim to set the dimming ratio to 0.5. The reason is
that dimming can be controlled using compensation symbols
provided by the IEEE 802.15.7 VLC standard [7]. By attach-
ing compensation symbols to the end of the bit shuffle block
code, the user can adjust the desired lighting level.

lIl. HARDWARE DESIGN

In this section, we describe the hardware designs of the
encoder and decoder for our proposed bit-shuffle block cod-
ing in MIMO-VLC. We present a detailed implementation
of their hardware components to reduce hardware resource
consumption.

A. ENCODER AND DECODER

Figure 6 exhibits the overall architecture of the proposed
bit-shuffle block encoder that performs the encoding algo-
rithm shown in Algorithm 1. The encoder mainly consists
of the following five modules: XorBit, ShuffleBit, Weight-
edHDist, SelectMax, and a control unit. The control unit is
designed to operate synchronously by a system clock and out-
puts three different control signals, i.e., X, H, and S, for every
clock cycle according to the control flow of Algorithm 1. The
required system clock frequency varies according to the input
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gray box represents the control unit.

bit width and transmission rate. As a result, we can obtain
the encoded data and metadata from the input data and a
previously encoded output by repeatedly executing the four
modules, excluding the controller.

First of all, the input data D" is XORed with the XOR
pattern selected by the XOR index X in the XorBit mod-
ule. Second, the XORed input data is bit-shuffled with the
hash index H in the ShuffleBit module. Then, the weighted
Hamming distance of the shuffled candidate against the previ-
ously encoded output {D|H|X}°“ is calculated in the Weight-
edHDist module. Finally, the SelectMax module receives the
shuffled candidate and its Hamming distance as inputs and
selects one candidate with the maximum Hamming distance
by comparing it to the previous candidates. The encoding
process begins as the X, H, and S signals are initialized
to all O in the first clock cycle. We also repeat these four
steps N times when the input data is N-bit and finally return
the shuffled candidate of the max Hamming distance as the
encoded output. It means that we need N clock cycles to
obtain the output for the N-bit input data.

Figure 7 illustrates the process that the encoder produces
four different shuffled candidates by changing the hash index
from 0 to 3 when encoding the 4-bit input data 1010. The
XOR index is fixed at 0, and the previously encoded output
is assumed to be 10101011 in this example. In other words,
Figure 7 presents how the encoder repeatedly performs the
inner loop body as & increases from O to 3 when p is 0,
(D|M}°" is 10101011, and D™ is 1010 in Algorithm 1. The
input data is first transformed to 1010 after XORing with
the first XOR pattern 0000. Then, the code selections are
performed iteratively four times, i.e., #1, #2, #3, and #4,
by employing the ShuffleBit, WeightedHDist, and SelectMax
modules for the hash index of 0 to 3 in sequence.
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of 16 when the weights for the data, hash, and XOR bits are 1, 2, and 4, respectively.

In the first iteration, we shuffle the XORed input data into
1010 by applying the hash index 0 and get the first shuffled
candidate 10100000, i.e., {D|H|X}p, by concatenating the
metadata bits 0000. We can find that the h;, xi, and x( bits
of the shuffled candidate differ from the corresponding bits
of the previously encoded output {D|H |X }°ld Thus, in this
example, we obtain the weighted Hamming distance of 10 by
adopting different weights of 1, 2, and 4 for the data, hash, and
XOR bits, respectively. The first candidate is then selected
immediately by comparing to itself in the SelectMax module
and transferred to the second iteration. In the second iteration,
we obtain the shuffled candidate of 01010100 using the
hash index of 1. Its weighted Hamming distance is 16, i.e.,
4 x 1+ 2x 2+ 2 x 4, because all the bits are flipped
compared with the previously encoded output. 16 is greater
than the Hamming distance of 10 from the previous iteration
so that the current shuffled candidate, i.e., {D|H|X};, and
its Hamming distance of 16 are passed to the next iteration.
Next, the third iteration produces the shuffled candidate
of 10101000, and its hamming distance is eight since only
the two XOR bits are different from {D|H |X}°/. Therefore,
{D|H|X}; and 16 are selected and returned to the fourth
iteration since eight is less than the maximum Hamming
distance of 16. Finally, we get the fourth shuffled candidate
of 01011100, i.e., {D|H|X}3, by combining the shuffled data
of 0101 for the hash index of 3 with its metadata. The seven
bits of this candidate are different from those of the previ-
ously encoded output, so the weighted Hamming distance is
calculated as 14. Since 14 is less than the maximum Hamming
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distance of 16 from the previous iteration, the output candi-
date and Hamming distance are selected as {D|H|X}; and
16, respectively. Note that we can find a shuffled candidate
of the maximum Hamming distance by also performing such
iterative selections for the XOR indexes of 1, 2, and 3.
As a result, {D|H|X}; becomes the encoded output in this
example. It is entirely inverted for every bit of the previously
encoded output, although the input data bits are the same as
those of the previous output. It means that we can maintain
a constant dimming level on each bit position using the
proposed bit-shuffle coding in MIMO-VLC.

Figure 8 presents a hardware design of our proposed
bit-shuffle decoder for MIMO-VLC. The decoder architec-
ture is very simple and consists of only two modules: Shuf-
fleBit and XorBit. It is designed to perform bit-shuffling
and XORing in order for returning the decoded data D%
from the encoded data and metadata {D|H |X }¢"*. The decoder
design is significantly lightweight; thus, we can easily apply
the bit-shuffle coding technique to low-power MIMO-VLC
receivers in Internet of Thing environments.

B. HARDWARE MODULES
Figure 9 presents the detailed circuit design of the four hard-
ware modules employed in the encoder and decoder.

First of all, Figure 9(a) shows the XorBit module that
uses a bit-pattern table containing four different N-bit bit
sequences. The module returns the XORed input data by
XORing, the N-bit input data with the bit-pattern selected
by a 4-to-1 multiplexer (MUX) using an XOR index.
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FIGURE 8. Decoder design in the proposed bit-shuffle coding for
MIMO-VLC.

The more the module employs different bit-patterns, we can
further diversify the XORed input data to make the dimming
level constant. However, to reduce the hardware resource
consumption while maintaining the constant dimming level,
the current hardware implementation only adopts the four
bit-patterns selectable with a 2-bit XOR index.

Second, the ShuffleBit module produces the N-bit shuffled
data by shuffling all bits of the N-bit input data using a hash
index as shown in Figure 9(b). The ShuffledBit module uses
N instances of the shuffling bit position (SBP) module, which
comprises an N-to-1 MUX and a log,N-bit XOR gate. The
XOR gate is used to calculate the shuffled bit position from
the original bit position i using the hash index. Thus, the i-th
SBP outputs the i-th bit of the shuffled data by selecting the
input data bit at the shuffled bit position.

Third, Figure 9(c) shows that the WeightedHDist mod-
ule returns the weighted Hamming distance of a shuffled
candidate against the previously encoded output. The mod-
ule employs three hamming distance (HDist) modules that
perform XORing and counting the number of 1s for the
data, hash, and XOR bits. The weighted Hamming distance
is calculated by summing the results of multiplying three
different weights, i.e., o1, oz, and &3, to the outputs of the
HDist modules, respectively.

Finally, Figure 9(d) shows the SelectMax module, which
compares the input shuffled candidate to the shuffled candi-
date of the max Hamming distance stored in the registers,
i.e., Reg, at the previous clock cycle and returns one of a
greater Hamming distance. By assigning the HDist select
signal generated from the encoder’s control unit to the two
left MUXSs, we can choose to use either the initial values
or the registered shuffled candidate and Hamming distance
for the comparison. In other words, if the select signal to
the left above MUX is 0, an initial value of O is applied
to the “Greater than” comparator so that it selects the new
input Hamming distance but not the registered one. Other-
wise, the registered max Hamming distance is selected for
comparison with the new input Hamming distance. The input
shuffled candidate is also selected by the left below MUX
when the select signal is O; thus, it is determined as the greater
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one regardless of the comparator’s output. On the other hand,
the MUX outputs the registered shuffled candidate if the
signal is set to 1 so that the comparison result determines the
max shuffled candidate to return. In this way, one ‘““Greater
than” comparison is performed every clock cycle, and the
output max Hamming distance and shuffled candidate are
stored in the registers synchronously to the clock and used
for the comparison of the next clock cycle. With the overall
process of hardware resource optimization, it is possible to
implement a compact MIMO-VLC system that can expand
the area of massive M2M communication services.

IV. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of our proposed
bit-shuffle block coding in MIMO-VLC compared to existing
RLL codings, i.e., Manchester, 4B6B, and 8B10B, which are
included in the IEEE 802.15.7 standard [7].

A. EXPERIMENTAL SETUP

As performance metrics, we evaluated the transmission over-
head and dimming level by producing codeword sequences
via a Monte-Carlo simulation with 50,000 runs. To analyze
the inherent characteristics and performance presented by
bit-shuffle block coding, channel coding was not considered.
In addition, we investigated the hardware resource consump-
tion, i.e., area and power, of the proposed bit-shuffle block
coding and made a comparison with the existing RLL coding
schemes for MIMO-VLC. To do this, we implemented the
encoders and decoders of the 8-, 16-, 32-, and 64-bit input
data for all the coding techniques. Here, the encoders and
decoders were designed in Verilog Hardware Description
Language (HDL). Synopsys Design Compiler was used to
synthesize the encoders and decoders in a 32-nm CMOS tech-
nology to obtain the area and power consumption [22]-[24].

B. TRANSMISSION OVERHEAD

Transmission efficiency is defined as the number of informa-
tion bits divided by the number of transmitted bits. A higher
transmission efficiency means faster transmission. To ver-
ify the transmission efficiency, we compared the codeword
lengths of the proposed bit-shuffle block coding to those
of the conventional Manchester, 4B6B, and 8B10B codes.
Table 1 shows the transmission overhead of the RLL codes
for input bit widths of 8, 16, 32, and 64 bits. The trans-
mission overhead was calculated by dividing the required
redundant bits by the transmitted bits. As can be seen, the pro-
posed scheme produces considerably shorter codewords than
Manchester coding. When N bit input data are encoded,
Manchester coding causes a severe reduction in the data trans-
mission rate, because it produces a 2N-bit encoded output,
whereas the proposed scheme returns (N + loga N + 2)-bit
encoded output. This length comprises N bit encoded data,
a logy N-bit hash, and two XOR bit. In addition, the trans-
mission efficiency of the bit-shuffle block code increases
as the bit width increases. For bit widths of 8 and 16 bits,
the bit-shuffle block code exhibits a codeword length that
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FIGURE 9. Hardware modaules of the bit-shuffle encoder and decoder for MIMO-VLC, where the input data width is N-bit.

is comparable to the 4B6B and 8B10B schemes. However,
when the bit width is greater than 32 bits, the proposed
scheme provides a significantly smaller codeword length than
the compared methods. In particular, for a bit width of 64 bits,
the transmission overhead of the proposed method is only
11.1%, which is approximately the one-half and one-third of
the 8B10B and 4B6B codes, respectively. This is due to the
fact that only logy N-wise independent hash bits are added
to data length N due to the nature of the Omega network;
thus, high transmission efficiency can be guaranteed for long
data bits. Generally, in a transmission service that requires a
high data rate, a large amount of data is contained in a single
packet by increasing the payload length. Increasing the bit
width can be equated to increasing the payload length in terms
of data transmission, and this fits the purpose of the MIMO
system, which is useful when transmitting large-sized data.

To observe the effect of bit shuffle block coding on the
probability of bit error, the BER graph is shown in Figure 10.
As shown in the figure below, the BER performance of
the proposed scheme is similar to that of other RLL codes
(4B6B, 8B10B, and Manchester codes). Despite the excellent
resource-optimized hardware and DC balancing performance
of the bit shuffle block coding scheme, degradation of BER
performance does not occur either the low or high signal-
to-noise ratio (SNR) region.

C. HARDWARE RESOURCE CONSUMPTION
Table 1 summarizes the hardware performance of the
encoders and decoders of the proposed and existing coding
schemes. Since we adopt the amount of hardware resource
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FIGURE 10. Performance comparison of the bit error rate of various RLL
codes.

usage against the transmission efficiency as the cost of a code
design for MIMO-VLC, here we discuss that the bit-shuffle
coding is superior to other schemes in terms of the cost.

The system clock frequency needs to change according to
the input bit size and transmission data rate to perform our
encoding algorithm in MIMO-VLC, whereas the frequency
for decoding is consistent. Our encoder design requires a
relatively higher system clock frequency than the existing
schemes since it adopts iterative execution to reduce its hard-
ware resource consumption as mentioned in Section III-A.
Thus, we could achieve significant performance improve-
ments in terms of area and power, compared to 4B6B and
8B10B. The clock frequencies and target data rates of the
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TABLE 1. Design parameters and performance results.

Design Input bit width Coding Sys(tl(\:/[rrltl(;l)ock ]?ﬁ/ﬁ;;it)e ;Fizﬁﬁggs(l%r; Area (um?) | Power (uW)
Manchester 1 8 50.0 104.36 12.18
8 bits 4B6B 2 8 333 1632.35 144.78
8B10B 4 8 20.0 3843.36 290.97
Proposed 32 8 38.5 784.60 78.53
Manchester 1 16 50.0 204.44 22.89
16 bits 4B6B 2 16 333 3157.81 281.42
8B10B 4 16 20.0 7503.47 563.36
Encoder Proposed 64 16 27.3 1489.28 157.80
Manchester 1 32 50.0 442.68 45.22
32 bits 4B6B 2 32 333 6193.13 555.29
8B10B 4 32 20.0 15165.22 1115.20
Proposed 128 32 17.9 2752.85 368.06
Manchester 1 64 50.0 896.36 89.94
64 bits 4B6B 2 64 333 12617.63 1107.50
8B10B 4 64 20.0 31404.51 2232.10
Proposed 256 64 11.1 5004.97 911.34
Manchester 1 8 50.0 91.47 10.57
3 bits 4B6B 1 8 33.3 2240.84 169.63
8B10B 1 8 20.0 4729.93 310.08
Proposed 1 8 38.5 201.41 17.07
Manchester 1 16 50.0 178.70 20.36
16 bits 4B6B 1 16 333 4390.91 330.78
8B10B 1 16 20.0 9281.76 602.38
Decoder Proposed 1 16 27.3 533.75 38.09
Manchester 1 32 50.0 405.02 39.21
32 bits 4B6B 1 32 33.3 8649.76 645.72
8B10B 1 32 20.0 18671.63 1181.70
Proposed 1 32 17.9 1186.81 87.89
Manchester 1 64 50.0 822.39 79.85
64 bits 4B6B 1 64 33.3 17571.81 1301.30
8B10B 1 64 20.0 38360.87 2366.90
Proposed 1 64 11.1 2683.35 202.49

bit-shuffle encoder as well as the frequencies of the com-
pared coding schemes to satisfy the same data rate are also
shown in Table 1. Note that we synthesized each encoder
and decoder to operate at the corresponding clock frequency
in Table 1, and then we obtained the area and power values.

The results clearly demonstrate that the proposed encoder
and decoder outperform the 4B6B and 8B10B encoders and
decoders in terms of both area and power for all input data
sizes. Specifically, the proposed bit-shuffle encoder reduces
the area by 79.59%, 80.15%, 81.85%, and 84.06%, respec-
tively, compared to the 8B10B encoders with input data
sizes of 8, 16, 32, and 64 bits. In addition, the proposed
encoder consumes 73.01%, 71.99%, 67.00%, and 59.17%
less power for 8-, 16-, 32-, and 64-bit inputs, respectively,
compared to the 8B10B encoder. When compared against the
4B6B encoder, the proposed design achieves area reductions
of 51.93% ~ 60.33% and power reductions of 17.71% ~
45.76%, respectively, at the given input bit widths.

A comparison of the proposed decoder to the 8B10B
decoder shows that the proposed decoder has up to 23.48,
17.39, 15.73, and 14.30 times greater area efficiency at
8-, 16-, 32-, and 64-bit inputs, respectively. In addition,
our decoder achieves greater than 90% power reduction
compared to the 8B10B decoder for all input bit widths.
Importantly, the hardware performance comparison reveals
that the proposed bit-shuffle coding scheme allows more
area and power improvement in decoding than encoding
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for MIMO-VLC. This makes the bit-shuffle coding more
attractive and beneficial for unidirectional VLC applica-
tions because the decoder significantly impacts overall sys-
tem performance. Generally, resource-constrained receivers
are widely adopted in many light-weight VLC applications
and those receivers only include the decoder. Unfortunately,
the proposed encoder and decoder consume more area and
power than the Manchester counterparts. However, we have
proved the proposed encoder and decoder are more applicable
to MIMO-VLC because Manchester coding incurs signifi-
cantly more transmission overheads than our coding scheme;
thus, Manchester coding demonstrates a poor transmission
efficiency. In addition, the transmission efficiency improve-
ment of the proposed coding compared to Manchester coding
increases at the higher input data sizes. This may hinder
Manchester coding from being adopted in MIMO-VLC appli-
cations that require fast data transmission although Manch-
ester coding requires less area and power than the proposed
scheme.

D. DIMMING LEVEL

Figure 11 exhibits the variance of dimming level for each
bit position in the output bit sequence generated by applying
the proposed bit-shuffle block encoding to 8, 16, 32, and
64-bit input data, respectively. The binary signal of each bit
position is expressed by the light intensity of each LED at
the transmitter. The dimming level was calculated using the

97683



IEEE Access

Y. Han et al.: Resource-Optimized Design of Bit-Shuffle Block Coding for MIMO-VLC

0.54

052 S — F—

o] TEREEEET -
s " e e
8 048] R R
en
.8 1
E 0.46 | cnes o
=) Shuffled data bits Metadata bits

044 . .

042

040 D S S A S O Sy U R

1 2 3 4 5 6 7 8 9 10 11 12 13
Bit Position
(a) 8-bit

0.54

052 B
JEEATH PRSI LRAT T T S
3 i ¥z @8g
8 048] =
en
.8
E 0.46 e
A Shuffled data bits Me‘i;adala

044 L

042

040 T ] T T T T USRI T T T T

3 6 9 12 15 18 21 24 27 30 33 36 39

Bit Position

(c) 32-bit

0.50 -*g*;*ﬁﬁfiﬂ-ﬁyﬁﬁ'r%iifi

0.46—
Shuffled data bits

Dimming Level

B Metadata bits
0.44- o

042+

00— T T T T T T LT L L T 1
1234567 8 910111213 14151617 18 1920 21 22

Bit Position
(b) 16-bit

0.54

0.52—

mH,;;ﬁaﬁ‘,mlim;ﬂmiliiq@?i;flh!i‘i-i*if“*‘“‘**ﬂ*“ﬁ“"*ﬁ,q

048

0.46 — . .
Metadatg

bits

Dimming Level

R Shuffled data bits
044

042+

040 | e e
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
Bit Position

(d) 64-bit

FIGURE 11. Dimming level variance at each bit position in the encoded output for different input bit widths, i.e., 8, 16, 32, and 64. The left
white part of each graph shows the dimming level of the shuffled data bits, and the right colored part does that of the metadata bits.

cumulative number of 0’s and 1’s for each bit position by
encoding Monte-Carlo random input data 5,000 times. We
also obtained the variance by repeating the measurement of
the dimming level 10 times. As a result, we found that the
dimming level at each bit position for all input bit widths was
stably distributed between 0.48 and 0.52. Note that the slight
light changes around the 50% dimming level can be measured
by instruments but are difficult to perceive by the human eye.
In addition, the proposed scheme significantly improves the
transmission overhead and hardware resource consumption,
so this minor dimming level change can be acceptable for
the practical use. Although the weighted Hamming distance
is employed for the encoding, there is a large difference in
the dimming level between the shuffled data and metadata
bits for the 32 and 64-bit input data. The dimming level of
shuffled data bits is distributed from 0.5 with an error range
of +0.01, whereas that of the metadata bits is biased between
0.48 and 0.5 rather than a relatively small variance. In this
experiment, we assigned values of 1, 3, and 4 to the weights
of a1, an, and «3, respectively, for all input bit widths to
minimize hardware resource consumption for the weighted
Hamming distance calculation. Thus, we assure that it can
be relieved by adopting different weight values for different
input widths. Alternatively, it can be resolved by differential
biasing in LED emission. These solutions will be considered
in future research.
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V. CONCLUSION

Due to the increasing demand for VLC devices with small
hardware and the potential to increase the data rate using
multiple LEDs, the implementation of resource-constrained
MIMO-VLC systems is of significant interest. To develop
an RLL code technique that satisfies these requirements,
we have proposed a bit-shuffle block coding scheme that
comprises a resource-optimized encoder and decoder struc-
ture. The use of the Omega network in the encoder reduces
transmission overhead and significantly reduces hardware
overhead for implementation of compact VLC devices. The
dynamic code generation based on the weighted Hamming
distance provides DC balance on multiple LEDs, which
retains the original purpose of illumination. The experimental
results have proved that the proposed scheme can realize
resource-optimized RLL coding for MIMO-VLC systems
and that the proposed scheme outperforms conventional
schemes in terms of hardware overhead and transmission
efficiency.

REFERENCES

[1] H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightw.
Technol., vol. 34, no. 6, pp. 1533-1544, Mar. 15, 2016.

[2] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, *“Visible light com-
munication, networking, and sensing: A survey, potential and chal-
lenges,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2047-2077,
4th Quart., 2015.

VOLUME 9, 2021



Y. Han et al.: Resource-Optimized Design of Bit-Shuffle Block Coding for MIMO-VLC

IEEE Access

[3]

[4]

[5]
[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

L. D. Tamang and B. W. Kim, “Optical camera communication for vehic-
ular applications: A survey,” IEIE Trans. Smart Process. Comput., vol. 10,
no. 2, pp. 136-145, Apr. 2021.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based
indoor visible light communications: State of the art,” IEEE Commun.
Surveys Tuts., vol. 17, no. 3, pp. 1649-1678, Aug. 2015.

H. Haas, “LiFi is a paradigm-shifting 5G technology,” Rev. Phys., vol. 3,
pp. 26-31, Nov. 2017.

L. I. Albraheem, L. H. Alhudaithy, A. A. Aljaser, M. R. Aldhafian, and
G. M. Bahliwah, “Toward designing a Li-Fi-based hierarchical IoT archi-
tecture,” IEEE Access, vol. 6, pp. 40811-40825, 2018.

IEEE Standard for Local and Metropolitan Area Networks—Part 15.7,
Short-Range Wireless Optical Communication Using Visible Light, IEEE
Standard 802.15.7, 2011.

K. Kim, K. Lee, and K. Lee, “Zero reduction codes for efficient trans-
mission and enhanced brightness in visible light communication,” IET
Optoelectron., vol. 11, no. 3, pp. 108-113, Jun. 2017.

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible
light communication: Modulation schemes and dimming support,” IEEE
Commun. Mag., vol. 50, no. 3, pp. 72-82, Mar. 2012.

C. E. Mejia, C. N. Georghiades, M. M. Abdallah, and Y. H. Al-Badarneh,
“Code design for flicker mitigation in visible light communications
using finite state machines,” [EEE Trans. Commun., vol. 65, no. 5,
pp. 2091-2100, May 2017.

K. Kim, K. Lee, and K. Lee, “Appropriate RLL coding scheme for effective
dimming control in VLC,” Electron. Lett., vol. 52, no. 19, pp. 1622-1624,
Sep. 2016.

C. He, S. Cincotta, M. M. A. Mohammed, and J. Armstrong, “Angular
diversity aperture (ADA) receivers for indoor multiple-input multiple-
output (MIMO) visible light communications (VLC),” IEEE Access,
vol. 7, pp. 145282-145301, 2019.

Y. Han, Y. Kim, and B. W. Kim, “Bit-shuffle coding for flicker mitigation
in visible light communication,” IEEE Access, vol. 7, pp. 150271-150279,
2019.

X. Guo and N. Chi, “Superposed 32QAM constellation design for 2x2
spatial multiplexing MIMO VLC systems,” J. Lightw. Technol., vol. 38,
no. 7, pp. 1702-1711, Apr. 1, 2020.

H. B. Cai, J. Zhang, Y. J. Zhu, J. K. Zhang, and X. Yang, “Optimal
constellation design for indoor 2 x2 MIMO visible light communications,”
IEEE Commun. Lett., vol. 20, no. 2, pp. 264-267, Feb. 2016.

Y. Zhai, H. Chi, J. Tong, and J. Xi, “Capacity maximized linear precoder
design for spatial-multiplexing MIMO VLC systems,”” IEEE Access, vol. 8,
pp. 63901-63909, 2020.

D. Zheng, H. Zhang, and J. Song, “Spatial multiplexing MIMO visible
light communications with densely distributed LEDs and PDs,” IEEE
Photon. J., vol. 12, no. 5, Oct. 2020, Art. no. 7905807.

C. Chen, Y. Yang, X. Deng, P. Du, and H. Yang, “Space division mul-
tiple access with distributed user grouping for multi-user MIMO-VLC
systems,” IEEE Open J. Commun. Soc., vol. 1, pp. 943-956, 2020.

F.I. K. Mousa, N. Al Maadeed, K. Busawon, A. Bouridane, and R. Binns,
“Secure MIMO visible light communication system based on user’s loca-
tion and encryption,” J. Lightw. Technol., vol. 35, no. 24, pp. 5324-5334,
Dec. 15, 2017.

Y. Yang, Z. Zeng, J. Cheng, and C. Guo, ‘“‘Spatial dimming scheme for
optical OFDM based visible light communication,” Opt. Exp., vol. 24,
no. 26, pp. 30254-30263, Dec. 2016.

H. Wang and S. Kim, “Optimal constellation design for indoor 2 x2 MIMO
visible light communications,” IEEE Photon. Technol. Lett., vol. 29,
no. 19, pp. 1651-1654, Feb. 2017.

S. Yu-yun, H. Qing-sheng, and H. Liming, “A 0.18um pipelined 8B10B
encoder for a high-speed SerDes,” in Proc. IEEE 12th Int. Conf. Commun.
Technol., Nov. 2010, pp. 1039-1042.

P. Nannipieri, D. Davalle, and L. Fanucci, “A novel parallel 8B/10B
encoder: Architecture and comparison with classical solution,” IEICE
Trans. Fundam. Electron., Commun. Comput. Sci., vol. 101, no. 7,
pp. 1022-1120, 2018.

H. Bhatnagar, Advanced ASIC Chip Synthesis: Using Synopsys Design
Compiler Physical Compiler and Prime Time, 2nd ed. Norwell, MA, USA:
Kluwer, 2002.

VOLUME 9, 2021

YOUNGSUN HAN (Member, IEEE) received the
B.S. and Ph.D. degrees in electrical engineer-
ing from Korea University, Seoul, South Korea,
in 2003 and 2009, respectively. He was a Senior
Engineer with System LSI, Samsung Electronics,
Suwon, South Korea, from 2009 to 2011. He was
an Assistant/Associate Professor with the Depart-
ment of Electronic Engineering, Kyungil Univer-
sity, Gyeongsan-si, South Korea, from 2011 to
2019. He is currently an Associate Professor with
the Department of Computer Engineering, Pukyong National University,
Busan, South Korea. His research interests include compiler construction,
microarchitecture, high-performance computing, and SoC design.

SANGHYEON LEE is currently pursuing the inte-
grated B.S. and M.S. degree from the Depart-
ment of Computer Engineering, Pukyong National
University, Busan, South Korea. His research
interests include high-performance computing,
memory systems, and SoC design.

BYUNG WOOK KIM (Member, IEEE) received
the B.S. degree from the School of Electrical Engi-
neering, Pusan National University, Pusan, South
Korea, in 2005, and the M.S. and Ph.D. degrees
from the Department of Electrical Engineering,
KAIST, Daejeon, South Korea, in 2007 and 2012,
respectively. He was a Senior Engineer with
the Korea Electrotechnology Research Institute,
Changwon-si, South Korea, from 2012 to 2013.
He was an Assistant Professor with the School

'\

of Electrical and Railway Engineering, Kyungil University, Gyeongsan-si,
South Korea, from 2013 to 2016, and the Department of ICT Automotive
Engineering, Hoseo University, from 2016 to 2019. He is currently an
Assistant Professor with the Department of Information and Communication
Engineering, Changwon National University, Changwon-si. His research
interests include visible light communications, machine learning, and image
processing.

YONGTAE KIM (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineer-
ing from Korea University, Seoul, South Korea,
in 2007 and 2009, respectively, and the Ph.D.
degree from the Department of Electrical and
Computer Engineering, Texas A&M University,
College Station, TX, USA, in 2013. From 2013 to
2018, he was a Software Engineer with Intel
Corporation, Santa Clara, CA, USA. Since 2018,
he has been with the School of Computer Science
and Engineering, Kyungpook National University, Daegu, South Korea,
where he is currently an Assistant Professor. His research interests include
energy efficient integrated circuits and systems, particularly, neuromorphic
computing and approximate computing, and new memory devices and
architectures.

97685



