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ABSTRACT Computer experiments are widely used to mimic expensive physical processes as black-box
functions. A typical challenge of expensive computer experiments is to find the set of inputs that produce
the desired response. This study proposes a multi-armed bandit regularized expected improvement (BREI)
method to adaptively adjust the balance between exploration and exploitation for efficient global optimiza-
tion of long-running computer experiments with low noise. The BREI adds a stochastic regularization term to
the objective function of the expected improvement to integrate the information of additional exploration and
exploitation into the optimization process. The proposed study also develops a multi-armed bandit strategy
based on Thompson sampling for adaptive optimization of the tuning parameter of the BREI based on the
preexisting and newly tested points. The performance of the proposed method is validated against some of
the existing methods in the literature under different levels of noise using a case study on optimization of the
collision avoidance algorithm in mobile robot motion planning as well as extensive simulation studies.

INDEX TERMS Computer experiments, Gaussian process regression, expected improvement, multi-armed
bandit, Thompson sampling.

I. INTRODUCTION
Computer experiments are often used to simulate the phys-
ical processes which are time consuming, costly or sim-
ply impossible to test [1]. However, for complex problems
they can still be computationally expensive, and therefore,
there is often the desire to limit the number of simula-
tions performed [2], [3]. A response surface model, also
known as surrogate model, provides an approximation of the
underlying black-box function that describes the relationship
between the input variables and the response of the com-
puter experiments. The Gaussian process (GP) model, which
can be viewed as an extension of the standard regression
model, is one of the most popular non-parametric proba-
bilistic models for estimating black-box functions [4], [5].
The GP has key advantages over most estimation methods,
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which includes: (1) ability to fit highly nonlinear functions
with minimal risk of overfitting, and (2) built-in capability for
uncertainty estimation [6], [7]. Once a GP model is fit using
some tested points, the expected response at any untested
point can be easily estimated using the fitted surrogate model.
Comprehensive reviews of the design and analysis of com-
puter experiments are provided in [5], [8]–[10].

Computer experiments often require optimizing the under-
lying expensive black-box functions. An optimization proce-
dure should be employed to find the optimal input with as
few additional tests as possible. The black-box function to
be optimized (minimized) is often denoted as f (x), which is
assumed to be a smooth (differentiable) function of the inputs
over the feasible region χ ⊂ Rd . It is commonly assumed
that the observed responses of the black-box function are
corrupted by some noise, y = f (x) + ε. The only available
information is the response value y after testing the function
at a given input point x.
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To minimize a black-box function, a space filling design
such as Latin hypercube design (LHD) [11], [12], sphere
packing [13], or uniform designs [14] is used to generate a
small number of initial input points at which the computer
experiments are tested and respective responses are collected.
Next, a GP model is fit and updated after testing each new
point until the optimal point is found. The selection of new
test points is often guided by an acquisition function. There
is a vast literature on different acquisition functions for select-
ing the next most promising point to test [15]–[17]. Efficient
global optimization is one of the most popular algorithms
that uses expected improvement (EI) acquisition function for
selection of the next most informative point [18].

Several extensions of the EI algorithm have been pro-
posed in the literature to improve its performance and also
extend its application to constrained problems [19]–[22],
noisy responses [23], and parallel optimization [24]–[26].
Recently, [27] provided a comprehensive review of the EI
extensions designed for parallel optimization, multiobjec-
tive optimization, constrained optimization, noisy optimiza-
tion, multi-fidelity optimization and high-dimensional opti-
mization. Sequential kriging optimization (SKO) [28] is an
extension of EI that augments the expected improvement
acquisition function to include the effective best solution
instead of the observed minimum, which might differ from
the true minimum of the function. Besides EI, knowledge
gradient (KG) is another popular acquisition function that
revisits the risk averse assumption made in EI’s derivation,
wherein the decision maker is only willing to return a pre-
viously tested point as the final solution [29], [30]. Known
to work well for problems with noisy functions, KG allows
to return to more promising solutions, which might have not
been previously tested, by maximizing the expected increase
in the conditional expected solution due to sampling [31].
However, as shown in the numerical study, KG doesn’t pro-
vide significant advantage over classical EI when exper-
iments have low noise. Besides EI-based methods, there
also exists a group of algorithms that focus on optimizing
expensive functions [32], [33]. Algorithms that are developed
based on popular sampling techniques like upper confidence
bound (UCB) and Thompson sampling, are discussed in [15],
[34]–[41]. A survey of different algorithms in bandit setting
are presented in [42].

Most of the EI-based acquisition functions in the literature,
only consider the information of the expected value of possi-
ble improvement by each candidate test point.While informa-
tive, the expected value (of possible improvement) does not
fully capture the uncertainty of the stochastic improvement
by each candidate test point, which can help with better
adjustment of the exploration and exploitation trade-off based
on the system under consideration and the response value of
the points already tested.

This study proposes an acquisition function based on
adaptive regularization of EI (BREI) by each candidate test
point to further improve the balance between exploration
and exploitation. The proposed global optimization method

has two major contributions: (1) regularizing the popular
expected improvement (EI) acquisition function to better
incorporate the information of additional exploration and
exploitation to the optimization process, and (2) creating
an efficient Bandit framework for optimizing the tuning
parameter of the proposed regularized expected improve-
ment, to improve the exploration vs exploitation balance.
The proposed BREI method identifies the sequence of points
that quickly converge to the global optimum of expensive
computer experiments. The BREI is most suitable for the
applications involving expensive black-box functions with no
or low noise for which the resources are limited or the cost of
testing the points is very high. This include expensive com-
puter experiments, some robotic tests as provided in the case
study, etc. Generally, for the situations where the evaluations
are easily obtained, having an acquisition function like BREI
might not be needed. However, for situations in which each
evaluation might take days/weeks to complete or costs a lot,
the BRIE helps finding the global optimum of a function with
as few evaluations as possible.

The rest of the paper is organized as follows. A brief
description of the related works is provided in Section II.
Section III explains the major components of the proposed
BREI method. Section IV provides the description of the pro-
posed algorithms. In Section V, the performance of the pro-
posed algorithm is evaluated along with some of the existing
methods using a case study and simulations under different
levels of noise. Finally, the concluding remarks and future
directions are provided in Section VI.

II. RELATED WORKS
This section provides a brief description of the related meth-
ods. Throughout the paper, z is used to denote the design
vector of the tested (observed) points, and x is used to denote
the design vector of any (either tested or untested) point. Also,
n is used to denote the number of tested points, and d is used
to denote the dimensionality of the input variables (X ).

A. GAUSSIAN PROCESS REGRESSION
Having some tested points (training set) represented by
input-output pairs (zi, yi), where yi might be corrupted by
some noise εi, the GP defines a prior over an unknown link
function f , and gives the posterior after seeing the data [43].
More specifically, the GP regression is defined as yi = f (zi)+
εi for i = 1, . . . , n. The functional evaluation at the untested
point x is denoted as f∗. Y = (y1, y2, . . . , yn)T is the observed
outputs at the tested points Z = {z1, z2, . . . , zn}. According
to the joint distribution of the tested outputs and untested
output:[

Y
f∗

]
∼ N

(
0 ,

[
K (Z ,Z )+ σ 2

n I K (Z , x)
K (x,Z ) K (x, x)

])
(1)

where K (Z ,Z ),K (Z , x),K (x,Z ),K (x, x) are the covariance
between the tested and tested points, tested and untested
points, untested and tested points, untested and untested
points respectively, and K (., .) is an appropriate kernel
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function to evaluate the covariance. This study considers the

squared exponential kernel K (zi, zj) = σ 2
f exp(−

‖ zi− zj‖
2

2l2
),

where σ 2
f denotes the signal variance, and l denotes the

characteristic length scale. Let K (Z ,Z ) = KZZ ,KZx =
K (Z , x),KxZ = K (x,Z ),Kxx = K (x, x), by conditional
distribution:

E(f∗(x)) = KxZ (KZZ + σ 2
n I )
−1y (2)

cov(f∗(x)) = [Kxx − KxZ [KZZ + σ 2
n I ]
−1KZx] (3)

For a given untested point (x), the predictive mean (µx) is
simply E(f∗(x)) in Equation (2), and the predictive variance
s2x is a diagonal element of the covariance matrix cov(f∗(x))
in Equation (3).

B. BANDIT PROBLEM
The multi-armed bandit framework is commonly used to
formulate the trade-off between exploration and exploitation
in sequential decision making [44]. The bandit problem aims
to maximize the rewards of a player who plays an arm i out
of the h arms of a slot machine at each time step t over a
long run. After playing one arm at each time step, the player
receives a real valued stochastic reward that is independently
drawn from a fixed and unknown distribution. The player
selects the arm to play based on the rewards of the t − 1
plays. If the player myopically chooses the arm that gave
the highest reward in past plays (exploitation), he/she might
fail to discover the (real) best arm due to the stochasticity
of the rewards. On the other hand, if the player randomly
selects an arm at each time step to explore the reward of
different arms (exploration), the opportunity of playing the
best arm multiple times decreases along with a decrease in
the total reward. The multi-armed bandit problem helps to
decide the best arm to play by balancing the exploration
and exploitation to maximize the total rewards of the player.
Thompson sampling [45] is one of the popular (Bayesian)
approaches for solving the multi-armed bandit problem. It is
also known as the posterior sampling or probability matching
as it selects the arm based on posterior probability to be the
best arm [46], [47]. Compared to other multi-armed bandit
methodologies like UCB, Thompson sampling has the ability
to handle wide range of information models that go beyond
observing the individual rewards alone [39].

C. EXPECTED IMPROVEMENT (EI)
EI is one of the most common Bayesian optimization meth-
ods. Let, the stochastic improvement of a candidate test point
x be Ix = max(fmin−yx , 0), where fmin = min(y1, y2, . . . , yn),
and yx ∼ N (µx , s2x) is the random variable that corresponds
to the predicted response at x, with µx = E(f∗(x)), and
s2x = var(f∗(x)). The expected value of the improvement is
obtained as E(I (x)) = E(max(fmin− yx , 0)). The closed form
solution for the EI is given as:

E(Ix) = (fmin − µx)8(
fmin − µx

sx
)+ sxφ(

fmin − µx
sx

) (4)

where φ(.) is the standard normal density function, and 8(.)
is the standard normal distribution function. EI often provides
acceptable performance in reducing the number of test points
for global optimization of expensive black-box functions.
However, as the name implies, EI only utilizes the expected
value of the random variable I (x) and does not consider
the uncertainty of the stochastic improvement. Section III
extends the EI method by a specialized regularization term
to better capture the uncertainty the stochastic improvement
to boost its performance.

III. PROPOSED METHODOLOGY
In this section, first the formulation for the standard devi-
ation of stochastic improvement by a candidate test point
is derived. Next, an acquisition function (REI) is developed
which uses some similar terms as the standard deviation of
the stochastic improvement for selecting the next most infor-
mative test point. Finally, an adaptive strategy is presented for
optimizing the tuning parameter of the proposed acquisition
function (BREI).

A. STANDARD DEVIATION OF IMPROVEMENT
The fundamental definition of the standard deviation is
used to derive the formulation of the standard deviation
of improvement. Statistically, the uncertainty of improve-
ment after adding each test point is defined as σ (Ix) =√
E(I2x )− E(Ix)2. After some tedious algebraic calculations,

the closed form solution for σ (Ix) is derived as:

σ (Ix) = sqrt
[
(fmin − µx)28(

fmin − µx
sx

)

+ 2sx(fmin − µx)φ(
fmin − µx

sx
)

− s2x((
fmin − µx

sx
)φ(

fmin − µx
sx

)−8(
fmin − µx

sx
))

− ((fmin − µx)8(
fmin − µx

sx
)+ sxφ(

fmin − µx
sx

))2
]
(5)

B. REGULARIZED EXPECTED IMPROVEMENT
The proposed regularized expected improvement (REI) inte-
grates the information of the expected improvement (EI) with
a regularization term that utilizes some similar terms as the
standard deviation of the stochastic improvement.

Adding the standard deviation of improvement, as shown
in Equation 5, to the EI acquisition function as a regulariza-
tion term results in small to moderate improvement in the
efficiency (number of points) of black-box optimization as
shown in Appendix VI-E. Supported by extensive simulation
analysis, a revised version of Equation 5 is proposed to be
added to the EI acquisition function as the regularization term
to further improve the optimization performance:

REIRevised = E(Ix)+ λσ ∗(Ix) (6)
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where λ is a tuning parameter balancing the effect of the
regularization term, and σ ∗(Ix) is calculated as:

σ ∗(Ix) = sqrt
[
(fmin − µx)28(

fmin − µx
sx

)

+ 2sx(fmin − µx)2
22φ(

fmin − µx
sx

)

− s2x((
fmin − µx

sx
)φ(

fmin − µx
sx

)− 111)

− ((fmin − µx)8(
fmin − µx

sx
)+ sxφ(

fmin − µx
sx

))2
]

(7)

A positive λ value encourages more exploration, specially
around the boundaries of the feasible region. A negative
λ value encourages more exploitation around the estimated
optimum of the underlying function. Also, a zero λ value
reduces the proposed acquisition function to EI. Section III-C
provides a detail discussion about the tuning parameter λ and
its range. It also proposes a Thompson sampling approach to
adaptively optimize λ based on the existing and newly added
test points to the design.

It may also be worth noting that, the adjustment of standard
deviation of stochastic variables, such as σ ∗(Ix) which is
considered as the regularization term in the proposed REI
acquisition function, has been commonly used in the sta-
tistical analysis [48], regression modeling [49], and deep
learning [50].

C. ADAPTIVE OPTIMIZATION OF THE TUNING
PARAMETER: EXPLORATION AND EXPLOITATION
TRADE-OFF
The second term in Equation (6) adds a bias to the EI acqui-
sition function to better adjust the balance between explo-
ration and exploitation. The tuning parameter λ controls the
level of trade-off between exploration and exploitation and
therefore has a significant impact on the performance of the
proposed method. Theoretically, λ can take any real value
between (−∞,∞), with positive values encouraging more
exploration and negative values encouraging more exploita-
tion. Meanwhile, to keep the bias (regularization) term small
compared to the first/original term (the EI acquisition func-
tion), the tuning parameter should be set to as small value.
Using simulation, setting λ = −0.75 provides an acceptable
performance (in comparison to the EI) in most cases.

Meanwhile, a better strategy is to adaptively optimize the
tuning parameter within a small interval at each iteration,
because the optimal level of exploration and exploitation
changes dynamically based on newly tested points and their
observed responses. Based on extensive simulations, lim-
iting the range of λ to (−0.75,+0.75) provides the best
performance.

In machine learning, tuning parameters are usually opti-
mized using cross validation, i.e. ridge regression. However,
sequential optimization of the tuning parameter at each itera-
tion over a continuous space requires considerable computa-
tional effort. To reduce the computational complexity of the

proposed method, an efficient adaptive optimization strategy
is proposed based on Thompson sampling for multi-armed
bandit where the candidates values of λ are treated as the
arms of a slotting machine. The proposed tuning parameter
optimization algorithm also utilizes the real gap informa-
tion of the previously selected arms (λ values). The gap
information helps to penalize for the arms that provide less
improvement than expected. The optimal λ value selected by
Thompson sampling at each iterations is used by the proposed
BREI algorithm to select the most informative point for next
evaluation:

1) IDENTIFYING THE SET OF CANDIDATE VALUES FOR THE
TUNING PARAMETER
Instead of using a continuous range of possible values for
the tuning parameter, a small set of candidate values, namely
λc = {−0.75 ≤ λ1, . . . , λh ≤ 0.75} is proposed. While there
are different strategies for selecting the candidate values of
the tuning parameter, a simple 7 equally distanced candidate
values, λc = {−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75} are
proposed. Such small set of candidate λ values reduce the
search space without having significant negative impact.

2) SELECT THE OPTIMAL VALUE OF THE TUNING
PARAMETER USING THOMPSON SAMPLING
Given the finite set of candidate values for λ, and the sequen-
tial nature of tuning parameter optimization in the proposed
global optimization method, Thompson sampling is proposed
to conduct a quick linear search among the candidate λ values
to select the optimal value (λ∗) at each iteration. Thompson
sampling treats each value in the candidate set λc as an arm
of multi-armed bandit problem and uses the information of
the tested points to select the best arm, which represents the
optimal tuning parameter, to be used in each iteration.

Meanwhile, unlike classical problems of optimizing the
tuning parameter using cross validation, in global optimiza-
tion of expensive (computer) experiments only a small set
of tested points is available, which should be used for both
the training of the model and optimization of the tuning
parameter. Therefore, in each iteration, just before selecting
the next candidate point, the set of (already) tested points (Z )
is split into two subsets, P (validation) and Q (train), such
that the set P contains the first and the second minimum
response points, and the set Q contains the rest of the points.
The justification for using only the two lowest response points
for the validation set P is to reduce the computational com-
plexity. Reducing the size of P to only two points (lowest two
responses), minimizes the computational effort for identify-
ing whether an arm (candidate λ) is able to correctly identify
the minimum point in the validation set, and is discussed in
detail below.

After splitting the set Z into two subsets, P and Q, a Gaus-
sian process is fitted with the points in set Q and test each of
the arms i ∈ {1, . . . , h} for identifying the minimum response
between the two points in P. Then the expected reward of
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selecting each arm (Rt [i]) is calculated as:

Rt [i] = min
x∈Q

(Y (x))− Y (x ′) (8)

where t denotes the iteration (time), which is also equivalent
to the number of additional tested points added to the design,
minx∈Q(Y (x)) is the minimum response in set Q, and Y (x ′) is
the response of the selected point by arm i from set P. The
expected reward in Equation (8) will always be positive as
the minimum response value of the points in set P is less
than the response value of any of the points in set Q. The
reward approximates the gap between the correct and incor-
rect choice of minimum response points among the existing
points. Once the expected reward of each arm is calculated,
the probability of selecting each arm i is calculated as:

St [i] =
Rt [i]∑h
i=1 Rt [i]

(9)

Then, the optimal arm (i∗t ) is chosen stochastically with
respect to St [i].

3) IMPROVE THOMPSON SAMPLING WITH REAL GAP
INFORMATION
After observing the response value of a point tested at itera-
tion (time) (t−1), its information can be used to improve the
estimated reward of the associated arm for the next iteration
(t). Given the response value of the point tested at iteration
(t−1), the real gap information of the selected arm at iteration
(t − 1) is calculated as Gi∗t−1 = minx∈Zt−1 (Y (x)) − Y (xt ),
where minx∈Zt−1 (Y (x)) is the minimum response in set of
tested points up to iteration (t − 1), and xt is the response
value of the point identified by BREI at (t−1). The expected
reward Rt [i∗t−1] for the last selected arm at iteration (t) can
be updated to incorporate the real gap information Gi∗t−1 .
In this paper, Rt [i∗t−1] = 0.2Rt [i∗t−1] + 0.8Gi∗t−1 is consid-
ered to update the expected reward, which includes 20% of
the current reward and 80% of real gap information from
iteration (t − 1).

IV. PROPOSED ALGORITHMS
Algorithm 1 illustrates the major steps of the pro-
posed multi-armed bandit regularized expected improve-
ment (BREI) algorithm for global optimization of expensive
computer experiments.

A. GLOBAL OPTIMIZATION USING BREI
The algorithm essential input includes the set of pre-specified
points (Z ) generated using a space filling design such as
Latin hypercube design. The outputs of the algorithm include
the minimum of the function (fmin), and the estimated GP
(f (x)). The algorithm begins with testing the initial set of
pre-specified points and their response values (Y ) (Step 1).
Next, it uses GP to create the surrogate model using the tested
points (Z ) (Step 2). Then, the tuning parameter λ is optimized
using the Algorithm 2 (Step 3.1). Having the optimal value of
the tuning parameter, particle swarm optimization (PSO) is
used to solve Equation (6) to identify the next best candidate

Algorithm 1 BREI for Global Optimization of Expensive
Computer Experiments
Input: Set of pre-specified points using LHD (Z )
Output: Global minimum of the function (fmin)

Estimated GP (f (x))

Step 1. Evaluate the function at pre-specified points Z to
obtain the responses
Y = (y1, y2, . . . , yn)

Step 2. Create surrogate model using the points in
Z (tested points)
f (x) = KxZK

−1
ZZ Y

Step 3 Until satisfying the desired stopping criteria, i.e.
number of additional test points (t∗)

Step 3.1 Optimize the tuning parameter λ using
Algorithm 2

Step 3.2 Use an optimization algorithm, i.e. PSO,
to select x∗ that maximizes Equation (6)

Step 3.3 Z ← Z ∪ x∗, n← n+ 1

Step 3.4 f (x) = KxZK
−1
ZZ Y

fmin = min(Y )
Go to Step 3.1

test point (Step 3.2). The selected point (x∗) is then tested
and moved to the set of tested points (Z ) before checking the
stopping criterion for initiating another iteration (Step 3.3).
Here, a pre-specified number of additional test points (t∗)
is considered as the stopping criterion. After each iteration,
GP is used to update the fit and also the current minimum
point (Step 3.4).

B. OPTIMIZATION OF THE TUNING PARAMETER
Algorithm 2 demonstrates the proposed algorithm for opti-
mizing the tuning parameter of the BREI algorithm. The algo-
rithm inputs include the set of candidate values for the tuning
parameter (λc), the most current set of tested points (Z ) along
with their respective observed responses (Y ) (including both
the initial points and additional/augmented points), and the
most current number of tested points (t) added to the initial
design, which also shows the iteration (time) in multi-armed
bandit setting. As discussed in Section III-C1, to reduce
the computational complexity of the optimization algorithm,
a finite set of seven candidate values is considered for the tun-
ing parameter, λc = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75.
The output of the algorithm is the optimal value of the tuning
parameter (λ∗).

The algorithm begins with dividing the set of existing
tested points (Z ) into two subsets of P and Q, with P con-
sisting of the two points with minimum response values, and
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Q consisting of the rest of the points (Step 1). Next, a sur-
rogate model is fitted using the points in Q (Step 2). Then,
for each λ in the candidate set λc, the BREI algorithm is
used to select the next best test point (x ′) from the set P
(Step 3.1). Then, the reward of each arm based is calculated
on the observed gap between the minimum response value of
the points in Q and the response value of the function at x ′

(Step 3.2). When t > 0, the expected reward of the arm that
has been used in the previous iteration (t − 1) (Step 3.3.1)
is updated to include the real gap information of the arm
(Gi∗t−1 ) (Step 3.3.2). This simply penalizes the previously
selected arm (i∗t−1), if its choice of tuning parameter did not
help in selecting the candidate test point that actually (fur-
ther) decreased the response value of the function. Next,
the selection probabilities St of the arms are updated based
on the estimated rewards (Step 4). Finally, a stochastic policy
(Step 5) is used to select the arm that provides the optimal λ∗

value to be used for selecting the next best candidate test point
(Step 6).

Algorithm 2 Multi-Armed Bandit Optimization of the Tun-
ing Parameter (λ)
Input: Set of n tested points (Z ,Y ),

Current number of test points added
to the design (t, t < t∗),
Set of h candidate values for the
tuning parameter (λc = {λ1, . . . , λh})

Output: Optimal value of the tuning
parameter (λ∗)

Step 1. min1 = argminx∈Z (Y (x)),
min2 = argminx∈Z−min1(Y (x)),
P = {min1,min2}, Q = Z − P

Step 2. Fit a surrogate model based on the
points in Q (Equations (2) and (3))

Step 3. For each λi=1,...h ∈ λc:
Step 3.1. Use λi and BREI (Equation (6))

to select x ′ from P
Step 3.2. Calculate the reward of each arm

as Rt [i] = minx∈Q (Y (x))− Y (x
′)

Step 3.3. If t > 0, for the arm selected in
the last iteration (i∗t−1):

Step 3.3.1. Gi∗t−1 = minx∈Zt−1 (Y (x))− Y (xt )

Step 3.3.2. Rt [i∗t−1] = 0.2Rt [i∗t−1]+ 0.8Gi∗t−1
Step 4. St [i] =

Rt [i]∑h
i=1 Rt [i]

Step 5. Optimal arm i∗t is selected stochastically
with respect to St [i]

Step 6. λ∗ = λc[i∗t ]

V. RESULTS AND DISCUSSION
In this section, the performance of the proposed BREImethod
is validated along with a number of existing methods in the
literature including expected improvement (EI), sequential
kriging optimization (SKO), knowledge gradient (KG) and

Gaussian process based UCB (GPUCB) using both a case
study and simulated experiments. The justification for con-
sidering the above four algorithms for comparison is that they
are among the most common and/or the best performing algo-
rithms in the literature. To ensure a fair comparison between
the BREI and the other comparing methods, 8 commonly
used response surface models in the literature are consid-
ered. Each experiment is run 100 times and the average of
the observed minimum response collected after each of the
100 additional points is reported. The median, 25th, and 75th

performance percentiles are also reported in the Appendix.
Furthermore, each response model is tested at different noise
levels to understand the capability and limitations of the
proposed method in comparison to the other methods.

The organization of this section is as follows. First, a brief
discussion of each of the comparing methods and the per-
formance metric chosen for the analysis of the results is
provided. Next, the result of a case study for the weight
optimization of a dynamic window approach (DWA) in obsta-
cle avoidance algorithm for mobile robots planning is pre-
sented. Finally, the result of a simulation study based on
eight nonlinear response models of 2 to 10 dimensions with
different noise levels is described. In this paper, MATLAB
is used for coding and GPML library [51] for optimizing the
hyperparameters of the GP model.

A. COMPARING METHODS
This subsection provides a brief description of the compar-
ing methods, except the EI which is presented earlier in
Section II-C.

1) SEQUENTIAL KRIGING OPTIMIZATION (SKO)
SKO [28] selects the next test point that maximizes the acqui-
sition function as given in Equation (10)

E(I (x)) = [(µx∗∗ − µx)8(
µ∗∗x − µx

sx
)

+ sxφ(
µ∗∗x − µx

sx
)](1−

σn√
s2x + σ 2

n

) (10)

where x∗∗ is the current effective best solution. Different from
the EI method that uses the best observed solution (fmin), SKO
utilizes the current effective best solution from the utility
function ux = −µx − csx , where x ∈ Z , and c is a tuning
parameter generally set to 1.

2) KNOWLEDGE GRADIENT (KG)
KG [52] selects the next test point by maximizing the
improvement function as given in Equation (11) [53]

I (x) = min
x ε Z∪xn+1

(µx)− min
x ε Z∪xn+1

[µx +
cov(x, xn+1)√
s2xn+1 + σ

2
n

zr ]

(11)

where zr is the standard normal variable. KG assumes the
conditional mean (through the model) might be closer to the
true observation rather than the functional evaluations.
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3) GAUSSIAN PROCESS-UPPER CONFIDENCE BOUND
(GPUCB)
The Gaussian process based UCB (GPUCB) formalizes the
Gaussian process optimization as a multi-armed bandit prob-
lem and solves it using upper confidence bound (UCB)
method [54]. For a maximization problem, GPUCB selects
the next test point that maximizes µx + β

1
2 sx , where β

1
2

is the parameter to be optimized and can be calculated as

βt = 2log( t
d
2 +2π2

3δ ) at round t and δ ∈ (0, 1) [15].

B. PERFORMANCE METRIC
The main objective of the proposed BREI algorithm is to
efficiently find the global minimum of the computer experi-
ments. Therefore, the observed response of the candidate test
point suggested by each of the comparing methods at each
iteration, namely fmin = minx ε Z (y(x)), is considered as the
performance metric [28], [55], [56]. In order to achieve a
high level of confidence over the results, all experiments are
repeated hundred times and the average is reported. Addition-
ally, the median, 25th, and 75th performance percentiles are
reported in the Appendix.

C. CASE STUDY: ROBOTS MOTION PLANNING
This section illustrates the results of a case study for optimiza-
tion of the weight of the dynamic window approach (DWA)
in obstacle avoidance algorithm for robots motion planning.
Themethods considered for comparison include the proposed
BREImethod, expected improvement (EI), sequential kriging
optimization (SKO), knowledge gradient (KG) and Gaussian
process basedUCB (GPUCB). TheDWA is a classicalmotion
planning algorithm for mobile robots developed by [57], that
outputs the optimal translational and rotational velocity com-
mands (ν,w) to navigate non-holonomic vehicles through
obstacle free paths to a goal. The noise free DWA algo-
rithm has the computational complexity of O(n). In general,
the physical experiment is conducted using a mobile robot
that has a non-holonomic mobile base as shown in Figure 1.
However, as the physical experiment is expensive to evaluate,
typically a simulation environment [58] is developed using
MATLAB which is considered for this study. The algorithm
works by discretely selecting obstacle free trajectories in
a dynamic window until the goal is reached. The dynamic
window is a constrained velocity search space constituting of
velocities based on the kinematic limitations of the robot and
admissible velocities that are reachable within the next sim-
ulation time slice. The sets of translational (ν) and rotational
velocity (w) pairs in the dynamic window are used in the
evaluation of the objective function. The (ν,w) pair selection
within the search space is guided by the objective function
shown in Equation (12).

G(ν,w) = αheading(ν,w)+ βdist(ν,w)+ γ vel(ν,w)

(12)

The objective function includes three sub functions. The
heading(ν,w) function measures the orientation of the robot

FIGURE 1. An illustration of a mobile robot.

toward the goal. Heading, tested by 180 − θ , increases as
the target angle (θ) to goal reduces. The dist(ν,w) function
ensures obstacle free paths by calculating the norm distance
to the closest obstacle per trajectory roll out in the naviga-
tion space. The vel(ν,w) expression measures the forward
progress of the robot. This is basically a projection of the
translational velocity v of the robot, updated every time step.
The sub-functions in Equation (12) are indirectly depen-
dent on new velocity pair inputs (ν,w). The velocity pair
updates are control inputs that change the closest obstacle
position and target angle θ which are direct variables used
in calculating the heading direction and distance to obstacle
components. Velocity pair updates are evaluated using kine-
matic equations in a constrained search space (see [57] for
detailed explanation). The combination of weight parame-
ters α, β, γ play an important role in the objective function
and can generate different navigation outcomes as shown
in the Figure 2 by introducing bias based on the weight
value. A common alternative method for selecting weight sets
α, β, γ is a simple manual tuning, guided by the navigation
behavior of the robot, as adopted in [57], [59]–[61]. This is
simply a trial and error method, adjusting the weights based
on the navigation behavior at the end of each experiment. The
BREI optimization algorithm is applied along with the other
comparing methods to choose the optimal weight parame-
ters (α, β, γ ) to minimize the time taken to navigate from
a starting point to the ending point with 10 fixed obstacles.
First, a Latin hypercube design of 30 points (weight param-
eters) is created. Next, the time taken to navigate from a
starting point to the ending point is evaluated based on each
set of weight parameters and use them as the initial set of
points. In addition to the initial points, 100 additional test
points (weight parameters) are tested sequentially and the
associated travel times are collected. Each test is replicated
hundred times and the average is reported. The median, 25th,
and 75th performance percentiles are also reported in the
Appendix.
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FIGURE 2. Navigation outcomes of the weight parameter combinations
(a) α = 1, β = 0, γ = 0.58, and (b) α = 0.19, β = 0.85, γ = 0.61.

FIGURE 3. The minimum travel time of the robot averaged over
100 replicates for the initial +100 additional points. The dotted lines
represent the respective 95% confidence intervals of the observed
responses.

Figure 3 illustrates the mean performance of the pro-
posed BREI acquisition function in comparison to the
expected improvement (EI), sequential kriging optimization
(SKO), knowledge gradient (KG) andGaussian process based
UCB (GPUCB) methods for the case study for the initial
set of points as well as the 100 additional evaluation points
along with the 95% confidence interval. For the initial set of
test points (parameter settings) as well as the first 10 addi-
tional points, the proposed BREI acquisition function shows
a similar performance to the other comparing methods. This
is probably because these points (t < 10) are used by
the comparing methods to explore the underlying function.
However, the proposed BREI method shows a significant
improvement over the other comparing methods after the 10th

additional point (t > 10). Also, as the number of additional
points increases, the proposed acquisition function maintains
and/or increases its gap over the other comparing methods.

Figure 4 complements the result of Figure 3 by providing
the boxplot of the average (mean) of the observed minimum
responses of the comparing methods over the 100 additional
points (iterations). As shown in the Figure 4, the proposed
method provides the best performance, which verifies its
improvement over the other comparing methods.

FIGURE 4. The boxplot of the averaged observed minimum response of
the comparing methods over the 100 additional evaluation points for the
mobile robot case study.

The results of Figures 3 and 4 are also validated using
the Wilcoxon rank test for the significance of the differ-
ence between the observed minimum response of the pro-
posed BREI method and the other comparing methods. The
Wilcoxon rank test shows a p-value of 0 for all of the four
pairwise comparisons between the BREI and EI, BREI and
SKO, BREI and KG and BREI and GPUCB to statistically
validate the significance of the improvement made by the
proposed method.

D. SIMULATED EXPERIMENTS: NONLINEAR RESPONSE
MODELS
This section evaluates the performance of the proposed BREI
acquisition function with those of EI, SKO, KG and GPUCB
over eight nonlinear response models of two, three, six and
ten dimensions at different levels of noise including 0%, 1%
and 5% of the mean value of the response models. These
response models are presented in Figure 5. Similar to the case
study, for each of the comparing methods, a Latin hypercube
design of 10d points is created, where d represents the num-
ber of dimensions. Next, the function is evaluated at each
point to create the initial set of tested points. The number of
additional points, which is set to t∗ = 100, is used as the
stopping criterion.

Figure 6 illustrates the mean performance along with the
95% confidence interval of the proposed BREI acquisition
function in comparison to those of the expected improve-
ment (EI), sequential kriging optimization (SKO), knowledge
gradient (KG) and Gaussian process based UCB (GPUCB)
methods for different responsemodels and different noise lev-
els (0%,1% and 5%). The median, 25th, and 75th performance
percentiles are also reported in the Appendix. As shown
in Figure 6, when there is no noise (0% noise), the BREI
method outperforms the other comparing methods over most
nonlinear response models, in terms of minimum number of
tests required to minimize the black-box function. For the
1% and 5% noise levels, the BREI method outperforms other
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FIGURE 5. Non-linear response models considered for the comparisons.

comparing methods for high dimensional response models,
i.e. 6d and 10d, whereas for low dimensional responsemodels
i.e. 2d and 3d, the BREI performance is mixed with KG and
GPUCB.

The results demonstrate the proposed BREI method pro-
vides the most competitive performance for high dimensional
functions and low noise in general. Meanwhile, as the dimen-
sionality of the functions increases (from 2d to 10d), the pro-
posed algorithm generally increases its advantage over other
methods, even for high noise levels. This is mainly due to the
contribution of the proposed regularization term along with
the adaptive optimization of the tuning parameter that helps
improving the exploration and exploitation of the design
space. However, for low dimensional functions, i.e. 2.1 and
2.2, all of the comparing methods provide a competitive per-
formance at different levels of noise. Therefore, the proposed
algorithm does not provide significant improvement over the
best of existing methods, namely knowledge gradient, when
the function is low dimension and the noise level is high.
Figure 7 provides the boxplot of the mean performance of
each of the comparing methods, over the 100 replicates of the
observed response, for each of the response models across
the initial set of points as well as the 100 additional points.
As shown in Figure 7, for majority of cases, the proposed
BREI method provides the best performance, in terms of the
1st, 2nd and 3rd quartiles, compared to the others. Also, for
most cases, BREI shows a lower variance in the boxplot,
which can be attributed to better exploitation of the points
near the global optimum, which results in faster convergence
in comparison to other methods. This is mostly because of

TABLE 1. P-values of the Wilcoxon rank test - simulated experiments.

the better adjustment of exploration and exploitation by the
proposed BREI acquisition function.

Finally, Table 1 provides the result of the Wilcoxon
rank test for the significance of the difference between the
observed minimum response of the proposed method against
the other comparing methods, where lower values show an
increased probability of difference in the observed minimum
response. As shown in the Table 1, theWilcoxon rank test also
signifies the improvements made by the proposed method at
low noise and high dimensions, which further validates the
earlier results.

To better illustrate the performance of the comparingmeth-
ods, Figure 8 visualises the distribution of the selected points
by each method for the popular six hump camel (SHC) func-
tion (response model 2.1) at 0% noise. The SHC function
has two global minimum at x1 = (0.0898,−0.0898) and
x2 = (−0.7127, 0.7127) with the corresponding response
value of y = −1.0316. All of the comparing methods start
with selecting the same set of initial points based on the LHD
design. Next, they use their specialized acquisition functions,
i.e. EI, SKO, KG, GPUCB and BREI, to identify the global
minimum. As shown in the Figure 8, all of the comparing
methods provide competitive performance by exploring the
areas around the global minimum. Meanwhile, the proposed
BREI algorithm,in addition to GPUCB, provide the best per-
formance by quickly exploiting the knowledge gained from
the first few additional test points (4 points) and converges to
the global minimum.

Figure 9 complements the results of Figure 8 by illustrating
the distribution of the selected points by each of the compar-
ing methods for the more complex response model 2.2 at 0%
noise. Similar to the preceding results, the proposed BREI
acquisition function demonstrates a superior performance by
reaching to the global optimum with fewer number of tests,
namely 16 additional test points. As both the response mod-
els tested are of lower dimension and lower noise, GPUCB
also provided best performance but it can be seen that the
algorithm focused only on exploitation and did not explore
at all. As it only exploited, for response model 2.1, it could
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FIGURE 6. Average (mean) of the 100 replicates of the observed response values for each of the comparing
methods after each additional test for the simulated experiments. The dotted lines represent the respective 95%
confidence intervals of the observed minimum responses at each iteration.
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FIGURE 7. Boxplots of the average performance of the comparing
methods over 100 replicates, for the initial +100 additional points for
different response models (rows) and different levels of noise (columns).

FIGURE 8. Distribution of selected points by the comparing methods for
response model 2.1 at 0% noise. The global minimum is in black (star),
initial points are in red (circle), and additional points are in blue
(diamond).

FIGURE 9. Distribution of selected points by the comparing methods for
response model 2.2 at 0% noise. The global minimum is in black (star),
initial points are in red (circle), and additional points are in blue
(diamond).

not investigate any points around the other global minimum;
whereas BREI was able to search around both the global
minimums.

E. COMPUTATIONAL COMPLEXITY
The acquisition function of the proposed BREI acquisition
function as shown in Equation (6) has three components:
(1) the expected improvement component E(Ix), (2) the reg-
ularization term, σ ∗(Ix), and (3) the tuning parameter λ.
According to [62] the computational complexity of E(Ix)
for optimization of expensive black-box functions is O(n3).
The regularization term of BREI acquisition function (σ (Ix))
has similar terms as expected improvement component and
therefore can be calculated with the same computational
complexity. For the tuning parameter λ, different from the
traditional cross validation methods where the tested points
are divided randomly into subsets resulting in fitting the sur-
rogate model multiple times, the proposed Thompson sam-
pling based approach fits the surrogate model only once using
points inQwhich takesO(n3) (the computational complexity
of adding gap information, etc. is negligible). Consequently,
the computational complexity of the proposed algorithm
is O(n3).

VI. CONCLUSION
In this paper, a novel acquisition function based on
the multi-armed bandit regularized expected improve-
ment (BREI) is proposed for efficient global optimization
of expensive computer experiments with low noise. The
proposedmethod extends the expected improvement by adap-
tive regularization based on each candidate point. A Thomp-
son sampling algorithm is also proposed under multi-armed
bandit setting to adaptively optimize the tuning parameter
of the proposed BREI acquisition function to balance the
exploration and exploitation based on the previously tested
points. Using a case study in robot motion planning and
several nonlinear response models of 2 to 10 dimensions with
different levels of noise, the performance of the proposed
acquisition function is studied in comparison to some of the
most popular methods in the literature including Expected
Improvement (EI), Sequential Kriging Optimization (SKO),
knowledge gradient (KG) and Gaussian process based UCB
(GPUCB). Several statistics including the average (mean),
median, 25th, and 75th performance percentiles are consid-
ered for performance analysis in terms of the predicted global
minimum under low level of noise. The proposed method
demonstrates a competitive performance to the existingmeth-
ods in the literature for both the case study as well as
the simulated experiments across different statistics. It also
shows improvement over the existing methods for higher
dimensions. For instance, for the case study on robot motion
planning, the performance achieved by the proposed method
by 50th evaluation is on par with the performance of the
best of other comparing methods after 75th evaluation. The
proposed algorithm also has a computational complexity of
O(n3). In many applications involving expensive black-box
functionswith low or no noise, such as long running computer
codes, where the resources are limited, or the cost of testing
the points is very high. This framework reduces the number
of expensive test points in global optimization by adaptively
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choosing the most informative regions to explore and exploit.
For the future work, the proposed method will be extended to
multi-armed bandit setting.

APPENDIX
A. COMPARISON OF DIFFERENT SCENARIOS FOR
SELECTING THE TUNING PARAMETER
This section compares different λ selection scenarios for the
proposed BREI method. The comparing scenarios include:
(1) fixed λ values instead of the proposed Thompson
sampling based tuning parameter optimization algorithm,
(2) annealing λ value from +0.75 t0 −0.75 for every 15 iter-
ations, (3) the proposed Thompson sampling based tuning
parameter optimization algorithm without including the real
gap information, and (4) the proposed Thompson sampling
based tuning parameter optimization algorithm with the gap
information. For the tuning parameter optimization algo-
rithm, when the real gap information is not used, Step 3.3 of
Algorithm 2 is ignored. As significant improvement among
methods was shown for high dimensional functions, one of 6
and one 10 dimensional functions are used for comparing
different scenarios. The number of replications is also limited
to ten.

The proposed Thompson sampling-based algorithm adap-
tively optimizes the λ value using the knowledge of pre-
vious iteration. Having the λ fixed, the constant value that
worked well for one response model might not work for
another response model. In general, −0.75 value for λ con-
sistently worked well for many problems. For the response
models shown in the Figure 10, although fixed −0.75 and
−0.5 lambda values have provided competitive performance,
it can be seen that their performance is not as consistent as
the proposed strategy (Thompson samplingwith gap informa-
tion). From all the response models provided in the Figure 10,
it can be seen that the proposed method outperforms the
other scenarios using around 20 iterations. Comparing with
the scenario of not including the real gap information, it can
be seen that including the gap information provides similar
or improved performance. Additionally, including the gap
information does not degrade the performance for at least
the response models tested. Comparing with the scenario
of annealing the λ, it can be seen that the proposed strat-
egy (Thompson sampling with gap information) significantly
performs better as the former does not have the ability to
adaptively change based on the updated surrogate model and
knowledge of real gap information.

B. ANALYSIS OF THE PATTERNS OF THE TUNING
PARAMETER VALUES OVER ITERATIONS
Figure 11 illustrates the selected values of the tuning parame-
ter λ of the proposed BREI method as a function of additional
points (1, 2, . . . , 100) for four different replicates of the case
study. As shown in the figure, while for some replicates the
λ values show some level of consistency or convergence,
in general, the plot looks inconsistent. This may be due to

FIGURE 10. Comparisons of different scenarios for selecting the tuning
parameter over a 6 dimensional (6.1) and a 10 dimensional (10.1)
functions based on 10 replicates.

FIGURE 11. Selected values of the tuning parameter λ as a function of
iteration for four different replicates of the case study.

FIGURE 12. Boxplots of the selected lambda values as a function of
evaluation points over the 100 replicates for the 6.1 (left) and 10.1 (right).
The plots include the 1st and 3rd quartiles, mean, median and mode.

selecting the λ values based on a stochastic policy using the
expected reward of each arm. The patterns of λ value for the
simulated functions also show the same behavior.

Figure 12 complements the results with the boxplot of
the λ values as function of additional evaluation points over
the 100 replicates for the 6.1 (6D: left plot) and 10.1 (10D:
righ plot) functions in the simulation study. As shown in the
Figure 12, the boxplots do not show any meaningful pattern
or consistency/convergence for the λ values. The boxplots of
the case study and other simulated functions also show the
same behaviour.

C. ADDITIONAL PERFORMANCE PLOTS OF THE
COMPARING METHODS FOR THE CASE STUDY AND
SIMULATED EXPERIMENTS
Figures 13 and 14 illustrate the median, first quartile (Q1),
and third (Q3) quartiles trends of the observed responses of
the comparing methods over the 100 replicates at the initial
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FIGURE 13. Case study: Median, 25th(Q1) and 75th(Q3) percentiles of the 100 replicates of the observed response values for each of the
comparing methods after each additional test.

FIGURE 14. Simulated experiments: Median, 25th(Q1) and 75th(Q3) percentiles of the 100 replicates of the observed response values for each
of the comparing methods after each additional test at different noise levels.

set of points as well as the 100 additional points for the case
study and the simulated experiments.

D. COMPUTATIONAL TIME
Figure 15 shows the computational time for teh comparing
methods (in seconds) for some 2, 3, 6 and 10 dimensional
response models used in this study. Specifically, 2.1, 3.1,
6.1 and 10.1 response models are considered for plotting.
For lower dimension models, the computational time taken
by the BREI is similar to the EI. However, as the number
of dimensions increases the computational time of teh BREI
surpasses the EI with a linear slope. This is probably due

to the increase in the size of Z used to fit the surrogate
model in Algorithm 2. From the analysis, out of all comparing
methods, KG requires highest computational time.

E. COMPARISON AMONG EI, REGULARIZED EI WITH
CLASSIC STANDARD DEVIATION, AND THE PROPOSED
BREI
Figure 16 illustrates the mean performance of EI, BREI with
classic standard deviation (BREI Original) and the proposed
BREI for higher dimension functions i.e. 6.1, 6.2, 10.1 and
10.2. BREI Original uses REIOriginal = E(Ix)+λσ (Ix), while
BREI uses Equation 6 to select the next test point. As seen
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FIGURE 15. Computational times of the comparing methods as a function
of dimensions based on a 2d, 3d, 6d and 10d response models.

FIGURE 16. Comparison of EI, BREI original and BREI for higher
dimension functions - averaged over 100 replicates of the observed
responses after each additional test. The dotted lines represent the 95%
confidence intervals of the observed responses.

in Figure 16, although BREI original provides superior per-
formance compared to EI, the proposed BREI acquisition
function with σ ∗(Ix) provides the best performance.
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