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ABSTRACT In the Agent-Based Modeling (ABM) paradigm, an organization is a Multi-Agent Sys-
tem (MAS) composed of autonomous agents inducing business processes. Process Mining automates the
creation, update, and analysis of explicit business process models based on event data. Process Mining
techniques make simplifying assumptions about the processes discovered from data. However, actual
business processes are often more complex than those restricted by Process Mining assumptions. Several
Process Mining approaches relax these standard assumptions by discovering more realistic process models.
These approaches can discover more realistic process models. However, these models are often difficult to
visualize and, consequently, to understand. Many MASs induce processes whose behaviors become more
complex with each next embraced time step, while the complexities of these MASs remain constant. Thus,
the ABM paradigm can cope naturally with the increasing complexity of the discovered process models.
This paper proposes Agent System Mining (ASM) and ASM Framework. ASM combines Process Mining
and ABM in the Business Process Management (BPM) context to infer MASmodels of operational business
processes from real-world event data, while ASM Framework maps ASM activities to different phases of
the MAS modeling lifecycle. The paper also discusses the benefits of using ASM and outlines challenges
associated with the implementation of the ASM Framework.

INDEX TERMS Agent, business process, agent system mining, process mining, agent-based modeling,
business process management.

I. INTRODUCTION
Business Process Management (BPM) is concerned with
improving the operational performance of organizations
through the BPM lifecycle [1]. BPM uses process models
to understand existing as-is processes and to communicate
to-be process designs. However, manual design and update
of process models take significant time and effort, even for
medium-sized organizations.

Process Mining automates activities involved in creating,
updating, and analyzing the explicit process models based
on the knowledge about the real-world operational processes
extracted from current and historical event data managed
by information systems [2]. Process Mining techniques use
event logs as their input. These event logs are recordings of
operational processes captured by the information systems.
Each event in an event log has at least three attributes: case
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id, timestamp, and activity. The case id attribute identifies the
case (also known as a process instance) the event belongs
to. The timestamp attribute indicates a point in time when
the event occurred. Finally, the activity attribute refers to the
activity that triggered the event. Other Process Mining per-
spectives may require events to contain additional attributes.
For example, the organizational perspective requires data
on resources such as people, roles, teams, or technological
entities that executed the activities [3].

Process Mining techniques make several assumptions
about the input event logs. Examples of the Process Mining
assumptions are: each event in the log corresponds to exactly
one process instance (case) and single case notion [4]; all
instances of an activity for a specific case are recorded in the
event log [5]; every event in the log can be related to some
activity [6]; cases presented in one event log do not share
resources for the activity execution [7]; and all events related
to the same case are totally ordered and linked into a single
control flow [6].
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These assumptions allow focusing on the development
of targeted Process Mining methods but also create a gap
between the Process Mining event data expectations and
the event logs captured from the real-world business pro-
cesses [4]. Actual business processes are often more complex
than those restricted by Process Mining assumptions. As a
result, process models discovered by the classical Process
Mining techniques do not represent the full complexity of
real-world business processes.

Several Process Mining approaches relax the standard
assumptions. Object-Centric Process Mining (OCPM) chal-
lenges the single case notion assumption and the exis-
tence of precisely one process instance for each event [4].
OCPM assumes that an event may relate to multiple objects
corresponding to different case notions. In turn, Queue
Mining (QM) relaxes the immediate resource availability
assumption [8]. QM addresses situations where multiple
cases compete for limited resources, process execution is
delayed, and activities are completed only when resources
become available. In [9], the authors relax the assump-
tion that a business process is recorded in a single event
log by proposing a framework for top-down Process Min-
ing from multi-sourced event logs in the context of the
cross-organizational business process [10].

The relaxation of the standard Process Mining assump-
tions leads to discovering process models that better reflect
real-world processes. However, the produced process mod-
els tend to be more difficult to visualize and understand as
they contain more elements and relationships. The resulting
phenomenon of complex discovered models is known as the
‘‘spaghetti process models’’ problem [11]. The more Process
Mining assumptions are relaxed, the more critical this prob-
lem becomes.

To manage the complexity of discovered models, organi-
zations can be considered and analyzed as socio-technical
systems. Socio-technical systems are systems composed of
technical and social (human) components [12]. The business
processes of an organization addressed as a socio-technical
system can be described from two viewpoints: macro-level
and micro-level. At the macro-level, end-to-end global busi-
ness processes (e.g., an order-to-cash process) are performed
by the organization as a whole. At the micro-level, local
procedures and work instructions are specified separately
for – and are carried out by – each human or technical
component. Traditional Process Mining techniques produce
macro-level holistic, fully connected end-to-end control flow
models.

Self-organization is one of the most flexible methods for
business process adaptation [13]. Self-organizing processes
have parts of their macro-level flows unspecified. Conse-
quently, the macro-level business process behavior emerges
bottom-up from local distributed interactions of the sys-
tem components. These interactions occur at the micro-level
within the system without a macro-level centralized end-
to-end control. This lack of macro-level control leads to a sit-
uation where total ordering and casual dependency of events

within a self-organized process are not guaranteed. Therefore,
to produce models that encode the self-organizing behaviors,
Process Mining techniques must relax the single control flow
assumption that posits the total order and casual dependency
for all events belonging to the same process instance.

Agent-Based Modeling (ABM) is an approach for mod-
eling and simulating organizations [14]. It can be used
to conceptualize an organization as a self-organizing
socio-technical system composed of autonomous agents.
In ABM, observed macro-level business processes emerge
from local micro-level behaviors of agents interacting with
each other and the environment. This approach does not
explicitly define holistic macro-level control flows. Instead,
separate micro-level agent models are integrated into one
Multi-Agent System (MAS) dynamically through simulated
message exchange among agents. The macro-level behavior
of such systems can be understood by observing and analyz-
ing their simulation runs.

Our hypothesis is that the ABM paradigm is suitable for
the automated mining of business processes from event data.
This paper proposes Agent System Mining (ASM) that com-
bines Process Mining with ABM to automate the creation of
MASs that encode operational business processes of orga-
nizations. ASM supports constructing compact agent-based
representations of emergent real-world business processes.
This ability is based on the property of agent-based models
to simulate the non-decreasing complexity of the behavior of
self-organizing socio-technical systems [15]. It also provides
a different perspective for analyzing processes that helps to
study the macro-level business process impact of micro-level
changes. The paper describes key ASM concepts, specifies
ASM phases and activities, and identifies the benefits and
challenges associated with ASM.

The remainder of the paper is structured as follows.
Section II describes a motivating example identifying the
existing problems and providing motivation for ASM.
Section III introduces the key concepts and relationships
ASM is based on. Section IV establishes ASM and discusses
its benefits and challenges. Section V reviews existing work
in the related research fields. Finally, Section VI draws con-
clusions and outlines directions for future work.

II. MOTIVATING EXAMPLE
To illustrate the problem of traditional Process Mining
and demonstrate the potential benefits of ASM, we use a
simplified example of an ‘‘order fulfillment’’ process per-
formed by a hypothetical retail organization. This example
uses GIS data about locations and routes in France from
the ‘‘Supply Chain GIS Model’’ example in the AnyLogic
documentation [16].

The organization has multiple retailers in different loca-
tions in France and a single distributor. The retailers receive
customer orders. Each order received by a retailer may have
multiple order items with different product codes. To fulfill
order items, the retailers request products from the distrib-
utor in batches. Vehicles move product batches from the
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FIGURE 1. A fragment of an event log.

distributor to the retailers. When a retailer runs out of stock
for a specific product, they send a truck to bring a new product
batch from the distributor back to the retailer. Trucks are
initially co-located with retailers. When a truck receives a
product batch request from a retailer, it moves to the distrib-
utor, picks up the requested product batch, and transports it
back to the retailer. An order fulfillment process is completed
when all items included in the order are dispatched to the
customer by the retailer that received the order.

Fig. 1 shows a fragment of an event log containing event
data captured from the example business process.1 Each row
in the log corresponds to one event in the order fulfillment
process. The ‘‘timestamp’’ attribute specifies a time point
when the event occurred. The ‘‘activity’’ attribute refers to
the activity that induced the event and specifies its event
type. The ‘‘location’’ attribute identifies the place or area
where the event occurred. The ‘‘resource’’ attribute points to
an active entity that generated the event. Finally, the ‘‘prod-
uct_code’’, ‘‘order_id’’, ‘‘order_item_id’’, and ‘‘batch_id’’
attributes identify, respectively, the product type, order, order
item, and product batch corresponding to the event.

Fig. 2 shows a Directly-Follows Multigraph (DFM) con-
trol flow model automatically discovered using the Disco
tool [17] from the example event log with the ‘‘prod-
uct_code’’ attribute used as a case identifier. The input to the
Disco tool is a collection of traces, where each trace corre-
sponds to a case and comprises a sequence of events ordered
according to their timestamps. This control flow model is
discovered under the assumption that all activities of the same
type are performed in the same way without considering spe-
cific location contexts. For example, the ‘‘batch_requested’’
activity performed in Nancy is of the same type as the
‘‘batch_requested’’ activity performed in Toulon. Hence, they
are represented by the same ‘‘batch_requested’’ node in the
discovered DFM.

One can remove the assumption of location-agnostic activ-
ities and consider location-specific activities. We use pairs
of activity and location attributes as a location-specific

1The entire log can be downloaded from here: https://doi.org/
10.26188/14401400.

activity type to enable the discovery of a localized control
flow model. For example, the ‘‘batch_requested’’ activity
and the ‘‘Nancy’’ location are combined to form the
location-specific activity ‘‘batch_requested_Nancy’’. Sim-
ilarly, the ‘‘batch_requested’’ activity and the ‘‘Toulon’’
location are combined into the location-specific activity
‘‘batch_requested_Toulon’’.

Fig. 3 shows the DFM discovered based on location-
specific activities. In this control flow model, the same
activity that occurred in different locations is represented by
different nodes in the DFM. For example, two instances of the
‘‘batch_requested’’ event that occurred in different locations,
Nancy and Toulon, are represented by two separate nodes,
‘‘batch_requested_Nancy’’ and ‘‘batch_requested_Toulon’’.
This location-aware version of the control flow model is
closer to the actual variability and complexity of the order
fulfillment business process than the location-agnostic model
in Fig. 2. However, the model in Fig. 3 is a ‘‘spaghetti
process model’’ that is difficult to understand and use for
decision-making in the BPM context.

Based on the ABM paradigm, events captured in the exam-
ple event log can be interpreted as macro-level behavior
emerging from micro-level behaviors of retailer agents, vehi-
cle agents, and the distributor agent. These agents interact
and act on passive objects (e.g., orders, order items, products,
and product batches) in their environment (multiple locations
in France). Agents can remain in the same location (e.g.,
retailers and distributor) or move in the environment (e.g.,
vehicles). Fig. 4a illustrates state chart models of micro-level
behavior for the three agent types from the order fulfillment
example process. The separate agent models are linked with
each other and the environment model in the simulation runs
by executing the behavior rules specified for each agent
and the environment. The collection of all agent models,
the environment model, and the interaction rules constitute
the integratedMASmodel. The macro-level emergent behav-
ior is induced by simultaneous execution of all micro-level
behavior rules defined for each agent and the environment
included in the integrated model. Fig. 4b shows a screenshot
of the example MAS model simulation run performed on the
AnyLogic simulation engine [18].
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FIGURE 2. An order fulfillment DFM that uses location-agnostic activities.

The example agent models and the integrated MAS model
are not ‘‘spaghetti models’’; hence they are more understand-
able. The micro-level agent models enable a focused analysis
of the local behaviors of agents. For instance, according to
the retailer agent model (see Fig. 4a), a retailer does not
take or process customer orders when its product stock level
is low. This insight suggests an opportunity to improve the
micro-level retailer behavior by making it possible for the
retailer to accept customer orders while waiting for requested
products from the distributor. This improvement opportunity
would be difficult to identify based on themacro-level control
flow models in Figures 2 and 3.

III. ORGANIZATIONS AND MULTI-AGENT SYSTEMS
This section explains the key concepts of ASM, which shifts
the understanding of business processes from being executed
by a centralized control flow of activities to emerging as a
result of interactions among people, software, and physical
components within organizational systems. The remainder of
this section introduces the fundamental concepts pertinent to
these two viewpoints.

A. ORGANIZATIONS AS SOCIO-TECHNICAL SYSTEMS
BPM and Process Mining often use the terms ‘‘system’’,
‘‘information system’’, and ‘‘business process management
system’’ to refer to a collection of software and hardware
components that capture, process, store, and produce infor-
mation about different aspects of an organization and its
business processes [19]. The concept of a ‘‘system’’ as a
cohesive whole containing parts that interact to serve some
purpose is used in many research disciplines and application
domains to manage the complexity of a broad range of natural
and artificial phenomena. The general system theory [20] and
cybernetics [21] provide the inter-disciplinary foundations
for the ‘‘system’’ and related concepts.

The ‘‘system’’ concept, in the latter and arguably broader
sense, can be applied to a real-world organization. The
whole organization or its subset, for example, several depart-
ments or branches of the organization, can be modeled as
socio-technical systems composed of social and technologi-
cal components [12]. The social components include employ-
ees, teams, and departments. Software applications, robots,
and equipment are examples of technological components.
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FIGURE 3. Order fulfillment example DFM with location-aware activities.

A socio-technical system model of an organization explic-
itly defines the system boundary separating the components
inside the system from entities in the environment, hence out-
side the system. The system boundary allows identifying the
system inputs and outputs used to exchange matter, energy,
and information between the system and its environment.

In the order fulfillment example process described in
Section II, all the retailers, vehicles, and the distributor are
components of one socio-technical system. The retailers and
the distributor are social actors representing the departments
of the organization. The vehicles are the technological com-
ponents of the system. The system boundary is explicitly
defined by enumerating all its components and their loca-
tions. For example, customers are entities outside the system
that exchange information (e.g., order requests) and matter
(e.g., dispatched order items) with the system.

B. BUSINESS PROCESSES
A system exhibits observable behavior through changes in the
system’s state, inputs, and outputs over time. These changes
are called events. From the BPM perspective, a business
process is a sequence of activities manifested as events [22].
The same sequence of events produced by an organization can
be interpreted as the organizational system behavior (from the
socio-technical system perspective) and the organizational
business processes (from the BPM perspective). By integrat-
ing the two perspectives, we can say that an organization as a
socio-technical system generates its behavior by performing
business processes. An organization, as a system, executes
its business processes to produce the system outputs from the
system inputs via state changes.

The process models in Figures 2 and 3 represent the
behavior performed by the example organization as s single
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FIGURE 4. Example agent models and an integrated MAS model.

socio-technical system. The order delivery business process
receives customer order requests as the system inputs at the
retailer locations. The system performs process activities and
produces dispatched order items as system outputs. Changes
in the product stock levels and vehicle locations during the
execution of the business process can be understood as the
organizational system state changes.

C. MACRO- AND MICRO-LEVEL BEHAVIORS
A collection of business process events can be interpreted
from the whole-of-system perspective (top-down) or from
the system component perspective (bottom-up). These view-
points correspond to the macro-level and micro-level of the
system analysis. At the macro-level, the events are described
as being experienced or produced by a single system-wide
entity having information about all changes in the sys-
tem’s global state and controlling all system activities. The
micro-level viewpoint is at the level of individual system
components that observe and produce events in their local
environments. The macro- and micro-level system view-
points are also described in the systems modeling literature
using the global/local [23] andmacroscopic/microscopic [24]
dichotomies. Fig. 5 illustrates abstractions of business pro-
cesses as macro- and micro-level system behaviors.

The control flow models of the example order delivery
process in Figures 2 and 3 are examples of macro-level
behavior models. All activities represented in these models
are considered as executed by the system as a whole follow-
ing the global execution sequence. The local agent models
in Fig. 4a are sub-models that induce the micro-level behav-
ior, where each agent sub-model focuses on the behavior of
one system component. For example, the retailer statechart
describes the behavior of any retailer component included in
the micro-level order delivery model.

D. AGENTS AND MULTI-AGENT SYSTEMS
An agent is a central concept in the ABM paradigm.
Autonomy, situatedness, proactivity, and sociality are the

key aspects differentiating agents from other types of enti-
ties [25]. Autonomous agents achieve their goals by following
their internal execution flows fully independent from the
external control. The situatedness aspect points to the inter-
action of agents with their heterogeneous and dynamic envi-
ronment. Proactive agents can plan and initiate their activities
as opposed to passively reacting to events in the environment.
Finally, social agents interact to realize shared goals or obtain
necessary resources or information.

The combination of ABM and systems thinking produces a
Multi-Agent System (MAS) concept, as a system comprised of
agents [26]. The trading organization from Section II or any
subset of its departments, teams, and assets can be modeled
as a MAS. An organizational MAS can execute multiple
business processes (e.g., the order delivery process). A MAS
contains multiple agents (e.g., the retailers, the vehicles, and
the distributor in our example) sharing the same environ-
ment. The macro-level MAS behavior is defined using the
MAS inputs, outputs, states, and global behavior rules. The
micro-level behaviors are defined by agent inputs, outputs,
states, local behavior, and interaction rules. The environment
state and behavior rules are also part of themicro-level behav-
ior definition.

IV. AGENT SYSTEM MINING
This section establishes ASM and defines ASM Framework.
ASM automates ABM in the BPM context by extending
Process Mining to analyze and discover MAS models from
real-world event data. ASM Framework maps ASM activities
to different phases of the MAS modeling lifecycle.

A. ASM CONTEXT
Fig. 6 outlines the ASM context. BPM stakeholders
(Model Users) make BPM Decisions related to planning,
designing, and improving Real-World Organization Busi-
ness Processes using Business Process Models. These
models are stored in Model Repositories. If the existing
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FIGURE 5. Macro- and micro-level abstractions of system behaviors.

models do not meet the decision-making needs, the BPM
Stakeholders may request new MAS development by pro-
viding Modeling Objectives to the MAS Modeling and
Simulation Lifecycle. Modelers perform Modeling Tasks
within the lifecycle phases to achieve the Modeling Objec-
tives formulated by the BPM stakeholders. The Modeling
Tasks may be performed manually or using various levels of
automation. Agent System Mining (ASM) Algorithms aim
to automate these Modeling Tasks by implementing ASM
activities (e.g., discover, check, enhance, and integrate).
These algorithms automatically produce, analyze, improve
MAS models of the Real-World Organization Business
Processes using the existing MAS and Other Business
Process Models and Real-World and Simulated Event
Logs. The resulting MAS Models are stored in Model
Repositories and MAS Simulators. ASM analysis relies on
Real-World Event Logs from Information Systems and
Simulated Event Logs from MAS Simulators. Informa-
tion Systems record Real-World Event Logs by capturing
Observed Behavior of the Real-World Organization Busi-
ness Processes. MAS Simulators generate Simulated
Event Logs by running simulations of MAS Models.

B. ASM FRAMEWORK
ASM Framework defines phases, tasks, activities, and arti-
facts involved in the development and analysis of MAS mod-
els of business processes. Fig. 7 provides an overview of the
framework showing its main elements connected by logical
dependency links. The diagram is inspired by the V-model
lifecycle presentation approach [27]. Systems engineers often
use two-dimensional V-model diagrams to represent frame-
works and lifecycles of multi-level engineered systems. In
our framework, we organize the ASM Framework phases
into a V-model of the MAS modeling lifecycle. The hori-
zontal dimension from left to right represents the modeling
timeline. The vertical dimension represents different levels
of MAS viewpoints, including the model user viewpoint

(Phases 1 and 5), the model developer viewpoints at the
whole-of-model level (Phases 2 and 4), and the model devel-
oper viewpoint at the model component level (Phase 3). The
framework assumes that a MAS model consists of three
model component types: agent sub-models (one sub-model
for each agent), a single environment sub-model, and a single
interactions sub-model.

1) ASM PHASES
ASM Framework defines five phases of the MAS modeling
lifecycle. The phases are sequenced in time and may overlap,
allowing for multiple iterations among MAS modeling tasks
belonging to different ASM phases. In each phase, the model-
ing tasks produce one or more output ASM artifacts using the
input artifacts created in the previous phases. All the tasks in
Phases 1 and 5 are executed manually by the modelers or the
model users. The ASM algorithms partially or fully automate
the MAS activities in Phases 2, 3, and 4.

a: PHASE 1 (MOTIVATE)
requests the development of a business process MAS model
and articulates motivation for this model in terms of the BPM
stakeholder needs. This phase identifies problems in the BPM
context of the organization and setsMASmodeling objectives
to address these problems. The objectives are formulated
as benefits that are expected to be achieved by using the
requestedMASmodel. ASMactivities are not involved in this
phase.

b: PHASE 2 (PLAN)
specifies the scope, required features, and constraints of
the MAS model. This phase produces the following ASM
artifacts: the suitable MAS metamodel that defines model
concepts and their relations; the model frame that defines
the context, scope, possible inputs, outputs, macro state vari-
ables for the MAS model, as well as the model require-
ments, assumptions, and constraints associated with the
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FIGURE 6. ASM context.

modeling objectives [28]; in-scope event logs selected from
the real-world and simulated event data; in-scope models
retrieved from the model repositories containing validated
models previously created manually or automatically using
the ASM activities. The search and project ASM activities
support modeling tasks in this ASM phase.

c: PHASE 3 (DEVELOP)
produces a MAS model containing multiple agent sub-
models, one environment model, and one interactions model.
The inputs to this phase include the metamodel, the model
frame, and the existing event logs and models. The pro-
duced MAS model can be executed on a MAS simulator to
induce the emergent macro-level behavior. This phase uses
the discover and enhance ASM activities to infer the agent
sub-models and the environment sub-model. The integrate
ASM activity is involved in inferring interactions between the
inferred agent and environment sub-models and integrating
them into one executable MAS model.

d: PHASE 4 (EVALUATE)
verifies and validates the input MAS model and its sub-
models. The framework interprets the concepts of verification
and validation in the sameway they are defined for simulation
models [29]. The model verification checks if the model and
its sub-models are correct. The model validation ensures that
the model is sufficiently accurate and useful for meeting
the modeling objectives within its application domain. The
verification and validation tasks in this phase are supported
by the diagnose and check ASM activities.

e: PHASE 5 (USE)
uses the validated and verified MAS model to understand,
audit, design, and improve organizational business processes

within the BPM decision-making context. The BPM stake-
holders and the modeling experts run simulations and per-
form static analysis of the model and interpret the results.
The BPM insights obtained in this phase outline additional
modeling needs and objectives. This leads to newMASmod-
eling requests and new iterations of the MAS model lifecycle
starting from Phase 1. Similar to Phase 1, this phase does not
use any ASM activities.

2) ASM ACTIVITIES
ASM activities represent functions implemented by ASM
algorithms and used in different ASM phases. ASM Frame-
work defines seven ASM activities that partially or fully
automate MAS modeling tasks involved in Phases 2, 3, and
4. Some ASM activities (e.g., discover, enhance, check, and
diagnose) are inspired by the corresponding Process Mining
activities [30]. Next, we detail the ASM activities.

a: SEARCH ACTIVITY
selects a collection of existing event logs and business pro-
cess models that match a given model frame. The search is
performed over the organizational information systems and
the model repository. This activity is used in Phase 2 of ASM
Framework to identify in-scope event logs and models.

b: PROJECT ACTIVITY
takes a model frame and existing business process models
that do not match this frame and produces a MAS model that
matches the given model frame. The model projection may
be required when an existing model exceeds the model frame
or when several existing models have to be merged to match
the given model frame. This activity is used in Phase 2 to
identify existing business process models that can be used in
Phase 3 to develop new MAS models.
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FIGURE 7. ASM framework.

c: DISCOVER ACTIVITY
takes the selected event log or an existing business process
model as input and produces multiple agent sub-models and
a single environment sub-model of a MAS model as output.
An event log contains agent and environment event data
and other information required for the MAS discovery. The
sub-models are discovered separately for each agent and the
environment.

d: ENHANCE ACTIVITY
takes the selected event log and an existing MAS model
as input and produces enhanced versions of the input
MAS agent and the environment sub-models. The enhance-
ments may include the introduction of additional agents,
state variables, or behavior rules. Similar to the discovery
activity, the enhance activity does not address the prob-
lem of integration of the enhanced versions of the MAS
sub-models.

e: INTEGRATE ACTIVITY
takes the sub-models produced by the discover and enhance
activities as input and produces the interactions sub-model
of the MAS model as output. The produced interactions
sub-model integrates the separate agent and environment
sub-models.

f: DIAGNOSE ACTIVITY
takes a MAS model as input and calculates quality indicators
for the modeled system. The indicators can be calculated
from the input model itself or using event logs generated by
the model execution. The indicators can be defined at the
whole-of-model level, and the level of individual actors or
the environment.

g: CHECK ACTIVITY
relates the newly discovered or enhanced model versions
and the existing verified and validated versions of the
same model. To identify and quantify the differences, log-
to-log, model-to-model, and log-to-model comparisons of
real-world event logs, simulated event logs, and integrated
MAS models are performed. The diagnose and check activi-
ties are used to verify and validate the inferred MAS models
and their sub-models.

C. ASM BENEFITS
The benefits of ASM stem from introducing the bottom-up
ABM paradigm to business process mining where, tradi-
tionally, top-down approaches dominate. We consider two
categories of ASM benefits: direct and indirect. Direct ASM
benefits are the benefits of automating the development of
agent-based models of business processes from event logs
instead of performing this modeling manually. Indirect ASM
benefits are the benefits of using the ABMparadigm to model
and analyze business processes.

Example direct ASM benefits are discussed below.

1) EVIDENCE-BASED MODELING
Automated analysis of event logs enables processing signif-
icantly larger amounts of data compared to manual analysis.
This ability often leads to discovering additional empirical
insights that otherwise remain hidden when manual process
analysis techniques are used.

2) SHORTER MODEL DEVELOPMENT CYCLES
Full or partial automation of business process modeling activ-
ities shortens the time required to create and update models.
Consequently, shorter model development cycles allow faster
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identification of changes in business processes. Thus, orga-
nizations can react faster and take timely actions to resolve
arising issues.

3) BETTER CONFORMANCE
By automating the comparison of existing normative process
models with actual processes recorded in event logs, Pro-
cess Mining reduces the time and effort of business process
auditing and conformance checking, leading to better process
compliance outcomes.

Direct ASM benefits can be realized by automating ASM
activities applied in the context of agent-based business
process management frameworks. Examples of such frame-
works are agent-based BPM frameworks and approaches
such as Subject-oriented Business Process Management
(S-BPM) [31], Multi-Agent Business Process Modeling
Notation Decision Footprint (MABPMNDF) [32], and the
Knowledge Intensive Adaptive Business Process Manage-
ment Framework (agileBPM) [33].

Next, we discuss example indirect ASM benefits.

4) MANAGING COMPLEX PROCESSES
The need for managing the complexity of discovered mod-
els is evidenced by the ‘‘spaghetti process models’’ that
are difficult to understand and analyze [11]. Automati-
cally discovered control flow models of complex business
processes contain a significant number of elements and
relationships, and, hence, their visual representations resem-
ble spaghetti. In general, MAS models can induce sys-
tem behaviors that over time demonstrate non-decreasing
complexity [15]. In other words, a MAS model can induce
system behavior whose complexity increases over time, while
the size and complexity of the model stay unchanged. Con-
sequently, MAS models can address the ‘‘spaghetti process
models’’ problem by replacing the complex spaghetti control
flow models with corresponding MAS models that induce
the behavior described by the spaghetti models and are of
manageable size and complexity.

5) MANAGING FLEXIBLE PROCESSES
Some application domains are characterized by increased
levels of business process agility and dynamism. Knowledge-
intensive [33] and operational risk management pro-
cesses [14] are examples of such processes exhibiting a
high level of flexibility through non-linear, changing inter-
actions among learning and adaptive participants. A suitable
approach for modeling flexible business processes is encod-
ing them as adaptive socio-technical systems [13], and ASM
can support such interpretation of business processes through
self-organizing MASs.

6) MANAGING CONTEXT-AWARE PROCESSES
Context-aware models capture contextual factors inherent
to the real-world business processes, for example, time,
location, and socio-cultural norms [34]. MAS models can
represent distributed business processes embedded into

heterogeneous environments, where the environment and
positions of participants in the environment are essential
and not static [14]. Moreover, MAS models can explicitly
capture agent mobility and changes in the process execution
environment.

D. ASM CHALLENGES
The key ASM objective is to achieve the highest level of
automation in producing useful executable MAS models of
business processes captured in event logs. ASM faces several
challenges relevant to its different phases and activities on
the way to this objective. Next, we discuss several important
example challenges of ASM.

1) MAS METAMODEL SELECTION
Several metamodels have been proposed for multi-
agent-based simulations to achieve the ABM objectives
in different application domains [35]. All agent-based
metamodels introduce the notions of agent, environment,
and interaction. However, these metamodels use different
approaches for modeling details of agents and environment,
micro-level and macro-level states, and interactions between
the agents. The challenge, thus, is to select aMASmetamodel
suitable for ASM activities in different application contexts.
For example, Fig. 8 shows a simplified MAS metamodel that
outlines the key agent-based concepts and relationships used
in the motivating example in Section II.

FIGURE 8. An example ASM metamodel.

2) MAS MODEL SCOPE DEFINITION
The model scope is a frame that divides all real-world entities
and events into important and not important for achieving the
givenmodeling objectives. The defined scope is used to select
event data and existing BPM and MAS models to support
the ASM activities. For example, it may not be enough to
use 3-dimensional space and time dimensions for the model
scope definition, as multiple real-world events may happen
at the same time and place. Therefore, additional criteria
are required for effective scope definition (e.g., service type
and customer segment). The challenge, hence, is to devise a
simple MAS model scope definition method capable of pro-
ducing suitable model scopes for given modeling objectives.
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3) MAS SIMULATION AND STATIC ANALYSIS SUPPORT
MAS models obtained through the ASM activities should
be suitable for execution on a simulator. Multiple simula-
tion platforms are available for executing agent-based mod-
els. However, these platforms use different model formats
and notations. Therefore, ASM integration with all available
agent-based simulation platforms is not practical or feasible.
At the same time, the model users and modelers should be
able to perform static analysis of the discoveredMASmodels.
Hence, on the one hand, the produced models and model
components should be interpretable by expert and non-expert
stakeholders. But, on the other hand, these models should be
executable on multiple simulation platforms. The challenge,
therefore, is to find a balance between the model readability
by humans and the ability to simulate the model on multiple
platforms.

4) MAS MODEL VALIDATION
MAS models produced by the ASM activities must be vali-
dated to confirm that they are suitable for the intended pur-
poses. For example, the validity of a model can be measured
by comparing the event log produced by simulating themodel
with the event log of the corresponding real-world business
process. The comparison can be performed at the micro-
and macro-level system behaviors. The challenge, thus, is to
identify measures and methods for the comparisons of MAS
model logs and real-world business process logs. In general,
other means for validating MAS models constructed from
process data need to be devised.

5) EVENT DATA SELECTION
An event log must contain enough information to enable
ASM algorithms, for instance, to allow the identification of
agents, their locations, and interactions. In addition, the data
should contain information to infer the behavior rules for the
agents and environment. The required data can be incomplete
and distributed across several data sources. For example,
in the cross-organizational context, a single complete event
log of a business process may not be available due to data
privacy preservation requirements [36]. Furthermore, the log
data samples may be ‘‘shaped’’ by a specific context (e.g.,
day of the week, weather, and personalities of participants)
and, therefore, exhibit high variability. Some available data
may not be relevant to the modeling scope and objectives.
All these factors contribute to the challenge of defining
the methods for selecting relevant and complete event data
that the ASM activities can use to produce MAS models
complying with the given MAS metamodel and modeling
objectives.

6) AGENT TYPE DISCOVERY
In a MAS model, agents can be clustered into types based
on similarities in their behavior patterns and other character-
istics. Consequently, all agents from the same cluster (agents
of the same type) can be represented by the same agent model

in the integrated MAS model. The inability to group agents
based on their type can lead to complex, overfittedMASmod-
els. Hence, the challenge is to group agents into types so that
agents of the highest similarity have the same type. A solution
to this challenge requires a definition of a similarity measure
between agents and an approach for measuring it. Such a
measure should identify agent characteristics that can be used
for the comparison.

7) SUB-MODEL DISCOVERY
To construct an integrated MAS model, a sub-model must
be discovered for every agent type and the environment.
An agent sub-model captures the agent’s reactions to the
inputs, decisions, and actions. The environment sub-model
encodes the environment state and describes rules for changes
in the environment state. Given an event log of a business
process, the challenge is to discover sub-models based on
the information about recorded events that relate to multiple
agent types and the environment. ASM algorithms should
handle situations when one event from the log is relevant to
multiple agents, the environment, a single agent, or not related
to any agent within a given model frame.

8) MODELING LANGUAGE SELECTION
Separately discovered agent and environment sub-models
must be integrated into a holistic MAS model. This inte-
gration is achieved using sub-models describing agent inter-
actions. The agent interactions sub-models should represent
suitable interaction patterns, e.g., synchronous and asyn-
chronous, with different assumptions about message delivery
reliability, from the best-effort delivery to the guaranteed
delivery. In addition, the integrated MAS model should be
consistent and complete. A MAS model is consistent when
there are no contradictions among its sub-models, and it is
complete when its sub-models cover the entire scope speci-
fied by the model frame. Hence, the challenge is to identify
suitable modeling languages that can describe MAS models
with a broad range of agent interaction patterns to maximize
the integrated model completeness and consistency.

V. RELATED WORK
This section provides a review of the research work related
to ASM to identify reusable results and gaps in the exist-
ing knowledge base. This review follows the framework
for conducting IS literature reviews proposed by vom
Brocke et al [37]. It includes three steps: review the scope
definition and identification of key concepts, literature search
and selection, and literature analysis and synthesis.

A. REVIEW SCOPE AND KEY CONCEPTS
The review scope is defined by selecting relevant categories
for the six literature review characteristics highlighted in
the Cooper’s taxonomy of literature reviews [38]. In this
review, (i) we focus on the recent research outcomes, (ii) our
goal is to summarize outcomes found in the reviewed
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publications related to the guiding questions, (iii) we use
the key concepts to organize the search, (iv) we conduct
the review from a neutral perspective without espousing our
position, (v) our target audience is scholars specialized in the
related fields, and (vi) we cover only literature closely related
to ASM.

Fig. 9 shows a Venn diagram demonstrating research fields
we identify as related to ASM, namely Agent-Based Mod-
eling & Simulation, Business Process Management, Process
Mining, and Data Mining.

FIGURE 9. Research fields related to ASM.

Based on the ASM purpose discussed in Section IV and the
identified related research fields, the review scope is further
specified by the following guiding research questions:
RQ1 How are agent-based models used in BPM?
RQ2 Which Data Mining techniques can be used to infer

(parts of) MAS models from data?
RQ3 Which ProcessMining techniques can be used to infer

(parts of) MAS models from event data?
The following concepts are central to the identified related

research fields and the guiding questions: agent, business
process, process mining, and data mining.

B. LITERATURE SEARCH AND SELECTION
We defined the following concept-based search queries cor-
responding to the three guiding research questions:
Q1 agent AND ‘‘business process’’;
Q2 agent AND ‘‘data mining’’;
Q3 agent AND ‘‘process mining’’.
The queries were configured with the following search

parameters: ‘‘databases: Scopus, Web of Science’’; ‘‘lan-
guage: English only’’; ‘‘year of publication ≥ 2010’’; ‘‘docu-
ment type: article, conference paper’’; ‘‘textual content: title,
abstract, keyword’’; ‘‘subject area: computer science’’.

We executed the three queries separately in the two
databases on 16 February 2021. The Scopus database
returned 414, 1260, and 37 results for queries Q1, Q2, and
Q3, respectively. The Web of Science database returned 228,
476, and 24 results for queries Q1, Q2, and Q3, respec-
tively. The six result sets were merged and duplicate entities
removed. The merged set of results contained 2,094 publica-
tions. These publications were further filtered in two steps.

FIGURE 10. Number of published papers (per year).

First, 1563 papers were excluded based on the title relevance.
In addition, 384 irrelevant papers were identified based on the
abstracts. The remaining 149 papers were analyzed to fulfill
the purpose of this review. 2 Fig. 10 shows an overview of the
distribution of the selected papers per year.

C. LITERATURE ANALYSIS
The identified 149 relevant papers can be split into two cate-
gories. The papers from the first category focus on applying
ABM for managing business processes. The papers from
the second category discuss algorithms for automated ver-
ification and generation of MAS models from data. The
insights obtained from the former category are summaries
in Section V-C1 to answer research question RQ1 stated in
Section V-A, while the insights from the latter category are
discussed in Section V-C2 and answer research questions
RQ2 and RQ3.

1) ABM IN BPM
Several authors discuss the idea of using the ABM paradigm
and, more specifically, modeling an organization as a
MAS to address decentralization, flexibility, agility, and
self-adaptation of business processes in several application
contexts. The multi-agent models are applied for measuring
change management capability performance in a manufac-
turing company [39]. An agent-based simulation is used to
test improvements in the flexibility and agility of business
processes [40]. Several papers describe the use of ABM in
the multi-organizational context. Agent-based simulation can
be used to analyze cross-organizational performance [41]
and is suitable for formalizing business processes in vir-
tual enterprises [42]. Risk-aware business process manage-
ment can benefit from the ability of ABM to describe
agent-environment interactions [43]. MAS models are also
proposed as a method for explicit representation of respon-
sibilities and accountabilities in business processes [44],
as well as for validating business requirements [45]. Finally,
the concept of multi-agent cooperation is used for simulating
the business processes of service businesses [46].

Multiple modeling methods, frameworks, metamodels,
and formalisms are proposed for defining and implementing

2The complete list of selected papers can be downloaded from here:
https://doi.org/10.26188/14708772.
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MASmodels of business processes to support BPM activities.
Subject-oriented Business Process Management (S-BPM)
represents a process as a network of distributed and indepen-
dent agents exchanging messages to coordinate work [47].
The agileBPM framework defines a modeling methodol-
ogy to express business interest, environment, and processes
according to the agent-based paradigm [33]. Hunka and van
Kervel discuss how Design Engineering Methodology for
Organization (DEMO) can strengthen the theoretical founda-
tions of the Resource-Event-Agent (REA) ontology to create
more precise descriptions of an organization [48]. The Input-
Process-Output (IPO) abstraction [49] enables a simpler and
faster approach to model a MAS in comparison with some
other agent-based methodologies like Gaia [25], Tropos [50],
and Multiagent Systems Engineering (MaSE) [51]. The
Belief/Desire/Intentions (BDI) metamodel is used to describe
a MAS behavior matching that of the input real-world orga-
nization [52]. Finally, nested Petri nets (NP-nets) are used to
model agents as processes and synchronize these agents into
a formal MAS model of a trading software system [53].

A significant number of use cases for ABM in BPM
indicates the relevance of ASM. Even though multiple frame-
works and metamodels exist for MAS modeling and devel-
opment, little research has been done to understand which
frameworks and metamodels are suitable for inferring MAS
models from business process data.

2) ALGORITHMS FOR INFERRING MAS MODELS FROM DATA
Most research that integrates the ABM paradigm with the
Data Mining and Process Mining fields is dedicated to MAS
implementations of Data Mining and Process Mining plat-
forms and traditional Data Mining and Process Mining tech-
niques to analyze engineered software and cyber-physical
MASs. Relatively little research has been done on algorithms
that generate MAS models of real-world business processes
from process data.

The algorithm presented in [54] can discover micro-level
agent models and link them to the input macro-level business
process model. This algorithm is based on the hierarchical
Markov model. It can be considered for implementation of
the enhance ASM activity. The framework for solving the
probabilistic goal recognition problem presented in [55] can
be used to discovermodels of rational and irrational behaviors
of agents. The obtained models can be used for modeling
autonomous aspects of agent behavior. Data Mining methods
can be used to mine context models in multi-agent interac-
tions [56]. These methods can be reused to implement the dis-
cover and enhanceASM activities to construct context-aware
environment sub-models of MASs. Mahdi and Lotfi pro-
pose algorithms for discovering agent interaction protocols
and organizational structures in business processes [57]. The
agent interaction models discovered using the proposed algo-
rithms should be augmented with agent-environment inter-
actions and individual agent behavior sub-models to fully
represent agents inMASmodels. Finally, the alpha-algorithm

for process discovery has been used to mine a Petri net model
of an individual agent in a robotic MAS [58]. The algorithm
takes an event log of one robotic agent and produces a
Petri net model of that agent. This approach can be used as
part of an ASM Framework implementation for constructing
sub-models of individual agents.

While the existing works provide useful ideas and tech-
niques for mining parts of MAS models, they do not allow,
neither individually nor collectively, implementing the ASM
framework described in Section IV-B.

VI. CONCLUSION
This paper presents a vision of Agent System Min-
ing (ASM) as an extension of Process Mining grounded in
the Agent-Based Modeling paradigm. ASM interprets busi-
ness process data from an agent-based micro-level perspec-
tive. From this perspective, a business process is implicitly
induced by interactions of multiple autonomous distributed
agents without an explicit definition of a macro-level control
flowmodel. As amotivation for ASM,we provide an example
of mining an order delivery business process, demonstrating
how Multi-Agent System (MAS) models can address the
problem of ‘‘spaghetti process models’’ related to visualizing
and understanding complex macro-level control flow models
generated by traditional Process Mining techniques. To posi-
tion ASM in theMASmodeling lifecycle, we introduce ASM
Framework that maps ASM activities and artifacts to MAS
modeling lifecycle phases and tasks. In addition, we discuss
ASM benefits and challenges related to the implementation
of the ASM activities.

The future research in ASM can be organized around
three areas: metamodels and formalisms suitable for rep-
resenting MAS models discovered from business process
data, ASM algorithms for discovering and enhancing exe-
cutable MAS models of business processes, and techniques
for assessing the quality of MAS models discovered by
the ASM algorithms. Further analysis of ASM benefits
for different application domains and industry sectors will
validate ASM Framework and inform additional research
directions.
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