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ABSTRACT This paper presents a reduced-order electrochemical battery model designed for the
online implementation of battery control systems. The model is based on porous-electrode and
concentrated-solution theory frameworks and is able to predict voltage as well as the internal electrochemical
variables of a battery. The reduction of the model leads to a physics-based one-dimensional discrete-time
state-space reduced-order model (ROM), which is especially beneficial for online systems. Models opti-
mized around different operational setpoints are combined to predict cell variables over a wide range of
temperatures and state of charges (SOCs) using the output-blending method. A sigma-point Kalman filter
is further used to manage inaccuracies generated by the reduction process and experimental-related issues
such as measurement error (noise) in the current and voltage sensors. The state-estimation accuracies are
measured against a full-order model (FOM) developed in COMSOL. The whole system is able to track the
internal variables of the cell, as well as the cell voltage and SOC with very high accuracy, demonstrating its
suitability for an online battery control system.

INDEX TERMS Batteries, battery management systems, electrochemical devices, Kalman filters.

I. INTRODUCTION
Energy storage systems (ESSs) are a key factor in the energy
transition that is presently taking place around the globe. The
ever increasing demand for electric vehicles in the transport
industry and for renewables in the energy-generation sector,
has led to a very real need for the creation of efficient ESSs.
One of the most promising types of energy storage uses
lithium-ion batteries, since their high power and energy den-
sities meet the requirements of a wide variety of applications.

The expense of lithium-ion batteries as well as finite raw-
material resources means that it is crucial to optimize battery
life expectancy. Furthermore, it is also key to optimize the
power and available-energy capabilities of batteries while
minimizing the rate of aging, instead of the common approach
of simply oversizing the ESS as a defense against overly
rapid aging. To satisfy these objectives, battery management
systems (BMSs) need to be enhanced. BMSs run battery
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models to keep the battery in a safe condition, and to be
able to estimate the SOC, state-of-health (SOH) and state-
of-function (SOF), (a computation of limits on available
power that seeks to maximize battery output power at the
same time as maximizing battery service life). BMSs com-
monly use phenomenological empirically-based models such
as equivalent-circuit models (ECM) that can make accurate
estimates of the SOC of the batteries. However, these models
do not describe the internal physical electrochemical vari-
ables of the battery, and so it is impossible to use them
to estimate how the battery is working internally, which is
necessary to be able to predict aging phenomena. Thus, use
of empirical models leads to a poor SOF prediction.

Other recent attempts take advantage of incipient artificial
intelligence (AI) techniques, to estimate SOH and remaining
useful life (RUL) [1]. The capabilities of these algorithms
are highly dependent on the data available for the training
process. Although this has proven to be a powerful tool to
investigate the effect of aging in state estimators, if internal
states need to be computed, physics-based models (PBMs)
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are key. The combination of PBMs and AI has therefore
emerged as a promising field of research [2]–[4]. ROMs can
be used in this context to feed AI algorithms efficiently,
or to give feedback to these same algorithms, while run-
ning in the BMS. In addition, AI techniques could be used
to aid handling uncertainty in predictions [5] or in model
parameters [6].

Therefore, it is necessary to use physics-based mod-
els (PBMs) of lithium-ion cells in an ESS. These models are
based on equations developed from first-principles physics
that describe the internal physical behavior of the battery cell.
It is believed that with the insight that PBMs can provide,
the BMS can be programmed to predict the state of aging
mechanisms occurring inside the battery cells and control the
battery based on these predictions. This could enable deter-
mining the true energy and power capabilities of batteries
accurately in real-time, and prevent oversizing. Furthermore,
use of thesemodels can ensuremanagement of battery service
life to avoid undesirable aging effects.

Taking all these considerations into account a clear
research gap can be identified: the challenge of efficiently
implementing PBMs embedded in BMSs. Taking advantage
of PBMs to enable accurate SOF determination, whether
working on their own or in combination with AI algorithms,
is one further key challenge. Last but not least, experimental
validation of these models is crucial, since proof of their
validity in real case scenarios is needed to finally validate the
concept. Meeting these challenges will potentially lead to the
more efficient use and longer life of a battery.

The main handicap in implementing PBMs in BMSs is
that they have much higher computational complexity than
empirical models, and thus require powerful computational
resources. To overcome this drawback, model-order reduc-
tion methods can be applied, creating physics-based ROMs.
ROMs are computationally simpler models that can predict
the same internal physical variables. These ROMs can be
executed in a practical BMS, and thus battery controls based
on the physical variable estimates can be designed.

A number of different research teams have studied
the problem of reducing the computational complexity of
PBMs [7]. Some approximate the original partial differ-
ential equations (PDEs) using analytic expressions lead-
ing to some well-developed simplification approaches.
Subramanian et al. [8] found polynomial solutions for
solid-phase diffusion under constant current (CC). This
approximation method was then extended to other PDEs,
generating a group of differential algebraic equations (DAEs)
to substitute the original PDEs [9]. Several other approaches
were introduced by different researchers to generate simpli-
fied DAEs from the original PDEs, including the Galerkin
method [10], [11], finite difference [12], [13], proper orthog-
onal decomposition [14], volume averaging [15], singular
perturbation [16], and so forth.

A very different approach focuses on small-signal
frequency-domain characteristics of the original PDEs by
deriving transfer functions for all cell internal electrochemical

variables. These transfer functions are then used to yield a
high-fidelity time-domain ROM, which has a similar fre-
quency response but a greatly simplified form compared
with the FOM defined by the PDEs. These transfer functions
are also derived starting with a description of the solid-
diffusion process. Jacobsen andWest gave the transcendental
transfer function for solid concentration versus lithium flux
in spherical symmetry [17]. Smith et al. built on this work
to derive transfer functions for solid–electrolyte interphase
potential difference, solid surface concentration, and lithium
flux versus applied cell electrical current [18]. They then
generated a low-order state-space model through a residue-
grouping approach [19]. Inspired by their work, Lee et al.
derived additional transfer functions for solid potential, elec-
trolyte potential, and electrolyte concentration versus applied
cell electrical current, and proposed a novel discrete-time
realization algorithm (DRA) to produce a reduced-order
discrete-time state-space model of a lithium-ion battery
cell [20], [21]. Rodríguez et al. proposed an improved deriva-
tion of the electrolyte-concentration transfer function [22],
and extended the transfer functions to accommodate cells
having blend electrodes [23]. More recently, an improved
high-fidelity model was introduced by removing a historic
limiting assumption that the effect of electrolyte concentra-
tion on electrolyte potential could be ignored [24], and by
replacing the DRA with computationally simpler methods
that produce equivalent results [25].

DAE-based and transfer-function-based ROMS have dis-
tinct advantages and disadvantages. We prefer ROMs
obtained through transfer functions for several reasons.
Above all, this approach allows us to choose any combi-
nation of internal variables and spatial locations of interest
to solve, rather than needing to solve all of the variables at
every location in the cell, which brings desirable freedom
and computational simplicity. In addition, the online com-
putational and storage efficiency is of the same order as
an ECM, because the transfer functions are converted into
reduced-order discrete-time state-space models represented
by low-order matrices. The computational complexity of the
resulting ROM is very low, even though the conceptual com-
plexity of the derivations to find the transfer functions and
to develop the corresponding discrete-time realization may
require more effort. The ROM can produce very high fidelity
approximations to the FOM, both for voltage predictions and
for predictions of internal electrochemical variables.

This paper furthers the development of transfer-
function-based ROMs in a number of ways: (1) a sigma-point
Kalman filter (SPKF) is designed and implemented to keep
the ROM state-variable estimates accurate in a real sce-
nario, where some error sources need to be taken into
account; (2) this SPKF maintains increased accuracy by
using an output-blending technique to combine the dynam-
ics of ROMs generated at different operational setpoints
near the present operating point; (3) the system comprising
the ROM and the SPKF is transferred to an experimental
platform, demonstrating that the ROM and SPKF can run
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together on an inexpensive micro-controller and that accurate
electrochemical-state estimates can be achieved with the
PBM reduction techniques. The results reported in this paper
provide the opportunity to develop further battery-control
systems using physics-based performance limits. Overall,
this work: (1) improves the operating range of the ROMs
by introducing an output-blending technique that makes
better predictions than the prior model-blending technique;
(2) shows how to apply an SPKF to the output-blended ROMs
to estimate internal electrochemical variables of a cell as
well as terminal voltage; (3) demonstrates the accuracy of the
combined output-blendedROMand SPKF, both in simulation
and experimentally; and (4) shows that ROMs are suitable
for implementation in a practical BMS using inexpensive
micro-controllers.

This paper is organized as follows: Sect. II introduces
the ROM that we use in this work; Sect. III summarizes
the SPKF; Sect. IV presents both simulation and real-world
results produced by the method; and Sect. V presents some
concluding remarks.

II. ELECTROCHEMICAL MODEL IMPLEMENTATION
This section describes the ROM implementation. A discrete-
time state-space model is created using a model-order-
reduction process to lower the computational complexity of
the electrochemical model and prepare it for use in a practical
BMS that does not require powerful computational resources.

A. FULL-ORDER MODEL
The ROM presented here is based on the widely known
‘‘pseudo two-dimensional’’ (P2D) FOM first proposed by
Doyle et al. [26], Fuller Fuller1994. This FOM is able to
predict the internal electrochemical states of a cell by solving
a group of four partial-differential equations (PDEs) coupled
by an algebraic closure term. These equations are summa-
rized below (for brevity, we omit a discussion of the boundary
conditions for these equations, but a full derivation, including
boundary conditions, can be found in [28]).

1) SOLID-PHASE CHARGE CONSERVATION
The PDE describing charge conservation in the solid elec-
trode particle matrix is

∂

∂x

(
σeff

∂

∂x
φs

)
= asFj (1)

where φs is the potential in the electrode solid active material
as a function of position and time, σeff is the effective solid
electronic conductivity, as is the specific interfacial surface
area, j is the flux of lithium moving from the solid to the elec-
trolyte as a function of position and time, and F is Faraday’s
constant.

2) SOLID-PHASE MASS CONSERVATION
The PDE describing mass conservation in the solid is

∂cs
∂t
=

1
r2
∂

∂r

(
Dsr2

∂cs
∂r

)
(2)

where cs is the concentration of lithium in the electrode solid
active material as a function of position and time, and Ds is
the solid diffusivity.

3) ELECTROLYTE-PHASE MASS CONSERVATION
MODEL REFORMULATION
The PDE describing of mass conservation in the electrolyte
is

∂(εece)
∂t

=
∂

∂x
De,eff

∂

∂x
ce + as(1− t0+)j (3)

where ce is the concentration of lithium in the electrolyte as
a function of position and time, εe is the electrolyte volume
fraction, and De,eff is the effective electrolyte diffusivity.

4) ELECTROLYTE-PHASE CHARGE CONSERVATION
The PDE describing charge conservation in the electrolyte is

−asFj =
∂

∂x
κeff

∂

∂x
φe

+
2RT (t0+ − 1)

F

(
1+

∂ ln f±
∂ ln ce

)
∂

∂x
κeff

∂ ln ce
∂x

where φe is the potential in the electrolyte as a function
of position and time, κeff is the effective electrolyte ionic
conductivity, R is the universal gas constant, T is absolute
temperature, t0+ is the transference number of the cation with
respect to the solvent in the electrolyte, and f± is the mean
molar activity coefficient of the electrolyte.

5) REACTION KINETICS MODEL REFORMULATION
The Butler–Volmer equation describing reaction kinetics is

j = knorm0

(
ce
ce,0

)1−α (
1−

cs,e
cs,max

)1−α ( cs,e
cs,max

)α
×

(
exp

(
(1− α)F
RT

η

)
− exp

(
−αF
RT

η

))
η = φs − φe − Uocp(cs,e/cs,max)− FRfj,

where knorm0 is the reaction-rate constant, cs,max is the
maximum lithium concentration in the solid, α is the
charge-transfer coefficient, Uocp is the open circuit potential
of the solid material as a function of its argument, and Rf is
the solid–electrolyte interphase film resistivity.

B. REDUCED-ORDER MODEL
The FOM just summarized can be linearized around spe-
cific constant-SOC and constant-temperature setpoints and
converted to a frequency-domain transfer-function represen-
tation [20], [24], [28]. These transfer functions can then be
converted to a discrete-time ROM using subspace-projection
techniques [21], [25], [28]. The linearizing process replaces
FOM variables φs, φe, cs, and ce with debiased versions:
φ̃s, φ̃e, c̃s, and c̃e, respectively. The ROM directly produces
predictions of φ̃s, φ̃e, c̃s, c̃e, and j; we must apply nonlinear
corrections to these predictions to produce predictions of
the original variables φs, φe, cs, ce, and cell voltage (these
corrections are described further in Sect. II-C3). The structure
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FIGURE 1. Scheme of the ROM model implementation.

of the ROM is a linear discrete-time state-space model of the
form

x[k + 1] = Ax[k]+ Bu[k] (4)

y[k] = Cx[k]+ Du[k], (5)

where x[k] is a semi-physical state vector (with dimension n)
at discrete-time index k , u[k] is the input (which in this case is
the applied cell current), y[k] is the set of linear model outputs
(which must be corrected), and {A,B,C,D} are the matrices
required to describe the dynamics of the cell, generated by
the DRA from the physical parameters of the cell.

Any ROM created in this way is able to make accurate
predictions of the original electrochemical variables when
the cell is operated close to the specific constant-SOC and
constant-temperature setpoint used to generate the ROM.
In order to generalize the ROM to a wide SOC and tem-
perature operating range, we must somehow combine the
effect of individual ROMs created at different setpoints. Two
candidate blending methods are described in Sect. II-C.
The final ROM can be implemented in a variety of pro-

gramming languages and environments. In the present work,
we first prototype the methods in MATLAB/Simulink. The
algorithm itself is mainly developed inMATLAB code so that
it can finally be inserted in Simulink as a ‘‘MATLAB function
block’’. The reason for this type of hybrid implementation is
to combine the ease of operating with matrices in MATLAB
code with the signal management of Simulink.

The structure of the whole implementation is shown
in Fig. 1. The ‘‘Initial State’’ of the battery cell, the applied
‘‘Input Current’’, and ambient ‘‘Input Temperature’’ are the
model inputs and the internal electrochemical variables of the
cell and predicted terminal voltage are the outputs.

Looking deeper into the model, three differentiated parts
can be identified. The first is the ‘‘Augmented state-space
Model’’ that is described in Sect. II-C1. The second corre-
sponds to the main ‘‘Model Simulation’’ loop in which the
state-space vector and the linear outputs of the model are
calculated. Finally, the third part applies ‘‘Nonlinear Correc-
tions’’ to the output to improve predictions and to overcome

model inaccuracies introduced in the linearization step of the
model-order-reduction process.

C. BLENDING DIFFERENT ROMs
A key component to ensure the viability of the ROM viable
for practical implementation is that wemust somehow be able
to combine individual ROMs generated at different SOC and
temperature setpoints to make predictions that are valid over
the entire operational range. The first approach presented here
blends models at every point in time to create a single time-
varying model that is updated every timestep; this method is
called ‘‘model blending’’ [29]. The second approach keeps
individual models distinct and updates all models at every
timestep. It then blends outputs from each model together to
cause the overall output to represent a time-varying dynamic;
this method is called ‘‘output blending’’ [30]. We review both
of these approaches here.

1) MODEL BLENDING
The model-blending approach begins with the general
state-space form of Eqs. (4) and (5). For computational sim-
plicity, the model is normalized by the DRA (without loss
of generality) so that the A matrix is diagonal with positive
elements, and the B matrix is a units vector with the same
dimensions as x[k] (i.e., B = 1n×1). The model is organized
with the elements on the diagonal of the A matrix in increas-
ing order, and since the model will always be (marginally)
stable and have an integration state, the largest element in the
Amatrix corresponds to the integration dynamics and has the
value ‘‘1’’.

In a BMS application, the model state predictions are
corrected with a SPKF, as explained in Sect. III. The SPKF is
a nonlinear generalization of the standard Kalman filter and is
designed tomodify the state-vector estimate of amodel in real
time, so that the model output predictions match the physical
reference measurements more closely. At any point in time,
the SPKF requires a single state-space model describing the
dynamics of the battery cell at that point in time. However,
this is a problem because we find that a single state-space
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FIGURE 2. Bilinear interpolation of the A[k] matrix for ‘‘model blending’’ (left) and bilinear interpolation of the model output y [k] for ‘‘output
blending’’ (right).

model produced by the DRA is not adequate to predict a cell’s
dynamics over a wide range of SOC and temperature, as is
required in a practical BMS application.

In prior works, a method called ‘‘model blending’’
was used to overcome this limitation [29], [31], [32].
Equations (4) and (5) are modified to use time-varying
{A,B,C,D} matrices:

x[k + 1] = A[k]x[k]+ B[k]u[k] (6)

y[k] = C[k]x[k]+ D[k]u[k]. (7)

First, the DRA is used to precompute static {A,B,C,D}
matrices corresponding to models linearized around a collec-
tion of individual setpoints on a grid of SOC and temperatures
spanning the expected operational environment of the cell.
Then, as the SPKF operates, the state-space matrices from
the four precomputed models with the closest setpoint to the
present cell SOC and temperature are blended together at
every point in time. This creates the time-varying state-space
matrices corresponding to that specific point in time.

This procedure, illustrated in Fig. 2 (left), is used to com-
pute the time-varying ‘‘A’’ matrix of the model. The cell
present state of charge is marked on the figure as ‘‘SOC’’.
SOC0 and SOC1 are the state-of-charge setpoints of the
closest precomputed models to the present operational SOC
that bracket the present SOC. Similarly, the cell present
temperature is marked on the figure as ‘‘T ’’, and T0 and
T1 are the temperature setpoints of the closest precomputed
models to the present operational temperature that bracket
the present temperature. Thus, SOC0 and T0 are both lower
than or equal to the present SOC and temperature, SOC1 and
T1 are both greater than or equal to the present SOC and
temperature, andwe have precomputedROMs using theDRA
at all combinations of T0, T1, SOC0, and SOC1. Once these
four closest models are identified, the present time-varying
A[k] matrix is computed using bilinear interpolation of the
constant A matrices of the closest models.

Specifically, if we define

θ =
SOC− SOC0

SOC1 − SOC0

ψ =
T − T0
T1 − T0

,

then

A[k] = (1− ψ)((1− θ )A0,0 + θA1,0)

+ψ((1− θ )A0,1 + θA1,1)

= γ0,0A0,0 + γ0,1A0,1 + γ1,0A1,0 + γ1,1A1,1.

The same bilinear-interpolation process is applied to find
the time-varying B[k], C[k], and D[k] matrices at every
timestep:

B[k] = γ0,0B0,0 + γ0,1B0,1 + γ1,0B1,0 + γ1,1B1,1
C[k] = γ0,0C0,0 + γ0,1C0,1 + γ1,0C1,0 + γ1,1C1,1

D[k] = γ0,0D0,0 + γ0,1D0,1 + γ1,0D1,0 + γ1,1D1,1.

The SPKF uses the time-varying model of Eqs. (6) and (7)
to generate predictions of the model state, and from that the
internal electrochemical variables of the model [31].

The model-blending method requires knowledge of the
present temperature and cell SOC. In practice, the temper-
ature is known by measurement, but the SOC must be esti-
mated. The initial SOC of the cell can be estimated using a
known open-circuit-voltage (OCV) versus SOC relationship
(assuming that the cell is initially at rest). Subsequently,
the time-varying SOC estimate is produced as an output of
the SPKF, and the previous cell SOC estimate is used as input
to the bilinear interpolation process for use in computing the
present cell state estimate.

2) OUTPUT BLENDING
Model blending makes an implicit assumption that is not
true in general, and thus predictions of electrochemical vari-
ables and cell voltage using model blending are not always
accurate. This incorrect assumption is that the state vectors
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in the individual models that are being blended together
all have the same physical interpretation, and therefore the
{A,B,C,D} matrices can be blended directly to approxi-
mate the actual time-varying linearizedmodel. However, each
precomputed model is found as the output of a numerical
linear-algebra procedure as one step of the DRA known as the
‘‘Ho–Kalman’’ method, and this method does not guarantee
that all models have state vectors with a known or consistent
physical interpretation. Therefore, we no longer recommend
that model blending be used.

Instead, we propose that ‘‘output blending’’ be employed
[30]. Precomputed models produced by the DRA or other
realization algorithms like the continuous-time realiza-
tion algorithm (CRA), the hybrid realization algorithm
(HRA), or the Lagrange-interpolated realization algorithm
(LRA) [25], [30] do not guarantee physical meaning of the
state vector x[k] but they do guarantee physical meaning of
the linearized output vector y[k]. Therefore, while it is not
appropriate to blend states directly together as is effectively
done by model blending, it is appropriate to blend together
model outputs.

‘‘Output blending’’ still maintains the concept of inter-
polating the influence of four neighboring models. The
implementation is however completely different. First, model
blending works with a single time-varying model and there-
fore needs to update only one state vector x[k] at every point
in time. Output blending, however, must update the state
vector for every precomputed model at every point in time.
That is to say, it computes

xj[k + 1] = Ajxj[k]+ Bju[k],

for all 1 ≤ j ≤ N , where xj[k] is the state of model j, Aj and
Bj are the constant state-equation matrices for precomputed
model j, and N is the number of precomputed models. Updat-
ing the states of every model requires more computation
than the equivalent operation for model blending, but the
overhead can beminimized by using diagonalAjmatrices and
unit Bj matrices, as previously described. In addition, since
all models will have identical integral states, the integration
can (and should, when using SPKF) be factored out of all
models and computed separately. For example, if xj[k] for
each model is a 5 × 1 vector, then we remove the inte-
gration state, retaining only the transient states, and xj[k]
becomes a 4 × 1 vector, which we rename x ′j [k]. Similarly,
the 5 × 5 Aj matrix becomes a 4 × 4 (diagonal) matrix
renamed A′j and the 5 × 1 Bj vector becomes a 4 × 1 vector
renamed B′j:

x ′j [k + 1] = A′jx
′
j [k]+ B

′
ju[k].

The single integral state x0[k] common to all models is
updated as

x0[k + 1] = x0[k]+ u[k].

Taken altogether, this is the same as
x ′1[k + 1]

...

x ′N [k + 1]
x0[k + 1]


︸ ︷︷ ︸

x[k+1]

=


A′1 0

. . .

A′N
0 1


︸ ︷︷ ︸

A′


x ′1[k]
...

x ′N [k]
x0[k]


︸ ︷︷ ︸

x[k]

+


B′1
...

B′N
1


︸ ︷︷ ︸

B′

u[k], (8)

wherewe have redefined x[k] to include all the states of all the
precomputed models. This new x[k] has dimension (N (n −
1)+ 1)× 1.

Next, output blending uses bilinear interpolation to com-
bine the outputs of the models corresponding to the four set-
points closest to the present operating SOC and temperature.
This is illustrated in Fig. 2(right). As previously, if we define

θ =
SOC− SOC0

SOC1 − SOC0

ψ =
T − T0
T1 − T0

.

Then,

y[k] = (1− ψ)((1− θ )y0,0[k]+ θy1,0[k])

+ψ((1− θ )y0,1[k]+ θy1,1[k]) (9)

= γ0,0y0,0[k]+ γ0,1y0,1[k]+ γ1,0y1,0[k]+ γ1,1y1,1[k]

(10)

=

N∑
j=1

γjyj[k]. (11)

Note that although we must update the state vector of all
models at every time step, we are not required to compute
the output vector of any model that is not being used for the
present calculation of y[k]. That is, in the set of weighting
constants {γj} for 1 ≤ j ≤ N in Eq. (11), only the four closest
models have nonzero weights, denoted as γ0,0, γ0,1, γ1,0, and
γ1,1 in Eq. (10). This reduces the required computation.
The outputs required by Eq. (9) could be computed using

the full-sized state vectors as

yj[k] = Cjxj[k]+ Dju[k].

We can also use the integrator-removed state vectors if
we define C ′j to be the first n − 1 columns of Cj and C0
to be the final column of Cj (this column comprises the
‘‘residues’’ of the integration state and is not a function of
SOC or temperature and so is identical for all precomputed
models). Then,

yj[k] =
[
C ′j C0

] [ x ′j [k]
x0[k]

]
+ Dju[k].
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The output-blended final result is then

y[k] = C0x0[k]+
N∑
j=1

γj

(
C ′jxj[k]+ Dju[k]

)
. (12)

The summation is written for 1 ≤ j ≤ N , but since only
four values of γj are nonzero, computation is reduced by
considering only the nonzero terms in the summation.

3) OUTPUTS AND NONLINEAR CORRECTIONS
A ROM generated using the DRA is capable of computing
predictions for a very general set of outputs that might be
desired by the user, including the concentration of lithium
in the electrolyte (ce), the solid surface concentration (cs,e),
the Butler–Volmer reaction flux (j) and reaction overpotential
(η), the electric potential in the electrolyte (φe), the electric
potential in the solid (φs), and the solid–electrolyte potential
difference (φs−e). Any or all of these variables can be pre-
dicted at any desired sets of internal spatial locations along
the 1-d cross section of the cell. Furthermore, cell voltage (v)
may also be predicted.

During the derivation of the ROM, the nonlinear compo-
nents of the FOM equations are isolated and constant biases
are subtracted to produce the linear state-space model that has
been described to this point. Consequently, the linear outputs
of the state-space ROM now need to be corrected to model
the nonlinearity of the real battery cell. In [28] and [20] the
linearized variables are noted with the tilde (‘‘∼’’) symbol
so the same notation will be adopted in this paper. These
corrections need to be applied to the cell voltage vcell , con-
centration in the electrolyte ce, the solid surface concentration
cs,e, the potential of electrolyte φe and the solid-electrolyte
Potential difference φs−e. A detailed description of these
corrections can be found in [28].

III. SIGMA-POINT KALMAN FILTER
Thus far, we have introduced a reduced-order model able to
predict the internal variables of a cell in addition to its voltage.
This model is compact in terms of memory size and computa-
tional requirements, and is thus well-suited for implementa-
tion in a micro-controller. We could consider using this ROM
directly in a BMS to aid with computation of cell SOC, SOH,
available energy and power, and so forth. However, use in
a real-world application introduces some complicating fac-
tors that must be addressed before the ROM predictions are
considered accurate and meaningful. In particular, we must
recognize that the models have been designed with imperfect
assumptions, and that we must consider some features of the
overall battery system in which the cell operates.
• Every single battery cell is different:
All battery cells—even from the same brand or the same
model—are slightly different. The manufacturing pro-
cesses are never perfect and therefore inhomogeneities
related to the materials and assembly appear in the final
product. This could be considered a minor effect but if,
for example, the initial total-capacity dispersion between

cells is considered, it can be shown that meaningful
differences appear in predictions of voltage and inter-
nal electrochemical variables versus true-cell behaviors.
The model created for a specific sample cell (that used
for the parametrization of the model) will not generally
be as accurate for other very similar cells. Therefore
errors in the predictions of internal variables produced
by this model can in some cases be significant, and con-
sequently inhomogeneities cannot always be considered
negligible.

• The electrical current applied to the cell and its inter-
nal temperature cannot be perfectly measured:
The applied current and core temperature of the cell are
the inputs of the model. In a simulation scenario, this
data is entered in the model in a straightforward man-
ner. In a real-case scenario however, measurement noise
in the current sensor introduces error; the cell internal
temperature cannot be measured directly, and externally
measured temperatures also contain measurement error.

• The reduced order model is not a perfect description
of cell dynamics:
The ROM that we use is a highly accurate approxima-
tion to the FOM, but nonetheless it is an approxima-
tion. Errors are introduced by the model-order reduction
process, the discrete-time nature of the ROM, and the
fact that we generate ROMs only at specific operational
setpoints (this latter factor is mitigated by blending the
outputs of nearby models). Additionally, the FOM itself
contains intrinsic error due to assumptions made when
deriving its equations, especially homogenizing param-
eter values and dynamics over multiple scales.

All these facts render it necessary to create a solution that
reduces the amount of error in the predictions introduced by
these factors, and thus make the predictions computed by the
enhanced system valid for any cell (cells that are the same
model of a certain brand). Kalman filters are a technology
that when added to the ROMs produce a logical solution to
this problem.

Kalman filters are based on a framework named ‘‘sequen-
tial probabilistic inference’’ [33]. Using amodel of the system
being described and feedback of the real response of that
system, the filters adjust the internal states of the model to
make the predictions converge to better results. In the specific
case of a battery cell, the most evident response of the system
is the output voltage which is used as feedback. It is worth
mentioning that measurement noise in the voltage sensor
will also introduce error via the feedback mechanism of the
Kalman filter; nevertheless, this error (as well as the other
error sources itemized above) is taken into account when the
filter is developed to optimize its estimates. However, it is
not possible to make perfect state estimates because of mea-
surement noise and modelling errors. Therefore, very impor-
tantly, the Kalman filter uses probability theory to compute
confidence bounds on its estimates. This means that the filter
will give accurate estimates as well as confidence bounds,
within which the true value of the variable being estimated
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is expected to be contained. The theory behind ‘‘sequential
probabilistic inference’’ and Kalman filters requires a lengthy
explanation to derive and is out of the scope of this arti-
cle. A detailed explanation, including application to battery
state estimation using equivalent-circuit models, can be found
in [33].

Different varieties of Kalmanfilter can be found in the liter-
ature. The original linear Kalman filter, for example, is a very
well-known and commonly used approach demonstrated to
produce very good estimates when applied to linear systems
(provably optimal estimates if the assumptions made in the
derivation hold). The extended Kalman filter (EKF, the most
popular form of nonlinear Kalman filter) and the sigma-point
Kalman filter (SPKF, which includes the ‘‘unscented Kalman
filter’’ or UKF as a subcategory) are suboptimal general-
izations of the linear Kalman filter specifically designed to
be applied to nonlinear systems. A thorough study of these
filters applied to the state-space ROM utilized in this paper
(but using model blending instead of output blending) was
carried out by [31]. Results for EKF were also reported
in [32]. Themain conclusion of this work was that a nonlinear
filter is required due to the nonlinear dynamics of lithium-ion
battery cells. Both EKF and SPKF could be tuned to give
good performance. In addition to this the SPKF has several
advantages when comparing it with EKF (these differences
are itemized below, and a more detailed discussion can be
found in [33]).
• Derivatives do not need to be computed
• No need for differentiable functions
• Better covariance approximations
• Comparable computational complexity

A. SIGMA-POINT KALMAN FILTER IMPLEMENTATION
All Kalman filters are based on the ‘‘sequential probabilis-
tic inference’’ solution, and consequently share its under-
lying six-step process (two major steps, each having three
sub-steps). Every measurement interval, there are three pre-
diction sub-steps and another three sub-steps that correct
those predictions to produce a state estimate together with
its confidence bounds. In the following, the six steps are
briefly explained (more detailed information can be found
in [31], [33]).

Before explaining the six-step process, it is necessary to
define the model that will be considered in the Kalman filter.
The nonlinear state space model created in Sect. II-C1 will be
used with the following notation.

x[k] = f (x[k − 1], u[k − 1]+ w[k − 1]) (13)

vcell[k] = h(x[k], u[k])+ v[k]. (14)

Equations (13) and (14) represent the state equation and
output-measurement equation, respectively, of the model
used by the SPKF. This means that f (·) is related to Eq. (8)
and h(·) to the cell voltage vcell calculation (Sect. II-C3),
where the variables required to compute voltage are com-
puted with Eq. (12). The difference is that Eq. (13) contains

a new ‘‘process-noise’’ term w[k] and Eq. (14) contains a
new ‘‘measurement-noise’’ term v[k]. The process noise is
assumed to be white additive Gaussian measurement noise on
the current sensor, added directly to u[k]. The measurement
noise is assumed to be white additive Gaussian noise, added
directly to the true voltage.

The application of the SPKF to Eqs. (13) and (14) will now
be described. The fact that Eq. (13) is linear for the ROM we
are using results in some computational simplifications to the
implementation versus the standard SPKF method.
• Step 1a: State prediction time update.
The first step of the SPFK, every iteration, is to predict
the present value of the state using only prior informa-
tion.We define x̂−[k] = E[x[k] | vcell[0] . . . vcell[k−1]]
where we continue to consider x[k] to be the collection
of all states of all precomputed models at time k . That
is, we consider

x[k] =


x ′1[k]
...

x ′N [k]
x0[k]

 . (15)

Therefore, using Eq. (8), we conclude that

x̂−[k] = A′x̂+[k − 1]+ B′u[k − 1],

where x̂+[k − 1] is the state estimate produced by the
SPKF for the prior iteration.1

• Step 1b: State prediction-error covariance update.
The next step of the SPKF, every iteration, is to com-
pute the covariance (uncertainty) of the state prediction.
We define

6−x̃ [k] = E[(x[k]− x̂−[k])(x[k]− x̂−[k])T ],

which leads to

6−x̃ [k] = (A′)T6+x̃ [k − 1]A′ + (B′)T6w̃B
′,

where 6+x̃ [k − 1] is the covariance (uncertainty) matrix
of the state estimate produced by the SPKF for the prior
iteration, and 6w̃ is the covariance of the current-sensor
measurement noise.

• Step 1c: Output prediction.
The third sub-step of the SPKF, every iteration, is to pre-
dict the voltage measurement. Since the nonlinear equa-
tion for the cell voltage vcell calculation (Sect. II-C3)
must be used, we must turn to the sigma-point approach
to approximating the mean and uncertainty of a random
variable computed using a nonlinear equation.
The mean and error-covariance of the state prediction
are used to form a set of sigma points

X−[k]=
{
x̂−[k], x̂−[k]+ h

√
6−x̃ , x̂

−[k]−h
√
6−x̃

}
,

(16)

1Noting thatA′ is diagonal and thatB′ is a vector of units values can greatly
simplify the computational complexity of an implementation in many of the
SPKF steps.
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where h is a tuning variable for the SPKF (often chosen
as h =

√
3),
√
(·) is the lower-triangular matrix square

root of its argument (usually computed using a Cholesky
decomposition), and the somewhat nonstandard notation
of Eq. (16) indicates that the zeroth member of set X−
is the vector x̂−[k], the next member of the set is x̂−[k]
plus h times the first column of

√
6−x̃ , the next member

is x̂−[k] plus h times the second column of
√
6−x̃ , and

so forth.2

For each element X−i [k] in X−[k], we compute the
linearmodel outputs using Eq. (12). Then, we apply non-
linear corrections to produce a voltage prediction based
on that element. That is, overall we find nonlinear-output
sigma points:

Vi[k] = h(X−i [k], u[k]).

The weighted mean of these points is the voltage predic-
tion we are seeking to compute:

v̂cell[k] =
8n−6∑
i=0

α
(m)
i Vi[k],

where α(m)i are tuning variables for the SPKF when
computing this mean value.

• Step 2a: Estimator gain matrix.
We have now predicted the present state and present
measurement, and have computed the covariance of the
state-prediction error using only prior information. The
next steps update the prediction using present informa-
tion to compute the state estimate and its uncertainty.
A key feature is the computation of a time-varying
estimator gain matrix L[k].
We begin by computing the covariance of the
voltage-prediction error

6ṽ[k] =
8n−6∑
i=0

α
(c)
i

(
v̂cell[k]− Vi[k]

)
×
(
v̂cell[k]− Vi[k]

)T
+6ṽ, (17)

where α(c)i are tuning variables for the SPKF when
computing covariances. We also compute the cross
covariance between the state-prediction error and the
voltage-prediction error:

6−x̃ṽ[k]=
8n−6∑
i=0

α
(c)
i

(
x̂−[k]−X−i [k]

) (
v̂cell[k]−Vi[k]

)T
.

(18)

2As written in Eq. (16), the total number of elements inX− is 1+2(N (n−
1) + 1), where we recognize that the dimension of x̂−[k] is N (n − 1) + 1.
However, noting that only a subset of four of the N models is used when
computing outputs using output blending, we can compute a reduced version
comprising only the relevant 1+2(4(n−1)+1) = 8n−5 elements, indexed
from 0 to 8n− 6.

After these are computed, the state-estimator gainmatrix
can be found as3

L[k] = 6−x̃ṽ[k] (6ṽ[k])
−1 . (19)

• Step 2b: State estimate measurement update.
The state prediction is now updated using the measured
value of voltage to become a state estimate4

x̂+[k] = x̂−[k]+ L[k]
(
vcell[k]− v̂cell[k]

)
. (20)

• Step 2c: State estimation-error covariance.
To complete the process, the estimation-error covariance
matrix is updated so all the necessary values for the next
iteration are computed:5

6+x̃ [k] = 6
−

x̃ [k]− L[k]6ỹ[k]L
T [k]. (21)

At this point, we have updated the state estimate and its
covariance (uncertainty) matrix. In many cases, we would
also like to compute estimates of the internal electrochem-
ical variables of the cell and their uncertainties. In this
case, we add an additional major step which includes two
sub-steps.
• Step 3a: Internal-variables estimate.
The internal variables of the cell are nonlinear functions
of the state, so once again, we must use the sigma-point
method to find estimates of the internal variables and
their estimation-error covariances. To estimate the inter-
nal variables, we compute new sigma points based on
the present state estimate and uncertainty:6

X+[k] =
{
x̂+[k], x̂+[k]+h

√
6+x̃ , x̂

+[k]−h
√
6+x̃

}
.

(22)

We then define a function g(·) that converts the system
state to the particular electrochemical variable of inter-
est, which we denote as z[k]. Then, for each of the sigma
points in the set X+[k], we produce an output sigma
point

Zi[k] = g(X+[k], u[k]).

3Note that 6ṽ[k] is a scalar since voltage is a scalar. Using the definition
of x[k] in Eq. (15), 6−x̃ṽ has the dimension (N (n − 1) + 1) × 1. How-
ever, since only four precomputed models contribute to the estimate ŷ[k],
the state-estimate of only four models will ultimately be updated in Step 2b.
Therefore, we simplify computation by deleting the unnecessary components
from 6−x̃ṽ so that 6−x̃ṽ ends up having the dimension (4(n − 1) + 1) × 1 or
(4n− 3)× 1. Similarly, L[k] in Eq. (19) has condensed size (4n− 3)× 1.

4Using the condensed L[k] vector from Step 2a, we must be careful
to distribute the state-estimate updates only to the portion of the overall
state estimate x̂+[k] corresponding to four precomputed models that con-
tributed to producing ŷ[k].

5Using the condensed L[k] vector from Step 2a, we must be careful to
distribute the covariance updates only to the portion of the overall covariance
matrix 6+x̃ [k] corresponding to the states of the four precomputed models
that contributed to producing ŷ[k].

6Once again, recognizing that only a subset of four of theN models is used
when computing outputs using output blending, we can compute a reduced
version of the set of sigma points for X+[k] comprising only the relevant
1+ 2(4(n− 1)+ 1) = 8n− 5 elements, indexed from 0 to 8n− 6.
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FIGURE 3. Scheme of SPKF and ROM model implementation.

To finish this step, we compute the estimate of the
variable of interest as

ẑ+[k] =
8n−6∑
i=0

α
(m)
i Zi[k].

• Step 3b: Estimation-error covariance for internal
variables.
Finally, we compute the covariance of the internal vari-
able (useful for computing confidence intervals of the
estimate) as

6+z̃ [k] =
8n−6∑
i=0

α
(c)
i (ẑ+[k]− Z+i [k])(ẑ

+[k]− Z+i [k])
T .

At the output of this process, we have high confidence that
the true variable is in the range ẑ+[k]± 3

√
6+z̃ [k].

An overview of the process is illustrated in Fig. 3. It is
worth noting that during the design of the SPKF some
assumptions have been made. First, in the definition of the
filter, the process and sensor noises have been assumed to be
uncorrelated. This is not true since the current sensor noise is
considered to be process noise and current is an input to both
state and output equations. Second, temperature is measured
and introduced into the model as an input. Nevertheless this
value is measured but no error is considered. Even though
these assumptions are known to be imperfect, the results were
found to be in very good agreement with reality (both using
experimental and virtual data) as demonstrated in Sect. IV
and Sect. IV-D. It is possible that future research will allow
the removal of these assumptions and lead to even better
results.

B. SIGMA POINT KALMAN FILTER INITIALIZATION
The initialization of Kalman filters before beginning the main
program loop is a non-trivial and key step. The initial values
of the state estimate (x̂+[0]) and its estimation-error covari-
ance (6+x̃ [0]) have significant influence on the early estimates

produced by the filter. Furthermore, it is conceivable that a
very bad initialization might cause the filter to ‘‘become lost’’
and never converge to the neighborhood of the true state.
Additionally, values for the process-noise and sensor-noise
covariance matrices need to be specified. This topic is con-
sidered to be out of the scope of this article, and the values
used to produce the results of this study were obtained based
on an iterative trial-and-error process and on [31].

The model used to produce the results of this paper com-
prised four individual ROMs, linearized around the setpoint
(SOC: from 0% to 100% in steps of 5%; Temperature: 20◦C,
30◦C for ambient temperature operation and 0◦C,−10◦C for
cold-temperature operation). Each of these individual ROMs
had n = 5 states. All states are initialized to 0; the covariance
matrix is initialized to a diagonal matrix with a value of 10 in
every diagonal element, except for the element corresponding
to the integration state which had a value of 106. The process-
noise covariance was chosen to be 6w̃ = 0.4 and the sensor-
noise covariance was chosen to be 6ṽ = 0.1.
Note that during operation of the SPKF, only four precom-

puted models are used to predict cell voltage at any point
in time, and so only those same four models are updated
using the measured-voltage feedback in Steps 2b and 2c.
However, all models are updated in Steps 1a and 1b. Since
Step 1b has the effect of increasing the uncertainty of the
states of a model and Step 2c has the effect of decreasing the
uncertainty of states of a model, many models will have their
uncertainty increase over time without having measurements
that will then decrease their uncertainty. Since the actual cell
being monitored has a time-varying SOC and temperature,
we expect that different sets of four precomputed models will
contribute to the voltage prediction at different points in time.
Any time that this set of models changes, we will begin to
blend in the effect of a precomputed model that possibly has
a large covariance (large uncertainty of its states) since that
model has not been updated using Steps 2b and 2c for some
time. That is to say, we might expect a singularity when either
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SOC and/or temperature change, such that we blend together
a different set of four precomputed models from the set we
have been using most recently. In fact, however, we do not
experience this singularity since both SOC and temperature
change relatively slowly. When we start to blend in a new
model, the γ value associated with that model (cf. Eq. (11))
is near zero, and so the large uncertainty of the model does
not have significant impact on the voltage prediction.

IV. EXPERIMENTAL RESULTS AND VALIDATION
This section is dedicated to evaluating the voltage and
internal-variables estimatesmade by the ROMcombinedwith
the SPKF. It is important to evaluate estimation errors in order
to verify and quantify the accuracy of the overall methodol-
ogy. Ideally, this entire validation would be conducted using
a physical cell, comparing the SPKF estimates against mea-
sured values from that cell. However, it is not known how
to measure all the required internal variables of a cell in situ
during operation, and estimates of these variables is one of
the main benefits of the proposed approach. For this reason,
and since this paper presents the first application of SPKF to a
DRA-produced ROM using output blending, we first explore
the estimation accuracy by comparing estimates to ‘‘true’’
values produced by a simulation of the FOM. The estimator
uses the set of precomputed reduced-order battery models,
together with ‘‘measurements’’ of temperature and terminal
voltage as its only inputs. The method produces estimates of
cell terminal voltage, and assessing the estimation accuracy
of this variable alone can be a good indicator of the overall
method, but it is not enough to prove accurate estimates of cell
internal electrochemical variables due to the low impact that
some of them have on voltage response. Therefore, we also
compare estimates of these internal variables to the ‘‘true’’
values produced by simulation of the FOM.

However, it is also important to know whether the method
will operate on a physical cell. To this end, we also present
results of an implementation of the ROM with SPKF in a
physical cell. In this case, we cannot compare the estimate
of internal variables of the method since the true values are
not available for comparison. We are able to present results
comparing estimates of cell voltage and SOC to true values,
however.

In this section, we first describe the simulation-based vali-
dation efforts. In these scenarios, ‘‘virtual data’’ from a FOM
simulation implemented in COMSOL is used as ‘‘truth’’ to
compare with estimates made by the ROM with and without
the SPKF. This data is enough to validate the ROM itself,
since it isolates the intrinsic model errors from errors that
may have been made when parameterizing the model for a
physical cell. This approach is also a very close approxi-
mation of the ROM plus SPKF working scenario. Estimates
of the internal variables (ce, cs,e, φs−e, j), voltage, and SOC
values for the casewhere only the ROM is used open-loop and
with the corrections of the SPKF are presented and compared
to those computed using the FOM. Then, we describe the
hardware-based validation efforts on a physical cell.

A. ELECTROCHEMICAL VARIABLES EVALUATION
Once the virtual data is accessible, a method to faithfully
quantify the estimation error of the proposed method is
needed. In this document, an analysis of errors that are nor-
malized based on the variability of the FOM predictions is
adopted. This normalization allows a more consistent view
of the errors between different variables with different oper-
ating ranges, and the effect on latter steps such as capacity
fade or SOF management. Maximum and minimum values
of each internal cell variable are identified from a range of
FOM simulations, and thus a direct image of the maximum
variability of each estimate is obtained. This variability is then
used as a normalization factor, as described below.

Two types of profiles are used to evaluate the maxi-
mum variability of the battery variables: (1) constant-current
charge and discharges at different C-rates, and (2) high-
current pulses (C/5, C/4, C/3, 1C, 2C, 3C, 4C, and 5C for
the constant-current charge and discharges plus 5C discharge
and 1C charge for the current pulses as those are the current
limits of the battery) at different SOC levels (1, 0.9, 0.8, 0.7,
0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 SOC).

These profiles are selected in order to achieve the max-
imum and minimum values of the variables inside the
cell. DC limit conditions are achieved with full galvanos-
tatic charge and discharges, and maximum and minimum
polarization effects are identified with the current pulses.
In accordance with the simulations performed, the variability
measures that are used for the error evaluation are shown
in Table 1. These values are used to normalize estimation
errors to ensure that the result is more easily understood. This
normalization (error calculation) is carried out as shown in
Eq. (23).

Error (%) =
(θROM − θFOM )

Variability
× 100. (23)

B. MODEL EVALUATION WITHOUT AGING
We now evaluate the performance of the ROM predictions
first without SPKF correction and then with SPKF-corrected
estimates. In the first validation scenario, and for the sake
of simplicity, a single charge and discharge cycle is used,
without considering that the cell will age during its lifetime.
Fig. 4(a) shows results for voltage and state of charge.

As previously stated, while accurate voltage predictions are
not sufficient to prove correctness of the method, when used
together with estimates of SOC they help illustrate model per-
formance. During this charge and discharge cycle, the voltage
error is kept under ±0.1V and the SOC error under ±0.05 in
the worst case. Furthermore when using the SPKF, the SOC
estimate is always within the SPKF-computed confidence
interval, indicating a realistic state of charge estimate.

Figures 4(b)–(c) and 5(a)–(b) show the ROM (without
SPKF) predictions and the ROM (with SPKF) estimates for
ce, cs,e, φs−e and j in the negative electrode. All the ROM
(without SPKF) predictions are in good agreement with the
true data with negligible error, and the ROM (with the SPKF)
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TABLE 1. Variability of FOM electrochemical variable predictions.

FIGURE 4. Cell voltage, SOC, ce and cs,e ROM and SPKF predictions and prediction errors for a single charge
and discharge cycle.
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FIGURE 5. φs−e and j ROM and SPKF predictions and prediction errors a). Cell voltage and SOC ROM and SPKF
predictions and prediction errors during 20 cycles.

estimates are similar. More importantly, the true data remains
inside the confidence intervals produced by the SPKF.

Taking a deeper look into the results, we can see occa-
sional small peaks or jumps in the SPKF prediction error
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FIGURE 6. Cell voltage, SOC, ce and cs,e ROM and SPKF predictions and prediction errors for 40 cycles while
aging.

(this phenomena can be seen clearly in Fig. 4(b)). These
peaks are attributed to changes to the set of four precomputed
submodels used to predict voltage, as explained in Sect. III-B.
This phenomenon appears when the SOC transitions to a

different precomputed range (that is, where a submodel exists
at a closer SOC point than that which is presently being
used).When this happens one submodel is substituted and the
corresponding covariance values are not necessarily precise.
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FIGURE 7. φs−e and j ROM and SPKF predictions and prediction errors for 40 cycles while aging.

Further proof of the assumption that those peaks are produced
by the submodel changes is that no peaks are observed when
computing the ROMwithout the SPKF, implying that the per-
turbations are indeed introduced by the filtering. Despite the
peaks, the SPKF tracks the variables correctly and recovers
from those perturbations very quickly, updating the covari-
ance values rightly. It has to be taken into account that a
constant discharge profile is one of the most severe work-
ing scenarios for output blending, as the SOC of the cell
passes through all SOC ranges. The cause of the peaks could
be addressed in future investigations to improve the overall
response of the system.

These results show a very good response for both the ROM
without the SPKF and the ROM with the SPKF. Errors are
kept very low and the true values remain within the estimator
confidence bounds (and these bounds do not exceed a 20%
relative error for any variable). The remaining step is thus to
validate the behavior of the ROM with the SPKF with longer
cycles to check its evolution in time as well as to evaluate
performance when the cell ages.

FIGURE 8. Validation platform general scheme.

Figure 5(c) shows the voltage and SOC responses during
20 cycles to check the evolution of the ROM with the SPKF
over time. Both voltage and SOC errors are greater when
using the SPKF during the first one or two cycles, which
is consistent with the results of the previous single-cycle
analysis. Nevertheless, the SPKF starts to improve its esti-
mates as time advances. The voltage error of the ROM
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FIGURE 9. Experimental validation waveforms at room temperature (a) and at −10 ◦C (b).

without the SPKF increases from the first time steps onward,
while the estimates of the ROM with the SPKF maintain
a constant range of error. In the case of SOC, the error
of the ROM without the SPKF does not increase, while
the error of the ROM with SPKF decreases from the first
cycles onward. These results show the correct behavior of
the ROM with the SPKF and support the validity of the
method since the SPKF increases the accuracy of the ROM.
The tendency shown in Fig. 5(c) is maintained for the rest of
the cell internal variables, however we omit those results for
brevity.

C. MODEL EVALUATION WITH AGING
The last step in validating the ROM with and without
the SPKF in simulation is to analyze the error evolution
when the cell ages. When the battery starts to age, some
internal-parameter values change (for example, see [34]).
When using an aging model, parameters such as the
stoichiometric range of electrode utilization can be predicted
and directly corrected in the ROM. Nevertheless the volume
fractions of the electrolyte and anode (if we consider lithium
plating and solid electrolyte interphase (SEI)-layer growth as
the aging mechanisms occurring inside the cell) can not be
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TABLE 2. Aging parameters variation.

varied in the ROM without recomputing individual ROMs
from the revised parameter values for all linearization set-
points. This is because these parameter values introduced in
the model equations are fixed during the linearization pro-
cess, and as this operation is precomputed offline it cannot be
updated easily. This can be accommodated by precomputing
ROMs over a wide aging window and using an advanced kind
of SPKF [35], [36]. However, in the present study we investi-
gate how variation of the electrolyte and negative-electrode
volume fractions change the system predictions when the
precomputed ROMs used by the SPKF are not updated as the
cell ages.

Volume fractions of the solid and electrolyte in the
negative-electrode region (εnegs and εnege ) h ave been var-
ied over the course of a 40-cycle simulation of 1C charges
and discharges. Table 2 shows that the initial and final val-
ues change approximately 13% over the duration of the
simulation.

As shown in Fig. 6(a), the voltage and SOC prediction
errors using the constant (new-cell) ROM without the SPKF
tend to increase as the cell ages and the time-varying FOM
is consequently further away from the precomputed new-cell
ROM. The estimates produced by the new-cell ROMwith the
SPKF are better, since the SPKFmitigates the error and keeps
the true data inside the confidence bounds as the cell changes
over time.

The predictions for ce, cs,e, and φs−e shown in
Figs. 6(b)–(c) and 7(a), respectively, display a similar ten-
dency. The results start with the same level of error as shown
in the previous section, but the error increases over time.

Interestingly, Fig. 7(b) demonstrates that estimates of the
flux along the negative electrode are not significantly affected
as the cell ages. This gives consistency to themodel as the flux
is not expected to change dramatically as a function of volume
fractions, and is instead more of a direct image of the applied
current (which is not changed as the cycles are identical).

D. EXPERIMENTAL VALIDATION
For the experimental validation of the ROM and SPKF based
system, a physical platform was implemented. This platform
is composed of a DC-DC synchronous boost power converter,
a Texas Instruments ‘‘TMS320F28379D’’ micro-controller
(used to control the DC-DC converter, referred to as low-level
control), and a Raspberry Pi 3 Model B+ micro-controller
(used to implement the ROM and the SPKF system). The
test battery cell is a SLPB 7.5 Ah high power NMC Kokam
cell (SLPB75106100). Model parameters for the cell were
obtained from a previous research work [37].

The ROM and SPKF algorithm were implemented in the
Raspberry Pi micro-controller to verify that the algorithm can

run in an inexpensive microcontroller, as would be the case
in a BMS. The algorithm receives battery cell temperature,
voltage and current values (measured in the DC-DC converter
hardware and acquired by its control board, low-level control
in Fig. 8) and executes the algorithm for each sampling
interval (defined as 1s in this case, which we consider to be
sufficiently fast to capture the dynamics of the cell under the
applied load conditions).

The battery cell was cycled at room temperature (22 ◦C
approximately) and at−10 ◦C. The cell voltage prediction of
the ROMwith the SPKFwas compared to the real cell voltage
measurement in both cases. In Fig. 9, the voltage prediction
and the measured voltage are shown for the cycles performed
at both temperatures, as well as the SOC prediction of the
model.

Note that even when the ROM predictions differ from the
true values, the SPKF adjusts the predictions to the exper-
imental values of the cell at both temperatures. It is also
important to note that the cell parameter identification was
performed at positive reference temperatures. We believe this
is why the ROM is less precise at −10 ◦C, and as a conse-
quence, the SPKF needs more time to adjust the prediction
values to the measured data. However, it can be seen that after
just a few cycles, the SPKF compensates and reduces the error
of the prediction even at −10 ◦C.

V. CONCLUSION
This paper presents a computationally light physics-based
reduced-order model able to predict the internal variables
of a lithium-ion battery cell. The model utilizes ‘‘output
blending’’ to improve accuracy over a wide range of ambient
temperatures and operating SOC values. Furthermore, this
paper show how to incorporate this model in a sigma-point
Kalman filter, to enable the use of measurement feedback to
improve voltage and internal-variable estimates. The findings
demonstrate that the ROM without the SPKF can produce
good results, and that the ROM with the SPKF can improve
the results even when the cell ages or extreme working con-
ditions are considered and the model used by the SPKF is no
longer perfectly accurate. Overall the presented system is able
to accurately predict the behavior of a battery cell (includ-
ing internal variables along the cross-sectional dimension,
the cell voltage, and the SOC) while being sufficiently com-
putationally lightweight to implement in a practical micro-
controller. This system is therefore valid for battery-control
dedicated online applications such as advanced BMSs which
aim to control the battery based on electrochemical limits.

Finally the observed limitations of the work are set out
in this paragraph, together with the consequent future lines.
First, even if the model accuracy was found to be high overall,
deviations can be observed at low working temperatures (see
Fig. 9). This effect is attributed to poor parameter estimation
at low temperatures, a topic that is still under research in the
literature [37], and requires further investigation. Secondly,
at the system level an online oriented experimental setup
was implemented (see Fig. 8). Nevertheless, the proposed
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estimator should be validated in a commercial BMS hard-
ware, integrated in an objective application. In that scenario,
a real case evaluation of noises and computational load suit-
ability can be undertaken for the specific application under
study. Finally, the model accuracy will decay while the cell
ages, and consequently the states predictions will follow the
same tendency (even if the SPKFmitigates this effect). This is
a key topic already under discussion in the literature [3], [38],
and future investigations will potentially advance towards a
solution.
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