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ABSTRACT Differential spatial modulation (DSM) is able to transmit additional data bits without increasing
the number of radio-frequency chains and power consumption and also avoids pilot overhead. In this paper,
we propose two new schemes of DSM to improve the original DSM. One is an increased-rate scheme that
transmits one additional data bit per two blocks. The bit mapping and maximum-likelihood detection is
particularly designed. The goal of the second scheme is to increase the diversity of DSM. By properly
designing block coded modulation and complex antenna-index matrices, the proposed scheme can achieve
the desired diversity order. Compared with the existing schemes with the same constellation of the transmitted
signals, the proposed scheme achieves higher transmission rates.

INDEX TERMS Spatial modulation, block coded modulation, differential encoding.

I. INTRODUCTION

Various multi-antenna techniques have been proposed for
increasing transmission rates of wireless communications.
Among them, spatial modulation (SM) [1]-[4] which uses
a single transmit antenna each time attracts much atten-
tion. Compared with the conventional single-antenna system,
SM s able to transmit additional data bits by selecting indexes
of antennas without increasing the number of radio-frequency
chains and power consumption.

The original SM technique is coherent and thus is
not suitable for rapidly-varying channels. For such chan-
nels, differential SM (DSM) [5], [6] together with differ-
ential detection can avoid pilot overhead. In fact, DSM
is a special case of differential space-time modulation
(DSTM) [13], [14]. Original DSM and DSTM use the same
encoding and decoding process, but DSM activates a single
transmit antenna each time while DSTM does not have such
restriction. DSM with complex-valued antenna-index matri-
ces in [6] has better error performance than DSM in [5] whose
entries of antenna-index matrices are 0 and 1. However,
the complex-valued matrices are obtained through random
searches in [6], and there are unlimited possibilities of trans-
mitted signals after differential encoding. In [7], we proposed
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a systematic design of complex-valued antenna-index matri-
ces to avoid the unbounded constellation size.

In this paper, we propose two improvements to the con-
ventional DSM. One scheme is increased-rate DSM which
transmits one additional data bit per two blocks. In each
transmitted block, the number of permutating the antenna
index is not a power of two, so some permutations are not
mapped by data bits. By utilizing the unused permutations of
two blocks, one additional data bit can be transmitted. Adding
bits on modulation, e.g, from QPSK to 8PSK, decreases
the minimum Euclidean distance in the signal space, so the
error probability increases significantly. However, adding bits
in permutation does not affect the minimum Euclidean dis-
tance in the signal space, so the error probability increases
very slightly. The permutations of two blocks have to be
detected jointly, which increases the detection complexity
exponentially. Therefore, we propose a reduced-complexity
maximume-likelihood (ML) detection method instead, which
increases the detection complexity linearly. Besides, we also
consider bit mapping which affects bit error rates. In addi-
tion to conventional mapping methods, we propose a new
bit-mapping method that uses a look-up table. Both theoreti-
cal analysis and computer simulations show that this new bit
mapping outperforms the conventional one.

The other scheme is increased-diversity DSM. The DSMs
in [5] and [7] are full-rate, i.e., there is no redundancy
for increasing diversity. To increase diversity, DSM using
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repeated symbols was proposed in [6], and various coded
DSM schemes were designed in [9]-[12]. In this paper,
we propose a different method to increase the diversity of
DSM. The proposed scheme, called block coded DSM (BC-
DSM), utilizes coherent multilevel block coded modulation
(BCM) [16], [17] to encode nonzero symbols. By prop-
erly designing complex antenna-index matrices and BCM,
the desired diversity order can be achieved. Compared with
coded DSM schemes in [6] and [9]-[12] with the same sig-
nal constellation, BC-DSM has higher data rates. In other
words, to the authors’ best knowledge, BC-DSM is the most
bandwidth-efficient coded DSM scheme given a fixed MPSK
(M -ary phase-shift keying) constellation of the transmitted
signals.

The remainder of this paper is organized as follows.
In Sec. II, we first review DSM and BCM, and slightly
modify the complex-valued antenna-index matrices in [7]. In
Sec. III, we propose the increased-rate DSM scheme includ-
ing simplified ML detection and bit-mapping methods. Then
we propose BC-DSM scheme including an algorithm which
searches antenna-index matrices for a desired diversity in
Sec. I'V. Finally Sec. V concludes this paper.

Notation: ()T, I.]l and rank(.) denote the conjugate trans-
pose, the Frobenius norm and the rank of a matrix, respec-
tively. diag{.} represents the operation from a row vector to
a diagonal matrix. || denotes the floor function. CA/ (0, o?)
denotes the zero-mean, o 2-variance, complex Gaussian dis-
tribution.

Il. PRELIMINARIES

Consider a communication system with N7 transmit antennas
and Np, receive antennas. The channels between antenna pairs
are Rayleigh-fading and independent of each other. Each
block of DSM contains Ny time slots. For the rth block,
the transmitted signal is represented by an N7 x N7 matrix
S(#), and there is only one nonzero entry in each column and
row of S(). For the rth block, the Ng x Ny matrix of received
signals is

Y(r) = H(1)S(1) + N() ey

where H(7) is the Np x Nt matrix of channel coefficients
whose entries are CA/(0,1), and N(¢) is the Ngp x N7 matrix
of AWGN with CN(0, Ny) entries.

The number of permutating the antenna index is N7!, but
only L = 2U°g2 Ml permutations are used. For the rth block,
log, L bits determine an antenna-index matrix A(z) € A =
{Ao, A1, ---,Ar_1} and other data bits decide N7 symbols
X(t) = [x1(£), x2(2), - - - , xn;(1)] € X where X denotes the
set of all possible values of x(¢). At the transmitter, S(¢) is
determined by

S(t) = St — DX(2). 2)
where X(¢) is an Ny x Nr data matrix calculated by
X(r) = diag{x(1)}A(?). (3
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At the receiver, the noncoherent maximum-likelihood
(ML) detection is

X(1) = arg min |Y(r) — Y(t — DX 4
XeX’

where X’ denotes the set of all possible values of X(r).
For any two different elements in X”, denoted by X and
X', the minimum value of rank(X — X’) which represents
transmit diversity order, denoted by dr, should be maximized
first [14].

The low-complexity noncoherent ML detector proposed
in [7] is described as follows. Let pgk) represent the position
of the nonzero entry, &Pk in the kth column of A; where
ke{l,2,--- ,Nr}and! € {0, 1, --- , L—1}. At the receiver,
vl € {0,1,---,L — 1}, the determined x(¢) for A;, denoted
by (1) = [3{(1). (¢). - -+ , &) (1)1, are obtained by

Nr
(1 . ~
£, = argmin Y (1) =y, 0t = DEHP ()
! o=

and the metric of A; is

Nt Np
i) =373 i) =y, 00 = D@ 0™ (6)
k=1 i=1 !
The detected value of A(7) is A; satisfying
I=arg min  m() @)

le{0,1,--- ,L—1}

and the detected value of x(7) is
X(1) = %;(1). (3)

The signal constellation of the elements in x(¢) is M-ary
PSK where M = 2” and b is an integer. For the full-rate
DSM [5]-[7], the number of data bits mapped to x(¢) is N7b,
so the spectral efficiency is % + b bits/s/Hz. In [7], by a
systematic construction for A, the diversity between any two
different antenna-index matrices is increased. However, due
to uncoded data symbols x(#), the overall transmit diversity
of the full-rate DSM is still only one.

Consider the systematic construction proposed in [7].
In this A, there are only two types of A(¢): the nonzero
entries are all 1, or all ¢?. We have shown in [7] that if
two matrices in this .4 have only two different elements
of the permutation order, then the two matrices belong to
two different types and the transmit diversity between them

1000
. 0100
is Nr. Take Nt = 4 as an example: for A = 0010
0001
0100
, 1000 AN ;.
and A’ = 0010 , rank(A — A’) is only 1, so A’ in the
0001 .
0 0 0
e’ 0 0 0
. ;L
construction in [7] becomes A’ = 0 0 & 0 such
0 0 0 e
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that rank(A — A’) becomes 4. In [7], the optimal value of
0 is obtained by considering such A and A’ where the rank
of A — A’ is full. However, there exist two different matri-

ces belonging to the same type, and the transmit diversity

0100
between them is only two, e.g., A and A” = (1) 8 (]) 8 .To

0001
calculate the coding gain, only codeword-pairs with the least

diversity are considered. Therefore, the value of 6 is inde-
pendent of the coding gain which is based on codeword-pairs
with dr = 2 such as (A, A”). To minimize the number of
points in the signal constellation for S(¢), we choose 6 = 7
in this paper. By doing so, the signal constellation of S() is
only 2M -ary PSK.

A short description for BCM using M-ary PSK is given
as follows. For the convenience of presentation, we restrict
M to 8. Consider 8PSK whose signal points are labeled
by three bits (a, b, ¢), where a,b, and ¢ € {0, 1}. Let
(a1, b1, c1), (a2, b2, c2), -+ - , (any, bn,, cny) be a block of
transmitted 8PSK signals with length Ny. A multilevel
block-coded 8PSK C is designed in such a manner that ¢; =
(ar,az, -, any) is a codeword of a binary block code Cy,
¢p = (b1, b2, - -+ , by, ) is a codeword of a binary block code
Cpandce = (cq, c2, - -+, cny ) isacodeword of a binary block
code C.. Herein, C; represents the component code used for
coding level i, where i € {a, b, c}. The transmitted codeword
of C composed of ¢,, ¢p and ¢ is X = exp{jzﬁ”(ca + 2¢p +
4ee)}

Assume that C; is an (N7, k;, d;) binary block code, where
d; denotes the minimum Hamming distance of C; for i €
{a, b, c}. Each block consists of N7 8PSK signals and the
data rate is (k, + kp + kc)/Nr bits per 8PSK signal. The
minimum Hamming distance of C, i.e., the minimum value
of distinct symbols between two different codewords in C,
is min{d,, dp, d.}. In this letter, in order to maximize data
rates given a minimum Hamming distance, we use Gray
labeling and choose d, = d, = d., i.e., component
codes C, = Cp = C,.

Ill. INCREASED-RATE DSM

Let A ={Ag, Ay, -, Ap;1—1} denote the set of all possible
antenna-index matrices. If Np!? > 2L2 which is true for
Nr = 3, 4, 5, then the total permutations of the antenna index
in two blocks is enough to transmit 2log, L + 1 data bits.
We propose two methods to map 2log, L + 1 data bits to
A(t — 1) and A(7).

A. A SIMPLE BIT MAPPING METHOD

This bit mapping is straightforward and is similar to the bit
mapping in [8]. For the  — 1th and ¢th blocks, 2 log, L+1 data
bits form an integer m (0 < m < 2L?) first. Dividing m by Nr!
gives a quotient of ¢ with a remainder of 7. The antenna-index
matrices A(z — 1) and A(¢) are A, and A,, respectively. Let
217 —1 (the largest value of m) divided by N7! gives a quotient
of ¢’ with a remainder of r’. The set of possible values of
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(g, r), denoted by , is {(0, 0), (0, 1), (0,2),---, (0, Nr! —
D, (1,0), (1, 1), -+, (L, Np! = 1), -+, (¢, ")}

Throughout this section, Aé and A; denote the detected
values of A(r — 1) and A(¢) at the receiver, respectively. The
value of m is estimated by

=g x Nyl +7 )

and the 2log, L + 1 detected data bits are generated accord-
ingly. However, A; and A; cannot be separately determined
because there are (N7!)2 — 2L2 unused pairs of (A(r —
1), A(?)). The noncoherent ML detection is

(q,7) =arg min_m(t — 1) + my(r) (10)
(1,1eQ

where m;(t) is the metric of A; of the ¢th block defined in (6).
Note that performing (10) has to try all 2L? possible values
of (I,1')in Q.

We propose a simplified ML detection method which first
finds

my(t — 1) Y

my(t). (12)

g = ar min

1 gle{O,l,m,q’—l}
7= arg min

'e{0,1,- ,N7!—1}

and

I'=arg  min  my(r). (13)
I'e{0,1, ,r'}

and then A; and A; are determined by
(q,7)
_ (g, 1) ifm(}(t — 1) +mp(t) < mq/(t - D+ m[,(t)
. ) otherwise
(14)

The comparison of metrics in (14) is easy, so the
main complexity of the proposed detection is the mini-
mization in (11)-(13). The minimization in (13) can be
obtained during the minimization in (12), so to obtain
g, 7, and v, only ¢ + Nr! <2 Nyp! values are tested,
which is less than the complexity of performing (10).
Before compare the complexity between (10) and (14) by
examples, we first show that the proposed detection is
ML detection.

Theorem 1: The detection by (14) is equivalent to the
noncoherent ML detection by (10).

Proof: There are two cases for (g, 7) in (10): (i) g €
{0,1,---,4/—1}andr € {0, 1,--- ,Np!—1}; (i) g = ¢’ and
r €{0,1,---,r'}. For case (i), (g, ) has the lowest metric
mg(t — 1) + m;(t) in (10), so we have ¢ = gand 7 = 7
and mg(t — 1) + my(t) < my (¢t — 1) + m;(¢); while for case
(i), (¢, f’) has the lowest metric my (t — 1) + m[,(t) in (10),
so we have § = ¢ and ¥ = I’ and mg(t — 1) + mz(t) >
my (&t — 1) + mj(2). O

Example 1: For Ny = 3, the number of the permutations
of the antenna index in one block is 3! = 6, so the original
DSM has L = 4 and the spectral efficiency 2.667 bits/s/Hz
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for M = 4. In the proposed scheme, we use 5 data bits to
choose 32 antenna indexes from all 6 x 6 = 36 permutations,
so the spectral efficiency becomes 2.833 bits/s/Hz for M = 4.
Because ¢ = Sand r’ = 1 (31 = 6 x 5+ 1), the used
matrices of (A(r — 1), A(¢)) are (Ag, Ag), (Ag, A1), -,
(Ao, As), (A1, Ag), -+, (A4, As), (As,Ag), (As,Ay), and
the four unused matrix-pairs are (As, Az),(As, A3z), (As, Ag),
(As, As). The proposed ML detection needs to test 11 times
for (11) and (12), while the original ML detection is
32 times.

Example 2: For Nt = 4, the original DSM has L =
16 < 4! = 24. In the proposed scheme, we use 9 data bits
to choose 512 antenna indexes from all 24 x 24 = 576
permutations. Since 511 = 24 x 21 + 7, we have ¢ =
21 and ¥’ = 7. The proposed ML detection needs to test
45 times for (11) and (12), while the original ML detection is
512 times.

Example 3: For Ny = 5, the original DSM has L = 64 <
5! = 120. In the proposed scheme, we use 13 data bits to
choose 8192 antenna indexes from all 14400 permutations,
and we have ¢ = 68 and v’ = 31. The proposed ML
detection needs to test 188 times for (11) and (12), much less
than that for the original ML detection which is 8192 times.

In some cases, the data rate can be further increased by
adding two additional bits in three blocks, e.g., Nt = 5 since
120> > 2%0. The proposed mapping and detection can be
easily modified for such situation.

B. TABLE-BASED BIT MAPPING

For the bit mapping in Sec. IIL.A, if one block is detected
incorrectly, perhaps most data bits of two blocks are wrong.
Table 1 shows the bit mapping in Example 1 where “X”
denotes an unused matrix-pair. Consider the case of (A(t —
1), A(1)) = (A2, A3z). If A(?) is incorrectly detected and the
detected values are (Az, A;) = (A2, Ag), total data bits are
wrong.

TABLE 1. The bit mapping table for Example 1.

A(t)
Ao Ay Az Aj Ay As
Ao | 00000 | 00001 | 00010 | 00011 | 00100 | 00101
A, 00110 | 00111 | 01000 | 01001 | O1010 | O10I1
A(t—1) Ao | 01100 | 01101 | OI110 | OI111 10000 10001

Az | 10010 | 10011 10100 | 10101 | 10110 | 10111
A, | 11000 | 11001 | 11010 | T10IT | IT100 | 11101
As | 11110 | I1111 X X X X

In[18] and [19], we indicated that differential encoding can
be performed by looking up a table. Similarly, bit mapping
can be represented by a look-up table. To obtain better bit
labeling for the proposed increased-rate DSM, we propose a
new bit mapping that uses a look-up table. The procedure of
constructing this table contains two steps. First, construct an
L x 2L table which is separative bit mapping: log, L bits are
mapped to A(f — 1) and log, L + 1 bits are mapped to A(z).
Then, remove % columns of A(#) in this table to % rows of
A(t — 1). The resulting table consists of an L x 371‘ table and
an % x L table.
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Take Ny = 3 as an example. In the first step,
assume that A(t — 1) € {Ag,A1,As, A3} and A(t) €
{Ao, A1, Az, A3z, A4, As, Ag, A7}, so two bits are mapped to
A(t — 1) and three bits are mapped to A(¢). Table 2 shows the
resulting bit mapping, for which if only one block is detected
incorrectly, at most 3 data bits are wrong. Table 2 cannot be
used since A’ for Ny = 3 is {Ag, Ay, -, As} in fact. In
the second step, A4 and As are added to A(r — 1) and Ag and
A7 are removed from A(¢) in Table 2. The two columns of
Ag and A7 in A(?) are divided into two 2 x 2 blocks, which
become two rows of A4 and A5 for A(r — 1). One 2 x 2 block
is removed to the two columns of Ay and A for A(¢), and the
other 2 x 2 block is removed to the two columns of A, and A3
for A(r). Table 3 shows the resulting table. The 2 x 2 block
of A, and Az for A(r) is perfect because the most right two
bits of the same column are the same, but the 2 x 2 block of
Ao and A for A(¢) is imperfect. Note that switching the two
2 x 2 blocks has the same problem. By the same procedure,
we construct bit-mapping tables for Nr = 4 and 5, shown
in Tables 4 and 5, respectively.

To evaluate the error performance for different bit labeling,
we define a parameter denoted by n which is the average
number of different labeling bits in the same column or row.
In Table 2, the average numbers of different labeling bits in
the same column and in the same row are (1+1+2)/3 = 4/3
and (1 +1+14+2+2+4+2+43)/7 = 12/7, respectively.
Because there are totally 8 x (3) = 48 pairs for the same
column and 4 x (g) = 112 pairs for the same row, its 7
is (48 x 4/3 4+ 112 x 12/7)/160 = 1.6. Although the bit
mapping of Table 3 is not perfect, its 1 is 1.722 which is
smaller than n = 2.178 in Example 1. The values of n for two
bit-mapping methods are presented in Table 6 which indicates
that for Ny = 4 and 5, the bit mapping by a table is better than
the mapping in Sec. IIL.A.

For this bit mapping, we propose a simplified ML detection
which is similar to the simplified ML detection proposed in
Sec. IIL.A. Let

qg = i t—1 15
g=arg,  min (=1 (15)
r = arg min my(t). (16)
ref0,1,- 3k -1}

I =arg min mi(r — 1) (17)

le{L,L+1, 31}

and

I'=arg  min  my(r). (18)

I'€{0,1,- ,L—1}

and then A; and A; are determined by

@, 7)
@ P i my—1)+mpt) <my(t—1)+mj (1)

—\a,r 19
(I,I') otherwise (19)

Similarly, the minimization in (18) can be obtained dur-
ing the minimization in (16), so to obtain (15)-(18), only
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TABLE 2. The bit-mapping table in the first step for Ny = 3.

At)
Ay A, A, As Ay As Ag A
Ao | 00000 | 00001 | 00010 | 00011 | 00100 | 00101 | OO110 | OO111
A(t—1) [ Ay | 01000 | 01001 | OT0OI0 | OTOIT | OTT100 | OT101 | O1110 | OI11T
A, 10000 | 10001 10010 | 10011 10100 | 10101 10110 | 10111
As; 11000 | 11001 11010 | 11011 11100 | 11101 11110 | 11111
TABLE 3. The proposed bit-mapping table for Ny = 3. 1
0 T T ] S
original DSM —+—
A(t) Example 2 —6— -
Ao Ay A, As Ay As Table 4 N
A, | 00000 | 00001 | 00010 | 00011 | 00100 | 00101 original DSM, 8PSK —— |
A7 | 01000 | 01001 | 01010 | OIOIT | 01100 | 01101 e AN Example 2, SPSK —@—
A(t—1) [ A | 10000 | 10001 | 10010 | 10011 | 10100 | 10101 5 Table 4, 8PSK
A | 11000 | 11001 | 11010 | T1011 | 11100 | 11101 107
A, | 00110 | 00111 | 10110 | 10111 g
A5 | OIT10 | OTTIT | 11110 | TI111 &~
2
B NN ]
. &
10 T T | SR = 107
original DSM, QPSK —+—
Example 1, QPSK —&—
[N o Table 3, QPSK N
original DSM, 8PSK ——(k— | s N N0
AN NGNS Example I, 8PSK —&— 1 b NN
2 Table 3, 8PSK b
10- 1074
Q
§ 10 15 20 25 30 35
5 Eb/NO (dB)
NN
_‘2 """""""""""""""""""""""""""""""""""""""""""""" FIGURE 2. Simulation results for Ny = 4.
m
107
10— ] S =
original DSM —+—
Example 3 —&—
"""""""""""""""""""""""""""""""""""""""""""""""""" Table 5 N
4 original DSM, 8PSK ——
w_—A—mmm—m-- TR Example 2, 8PSK —@— ]
10 15 20 25 30 35 B Table 4, 8PSK
Eb/NO (dB) o 10
<
FIGURE 1. Simulation results for Ny = 3. é
<[ F N
E -3
3L <2 Np!values are tested. Similar to Theorem 1, the detec- 10
tion by (19) is equivalent to the noncoherent ML detec-
tion. The proof is similar to the proof of Theorem 1 and
thus omitted. P R N
Simulation results for Ny = 3, 4 and 5 with M = 4 and 1074
8 using complex-valued antenna matrices are shown in Fig. 1, 10 15 20 25 30 35
2 and 3, respectively. For all simulations in this paper, we use Eb/NO (dB)

Nr = 1, and the elements in A’ are in lexicographic order.
A smaller index means a lexicographically smaller permu-
tation. For all cases, the mapping in Sec. III.B outperforms
the mapping in Sec. III.A. Compared with the original DSM,
the proposed increased-rate DSM with the table mapping has
higher data rates and slightly worse error performance.

IV. THE PROPOSED BC-DSM SCHEME

In the DSM scheme using repeated symbols in [6], to obtain
transmit diversity order dr, data symbols are repeated dr
times. Consequently, only LI(}’—TTJ data symbols per block are
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FIGURE 3. Simulation results for Ny = 5.

transmitted. For example, to have dr = 2 for Ny = 4, x(¢) is
L@, x1(@), x2(1), x2(t)] where x1(z) and x2(¢) represent two
data symbols in the ¢th block [6, eq. (7)]. To increase diversity
order, unlike [6] and other coded DSM schemes in [9]-[12],
we propose to use BCM for X.

Theorem 2: To achieve transmit diversity order dr,
X should be a code with minimum Hamming distance
dmin > dT-
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TABLE 4. The proposed bit-mapping table for Ny = 4.

A(t)
Ao A, Ao Ais Asg A7 Rk Aos
A, | 000000000 | 000000001 | 000000070 000001117 | 000010000 | 000010001 | -~ | 000011000
A, [ 000100000 | 000T0000T | 000100070 000TOTTTT | 000110000 | 000TT000T 000117000
A, | 001000000 | 001000001 | 001000010 00TOOTTTT | 001010000 | 00TOT000T 00T0TT000
A(t—1) [Ags [ TT7100000 | 111100001 | 111100070 TTTT0TTIT | 111110000 | TTTTT0001 TTTTT1000
A6 | 000071001 | 000011010 | 0000TTOTT TO00TTTIT
AL> [ 000111001 | 000TTT010 | 000TTTOTT TOOTTTTIT
Aoz | OTTTTI001 | OTTTTT010 | OTTTTIONT TTTTTITIT
TABLE 5. The proposed bit-mapping table for Ny = 5.
A(t)
Ay A, Ass Agy Ags Ags
A, | 0000000000000 | 0000000000001 00000001 TTTTT | 0000001000000 | 0000001000001 0000001 100000
A, [ 0000010000000 | 0000010000001 00000TOTTTTIT | 0000011000000 | 00000TT00000T 0000011100000
A(t —1) [Ags | TTITIT0000000 | TTTTTT0000001 TTTTTT0TTTTTT | TTTTT1T000000 | TTTTTTT000001 TTTTTTTT00000
Aqs | 0000001100001 | 0000001100010 TO0000TTTTTT1
Aqs | 0000011100007 | 0000011100010 TO000TTTTTTT
Ags | OTTTTITI0000T | OTTTTTTI000T0 TITTTTTTTTITT

TABLE 6. Comparison of 5 between Examples 1-3 and Tables 3-5.

Examples 1-3 | Tables 3-5
N =3 2.178 1.722
Np =4 3.823 2.574
Nt =5 5.240 3.448

Proof: Let X = diag{x}A and X’ = diag{x'}A’ represent
two different data matrices in (3). If the minimum Hamming
distance of X is dmin < d7, there are x and x’ between which
only dpin elements are different. For X # X', there are only
two possible cases: (i) A = A’ and x #x’ (ii)) A # A,
For case (i), the different columns between X and X' is only
dmin, SO the transmit diversity is dmin < dr. Consequently,
to achieve transmit diversity dr, the minimum Hamming
distance of X" should not be less than dr. O

A. BC-DSM WITH TRANSMIT DIVERSITY ORDER 2

Let X be BCM whose component code is the (N7, N7 — 1, 2)
block code, and A be the systematic construction proposed
in [7] with § = Al,l The received symbols can be decoded
by the Viterbi algorithm. The decoding trellis diagram for
an (N7, Nr — 1, 2) block code needs only two states, so the
overall decoding trellis diagram at the receiver needs 2°
states. Fig. 4 shows the trellis diagram for Ny = M = 4
where the number, say k, denotes the QPSK symbol é ATJT
According to (5) and (6), for A;, the metric of a symbol x

Nr
corresponding to x:(,)f)(t) is Z lyir () — Vi (t — Dxelk 2,
1 .

=1
For A; wherel € {1,2, --- ,ZL}, the Viterbi decoding is done
once and get a candidate X; with the metric my(¢) in (6) where
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FIGURE 4. The trellis diagram for Ny = M = 4 where BC-DSM uses (4,3,2)
component codes.

now X;(t) = [)Acfl)(t), J?g)(t), e ,)%1(\2 ()] is the survivor path
of the trellis diagram for A;. The detection of A(¢) and x(¢) is
the same as (7) and (8).

In the proposed scheme for dr = 2, x(¢) is
' (@), x%(), - - -, xNT~1(1), xP(¢)] where x/(¢) is a data sym-
bol Vi € {1,2,---,Nr — 1} and xP(¢) is a redundant
symbol due to channel coding. Therefore, the data rate of the
proposed DSM with dr = 2 is [log, L +b x (Nr — 1)]/Nr
bits/symbol. Compared with the DSM scheme using repeated
symbols in [6], the proposed scheme is able to transmit
additional Ny — 1 — LZI—TTJ data symbols per block. For Ny = 4
and 6, the additional data bits per block are b and 2b bits,
respectively.

We compare BC-DSM with other coded DSM schemes
for the same signal constellation of the transmitted signals.
For BC-DSM, the signal constellation of the elements in
x(t) is M-ary PSK and 6 of A is §;, so the constella-
tion of the transmitted signals is 2M -ary PSK. In the DSM
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TABLE 7. Data rates of various coded DSM schemes.

DSM, repeated symbols | FE-DSM-DR | DSTBC-ISK | DSTSK-DAST | DSTSK-TAST | BC-DSM
8PSK | Npr =4 2 2.25 1.25 0.75 1.25 2.5
Nr =6 2.67 2.17 — - — 3.17
16PSK | Npr =4 2.5 2.75 1.5 1 1.5 3.25
Nr =6 3 2.67 — — — 4

scheme using repeated symbols in [6], the complex-valued
A is randomly searched do the signal constellation is very
complicated, so we also let .4 be the systematic con-
struction proposed in [7] with 6 = ;. Table 7 shows
data rates of various coded DSM schemes, including the
DSM scheme using repeated symbols, FE-DSM-DR in [9],
DSTBC-ISK in [11], DSTSK-DAST in [12], DSTSK-TAST
in [12] and BC-DSM, when the constellation of the trans-
mitted signals is 8PSK or 16PSK. The data rate of FE-
DSM-DR is log,(Mdr)/dr+|log, (N7 /dr)] /Nt bits/symbol
[9, eq. (15)]. In [10], no codes with higher rates were pro-
posed. For DSTBC-ISK, DSTSK-DAST and DSTSK-TAST,
only codes for Ny = 2 and 4 are presented in [11] and [12]. It
can be found that the data rate of BC-DSM is highest among
all code DSM schemes in all four cases. Notice that other
coded DSM schemes perhaps have higher diversity order
than BC-DSM.

Computer simulations are done for verifying the improve-
ment over the original full-rate DSM and the effect
of complex-valued antenna-index matrices. Because other
coded DSM schemes have lower data rates than the pro-
posed scheme, their error performances are not compared
with BC-DSM in simulations. Figure 5 shows simulation
results of Nt = M = 4 where “DSM, real” denotes
the full-rate DSM with real-valued antenna-index matrices
whose nonzero entries are 1, “DSM, complex” denotes the
original full-rate DSM using complex antenna-index matri-
ces in [7] with 6 = Al/l, “BC-DSM” denotes the pro-
posed DSM, and “BC-BCM, real”’ denotes BC-DSM whose
nonzero entries of antenna-index matrices all become 1. At
high SNRs, BC-DSM outperforms other three DSMs sig-
nificantly. Compared with [7] which has the same complex
antenna-index matrices, BC-DSM offers more than 10 dB
gain at bit error rate 107%, at the price of slight rate loss
0.5 bits/symbol.

Simulation results of Ny = 6 and M = 4 are
presented in Fig. 6 where the meaning of “DSM, real”
and “DSM, complex’ are the same as Fig. 5, “BC-DSM
(6,5,2) represents BC-DSM using (6,5,2) component codes,
and “BC-BCM (6,5,2), entries 1 denotes the BC-DSM
using (6,5,2) component codes whose nonzero entries of
antenna-index matrices all become 1 Still, BC-DSM has
lower BER than [6], [7], at the price of slight rate loss
0.33 bits/symbol.

B. DSM WITH TRANSMIT DIVERSITY ORDER 3
In Theorem 2, we show that X’ with dnin, > dr is a necessary
condition for DSM with transmit diversity order dr. If A is
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FIGURE 5. Simulation results of Ny = M = 4 where BC-DSM uses (4,3,2)
component codes.
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FIGURE 6. Simulation results of M =4 and Ny =6 or 7.

real, we will show that X with dn;n = dr and A with trans-
mit diversity order dr is a sufficient condition for transmit
diversity order dr.

Theorem 3: If X is a code with minimum Hamming dis-
tance dmin = dr and A is real with min;; rank(A; — Aj) =
dr, then the transmit diversity order of DSM is d7.

Proof: Let X = diag{x}A and X' = diag{x'}A’ represent
two different data matrices. There are two possible cases

VOLUME 9, 2021
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for X#X": (i) A = A’ and x#x (ii)) A # A’. For
case (i), the different columns between X and X' iS dpm;n, o the
transmit diversity is also dmin. For case (ii), we will show
rank(X — X’) > rank(A — A’), so the transmit diversity is d.

Assume that there are d different columns (rows) between
A and A’. In the d columns and rows, each column and row
of A — A’ contains one 1, one -1 and Ny — 2 zeros. Because
interchanging any two columns or rows is rank-preserving,
we can permutate columns and rows of A — A’ such that

(20)

0
0

Obviously, the first d — 1 columns are independent and the
sum of the first d columns is zero. Hence, the rank of A — A’
is d — 1. The corresponding X — X' is shown at the bottom of
the page. Because at least the first d — 1 columns in (21) are
independent, the rank of X—X' is equal to or larger thand — 1.
Whenx =x'=(11---1),X—X"in (21) becomes A —A’ in
(20), so min;; rank(X; —X;) = min;; rank(A;—A;) = dy [J

In this subsection, we aim to design DSM with d7 =
3 for Nr > 6. As indicated in the previous subsection,
the systematic construction of complex-valued antenna-index
matrices proposed in [7] has dr = 2 only. We randomly
search complex-valued antenna-index matrices like [6], but
the obtained matrices have extremely small coding gain. Note
that the antenna-index matrices in [6] were random searched
for the cases Ny < 4, so our unsatisfactory results are likely
due to too huge search space for Ny > 6.

We propose a new method to find antenna-index matri-
ces with a desired transmit diversity order dr. Unlike the
methods in [6] and [7], the proposed method uses matrices
whose entries are either 1 or 0. Starting from the original L
antenna-index matrices, A = {A{, Ay, ---, AL}, we select
matrices with transmit diversity order dr by the following
algorithm.

Step 1 Define a set ® = .4 and an integer K = L.

K
Step2Vie{l,2,---,K},compute N; = Z d; j where

J=Lj#i
4= { 1 if rank(A; — Aj) < dr
" 7| 0 otherwise :

Step 3 Findi = arg max;e(1,2,...,k} V;. If there are multiple
values, randomly choose one. If N; = 0, go to Step
5.

Step 4 Delete A; from @ and decrease the index of A;Vi €
{?—i— 1,2—{—2, ---, K} by 1. Decrease K by 1 and go
to Step 2.

Step 5 Define L’ 2llog KJ - The set A’
{A{, Ay, ---, A/} is the used set of antenna-index
matrices.

In the algorithm, N; denotes the number of matrices which
to A; has diversity smaller than dr, and removing A; in
Step 4 can delete the most unwanted pairs whose diversity
is less than dr. This algorithm is not applied to dr = Nt
since there do not exist two real matrices in A with full
diversity. We apply the algorithm to dr = 3 for Ny = 6
or 7. For Ny = 6, the obtained value of L’ is 16, and the
component code of BCM is the (6,3,3) block code; while for
Nr = 7, the obtained value of L’ is 64, and the component
code of BCM is the (7,4,3) Hamming code. Compared with
the scheme in [6], the proposed scheme is able to transmit
additional one and two data symbols per block for Ny = 6
and 7, respectively. For Ny = 6 and M = 4, the scheme in [9]
has data rate 1.167 bits/symbol, while the proposed scheme
has data rate 1.667 bits/symbol. For Ny = 7 and M = 4,
the proposed scheme has data rate 2 bits/symbol.

Simulation results of d7 = 3 with M = 4 are also shown
in Fig. 3. For Ny = 6, compared with BC-DSM with dr = 2,
BC-DSM with dr = 3 provides more than 10 dB gain at bit
error rate 1072, at the price of reduced rate. For d7 = 3, with
one more transmit antennas, i.e., increasing Ny = 6 by one,
the bit error rate of BC-DSM can be further improved and the
data rate is increased as well.

V. CONCLUSION

In this paper, we propose two new schemes of DSM. The
first scheme is able to transmit additional one bit per two
blocks. For the increased-rate DSM, we propose simplified
ML detection and two different bit labeling methods. With
the proposed bit mapping by a table, the error performance

X1 —xj O
X2 —X)
0 : 0
Xd—1 —X,_
X-X = , d-1 (1)
—X,; Xd
Xd+1 = Xy O
0 0 :
'xNT - 'xNT
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of the proposed scheme is close to that of the original
DSM. The second scheme is increased-diversity DSM called
BC-DSM. With the same antenna-index matrices, BC-BCM
using the (N7, Nr — 1, 2) block code has transmit diver-
sity order dr = 2 and thus outperforms the DSM in [7]
significantly, at the price of only one data-symbol rate-loss.
In addition, we propose an algorithm to find real-valued
antenna-index matrices with a desired transmit diversity order
dr. Compared with the coded DSM scheme in [6] and [9], the
proposed BC-DSM scheme achieves higher transmission rate
with the same diversity order.
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