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ABSTRACT Modern technologies empower water distribution systems (WDS) for better services in
the processes of water supply, storage, distribution, and recycling. They improve real-time monitoring,
automating, and managing. However, the limitations of these technologies introduce cyber-physical attacks
to the WDS. The main goals of cyber-physical attacks include disrupting normal operations and tampering
the critical data, which have negative impacts on the WDS. Therefore, it is vital to develop and implement
solutions to increase the security of the WDS by detecting and mitigating cyber-physical attacks. Since
security for WDS is relatively new, there are no surveys on this topic despite its vital importance. Therefore,
in this paper, we provide a comprehensive survey for the common cyber-physical attacks and common
detection mechanisms for the WDS. We compare the attacks and detection methods with emphasis on ideas,
methods, evaluation results, advantages, limitations, etc. We further provide a future research direction.
We realize that there are still not many research attempts in this area and we hope that this work can trigger
more research activities related to the WDS.

INDEX TERMS Cyber-physical attacks, artificial intelligence, water distribution systems, smart water,
sensors, Internet of Things.

I. INTRODUCTION
Smart cities intend to improve the life quality of people and
offer intelligent services by using smart devices. Smart cities
do not have a universal definition and many scholars define
them as digital or intelligent cities [1], [2]. An intelligent
city collects digital data and communicates via different
networks to make intelligent decisions [3]. There exist
numerous components that constitute a smart or intelligent
city. These components include technologies, citizens, build-
ings, energy systems, infrastructure, transportation systems,
medical systems, government, educational systems, water
systems, etc. [4], [5]. One of the most crucial components of a
smart city is the water system. The sustenance of the city and
the interoperability of the different components of the city is
dependent on the smart water system.

A smart water system involves the use of information and
technology to enhance the traditional water system. A smart
water system is motivated due to the rising water scarcity and
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the expensive structure to make water potable and available
to the rising population [6]. The advantages of a smart
water system over a traditional water system include accurate
measurement of water consumption, quality control of water,
monitoring and prevention of flooding, prevention of water
wastage, etc., [7]–[11].

There are many security challenges in smart cities partially
due to Internet of Things (IoT) devices to prevent water theft,
water wastage, and water poisoning [14]. Also, there is a need
to develop a secure water distribution system that controls
the quality of water and controls the main operation water
system [12]. The modern water distribution system (WDS)
depends on modern technologies to operate and monitor
water systems. These technologies have improved the service
quality and the reliability of the WDS. However, it is
susceptible to cyber-physical attacks (CPA) making them less
secure. Attacks on the WDS halt or affect normal operations
of these systems or even compromise critical data [13].

Cyber-physical systems and internet of things devices are
considering as main components to build water distribution
systems (WDS). These devices include sensors, smart meters,
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programmable logic controllers (PLCs), and supervisory
control and data acquisition (SCADA) systems. A sensor
is responsible to collect the data of smart water, whereas
smart meters measure the consumption of water. PLCs are
embedded devices connected to sensors and actuators to
exchange the data and control the process. While SCADA
is a centralized system to manage the operations, store
and analyze data [13], [15], these components increase the
efficiency of WDS, but they are prone to cyber-physical
attacks. An adversary can attack WDS and modify data to
damage the water system or disrupt the water services [13].

Cyber-physical attacks have increased in recent years.
An example attack targeted the Maroochy Water Service
Sewage in Australia in 2000 [16], [17]. The adversary hacked
the sewage pumping station by monitoring the radio network
and sending a false message to corrupt the SCADA system
and to alter the data of the sewage pumping station [16], [17].
As a result, the attack disrupted the communication for a
short period between the SCADA system and the sewage
pumping station and disables the operation of the sewage
pump. Moreover, it prevented the alarm message to send to
the SCADA system and caused the spilling out of more than
800,000 litters of raw sewage to different public areas such
as parks and hotels. The government spent days cleaning up
and cost around one million dollars to upgrade the security of
the system [16], [17].

Another recent attack targeted an Oldsmar Water Treat-
ment System, Florida in 2021 [18] and the hacker tried to
access the computer system remotely to containment the
water treatment system by changing the normal level of
sodium hydroxide.

WDS can be attacked using different types of attacks
such as passive attacks and/or active attacks. For passive
attacks, an attacker either listens to communications among
components or senses some system’s states to acquire some
knowledge. For example, an attacker maywant to know about
a given component used in the system, acquire some readings
from the sensors, or listen to communications between the
sensors and the actuators. Moreover, for active attacks,
the attacker may make some interference to the system or
components in the WDS, e.g., a) conducting Distributed
Denial of Service (DDoS) attacks, b) disconnecting a
component connected to the WDS, c) interfering with the
communication process of the WDS, d) data breaching or
e) disabling the equipment and disrupting services. Under
a DDoS attack to the availability of the WDS or commu-
nications between two components in the system, the users
may not access the services offered by the system [19].
Under a data breaching attack, an attacker can access data
without any authority so a data breach exposes confidential
and sensitive information (such as customer payment details).
A data breach in the system can cause huge financial losses,
reputation, and user loss of the organization [20]. Under
attacks of disabling the equipment and disrupting services,
an attacker can alter data pressure sensors which lead to
break the pipes and loss water or change the reading data

of a water-level sensor to shut down a water pump [13].
Some active attacks are complex and difficult to detect
especially when the attacker has gained many insights in the
system [17].

These attacks show the security flaws inside the critical
infrastructure such as water systems and there is a need
to reduce the security risks or threats in the WDS. It is
essential to investigate the threats and weaknesses, design
detection methods, and design suitable mitigation procedures
to alleviate the attacks. In recent years, there are some
detection approaches to detect the attacks and mitigate the
impacts of the attacks in WDS such as statistical detection
methods, artificial neural networkmethods, machine learning
algorithms, etc. [21]. Even though the area of security of
WDS is relatively new and there are not many papers in
this area, it is a very important area, particularly as part of
a smart city. Based on our knowledge, there is no literature
survey for this topic. Therefore, this motivates us to provide
a comprehensive survey based on the limited and available
papers. In this paper, we survey papers in detail in terms of
attacks and detection methods in the WDS. Our contributions
are highlighted as follows.
• To the best of our knowledge, this is the first paper to
provide a comprehensive survey on security in WDS.
We hope that our paper can trigger more research
activities in this area.

• We survey cyber-physical attacks and their impacts on
WDS.We provide a new classification of cyber-physical
attacks on WDS.

• We analyze the existing detection methods to reduce the
negative impacts of cyber-physical attacks on WDS.

The rest of the paper is organized as follows. Section II
introduces the basic background of the WDS and compo-
nents. We discuss different types of attacks for the WDS
in Section III. In Section IV, we discuss existing attack
detection methods for the WDS. In Section V, we present
future research directions. Finally, we conclude the paper in
Section VI.

II. WATER SYSTEM
A traditional water system uses fewer technologies and
adopts physical devices (such as pipes, valves, and pumps)
to deliver end-to-end water distribution services. SmartWater
is defined as a water system enhanced with technologies such
as sensing (via sensors and monitors), real-time communica-
tions (such as wireless networks, satellite communications,
etc.), controls, and intelligence. A smart water distribution
system is shown in Fig. 1. First, water is collected from a
water source such as rivers or the sea, and then the water
is transported to the water treatment plant for treating and
purifying water to meet water quality standards. Furthermore,
the water is stored in the water storage system and then is
transported to the WDS through pipes (transmission lines),
which are used to convey water from the WDS to the
end-users (home, industry, etc.). Finally, after the water was
used, the wastewater is transported to the water treatment
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FIGURE 1. A smart water distribution system.

plant for recycling water [22], [23]. Furthermore, a smart
water distribution system may include many smart devices
which are physical devices with intelligent cyber features.

The major components or instruments making up a smart
WDS include pipes, water tanks, smart water meters, flowme-
ters, smart pressure meters, energy consumption (pumping)
meters, smart water treatment monitors, smart water purity
sensors, physical security monitors, smart river height
sensors, dam height sensors, levee movement sensors smart
valves, smart pumps, smart contaminant sensors, smart
flood sensors, etc. We explain some of them in detail as
follows [7].

• Smart water meters: They are electrical instruments
to measure the water consumption periodically. The
water utility management collects the users’ water
consumption data from the smart water meters over
communication networks. Then, the collected data are
used for computing the cost of water consumption and
managing the bills.

• Pressure meters: They compute the pressure of the
water to sense leaking. If there is a pipe burst, flooding,
or any form of irregularities, the system stops water
transportation.

• Flood sensors: They sense the present and imminent
security level for chronological and imminent flood
disasters. They detect a pipe break and shut off the water
supply to avoid losing water.

• Smart valves: They regulate or stop water streams
depending on environmental situations. They allow
bi-directional flows of water, disallow pressure reduc-
tion to reach the water meter, and decrease over-supply.

• Smart pumps: They are electronic devices to pump
water through pipes and into (out from) tanks. They
allow bi-directional flows of water, are used to reduce
high energy usage, and can prevent a huge waste of
water.

• Smart irrigation controllers: They contain thermostats
for sprinkler systems to automatically irrigate water base
on schedules or certain conditions. They can prevent loss

of water and energy that may occur due to the abuse of
water usage.

• Smart contaminant sensors: They compute biochem-
ical status to ensure the water quality such as temper-
ature, turbidity, oxidation-reduction potential, pH, and
conductivity. They can prevent pipe deterioration, water
aging, and contaminant intrusion.

• Pipe: Pipes are used to transferring water.
• Tanks: Tanks are used to store water.

Security for the WDS becomes more important. All the
above smart devices can potentially be attacked along the
systems used to connect them. To ensure WDS security,
it is important to design better methods to detect attacks and
mitigate security risks.

III. CLASSIFICATION OF CYBER-PHYSICAL ATTACKS ON
WATER DISTRIBUTION SYSTEMS
Water is one of the highest critical resources to survive on
this life. Security is the crucial subject matter to the success
of WDS. The modern WDS depends on modern technology
such as IoT devices to perform the functions and manage
the water system. Modern technology enhances the water
service and increases the quality of WDS [24]. However,
the limitations of IoT resources reduce the security of WDS
and attract attackers to disrupt normal operations and tamper
with the critical data of the water system. For instance,
an adversary can attack physical components of the water
supply to shut down the power of the water pump which
leads to disrupt the service. Also, the attacker can alter the
chemical data of treatment the water to make people sick
or die [25].

Cyber-physical attacks can be classified into many types
based on attacks on physical devices and attacks on the
communication/networking/system components of WDS. In
this paper, we classify attacks into the following types:

• Sensor attacks: This kind of attack is related to
attacking sensors such as altering a sensor reading for
the critical data.
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TABLE 1. Cyber physical attacks on WDS.

FIGURE 2. Types of attacks in the attack model [13].

• Actuator attacks: this kind of attack is related to
attacking actuators who make wrong actions such as
making a pump more or less water to disrupt services.

• Control system attacks: This kind of attack is related
to the control system, particularly the SCADA system
which may damage whole the system.

• PLC arracks: this kind of attack is related to attacking
PLCs, such as misleading system operations.

• Communication/Networking attacks: this kind of
attack is related to attacking communication and net-
working systems so that the system can be disrupted or
damaged. Examples of communications include com-
munications among sensors, actuators, PLCs, SCADA,
and other hardware and software components.

We provide a comparison among papers that introduced
multiple cyber-physical attacks onWDS as shown in Table 1.

Cyber-physical attacks can largely impact the WDS.
However, there is a lack of existing analytical and com-
putational tools that characterize the responses of WDS to
different kinds of cyber-physical attacks and show the risks
of assaults. The authors in [13] aim to build attack models
that characterize different types of cyber-physical attacks
to identify the components of the cyber-physical system of
WDS that respond to the attacks as shown in Fig. 2 and
summarized in Table 2. Moreover, the authors in [13] build
the EpanetCPA toolbox enables the researchers to design

the attacks and customize the attributes for every type of
attack. Also, it can simulate the attack results of responding to
WDS. The authors in [13] study the characteristics of attacks
depending on duration time, e.g., the starting and ending time
for a specific attack, the number of attacks that occurred, and
the locations of the components that will be attacked. They
perform attacks in different scenarios as follows:

• In the first scenario, the attack aims to control pump
PU1 and pump PU2 at the same time and forces both
pumps to run 10 hours without any demand from Tank
T1, shown in Fig. 3, known as the C-town network.
As result, the tank overflows 35 hours because the attack
disallows PU2 to stop when the level of water of T1 is
higher than thresholds (4.5 m).

• In the second scenario, the attack targets to alter the
water level reading that was collected by PLC3 in T4.
Then, it sends the altered information of PLC3 that
controls PU6 and PU7 to give a wrong decision to
deactivate pumps 6 and 7. Therefore, the water level in
T4 is decreased by 1.11 hours.

• In the third scenario, the attack alters the data on the
T1 water level sent by PLC2 to PLC1 leading to the
overflow in T1.

• In the fourth scenario, the attack aims to hack the com-
munication link between PLC2 and SCADA system, and
then to alter the data reading of T1 water level. As result,
the SCADA system stores incorrect information.

• In the fifth scenario, the attack targets the communica-
tion link that connects SCADA and PLC5 and modifies
the thresholds that activate/deactivate PU11. As result,
PU11 is activated for 50 hours which increases the water
level of T7 and makes a wrong decision for PLC9 to
deactivate PU10.

• In the last scenario, 100 random attacks are used to
attack PLC3, T1, T2, and T3.

As a result, the C-town water network shown in Fig. 3,
is largely impacted during the periods of attacks [13].

Furthermore, the authors in [27] propose Man-in-
the-Middle attacks to attack a water treatment testbed, called
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FIGURE 3. C-town water distribution network [30].

SWaT, which contains physical devices such as sensors,
actuators, and PLCs. When the sensors collect data and
send the data over a Fieldbus communication network to
a PLC, an attacker can spoof packets through the Fieldbus
communication protocol and inject a false date to modify
the sensor reading [27]. As a result, the attack successfully
accesses the physical devices and controls the whole SWaT
testbed [27].

The authors in [26] present attacks to a water distribution
testbed (WADI) which uses to purify the water. WADI is
prone to attacks because its components such as sensors,
PLCs, and Remote Terminal Units (RTUs) are subject to
attacks.WADI also is connected with SWaT to supply filtered
water. They design two types of attacks and show that
attacks could cascade to the SWaT. The first attack alters the
sensor reading to reduce the level of water by changing the
percentage of the level water from 75% to 10% to turn on a
pump and this makes it overflow. The second attack alters the
sensor reading of a tank to shut off the tank valve. The results
show that the attacks successfully impact the WADI, cascade
the failure to SWaT, and impact the operations. However,
the authors in [26] only list two types of attacks and do not
provide a detection mechanism to detect these attacks.

An American water utility company was attacked by
hacking the passwords of the routers to access andmonitor the
pumping stations in 2016 [29]. As a result, the monthly bill
price was increased from $300 to $15,000 and later the utility
company upgraded the security to mitigate attacks [29].

The authors in [1] launched an availability attack and an
integrity attack on a water system testbed developed by an EU
project called ‘‘FACIES’’ which has a fault diagnosis module
to detect anomalies. The results show that the security of
the system is poor and unable to detect the launched attacks.
Therefore, the fault diagnosis module needs to be enhanced
with a robust detection method to increase the security of the
water system testbed.

IV. DETECTION METHOD CLASSIFICATION OF WATER
DISTRIBUTION SYSTEMS
The purpose of a WDS is to deliver better water service
to consumers. However, WDS is prone to cyber-physical
attacks which can disrupt normal operations and tamper
with the critical data of the water system. The attacks
expose the main components of the water system. For
instance, the advertisers can modify the values of water levels
in each tank or the suction pressure in each pump station to
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TABLE 2. Cyber-physical attacks in water distribution system [13].

turn ON/Off the pump water. Also, the adversary can alter
flow sensors values in the valves or pump stations to causes
physical damages. It is important to develop an anomaly
detection algorithm to identify the anomalies before they
harm the system. The development algorithm also should
identify the global anomalies from multiple sensors in a
multi-dimensional space. Note that in contrast to a global
anomaly, a local anomaly indicates a case that from a single
sensor. A detection algorithm that only recognizes local
anomalies from each sensor separately might miss the attacks
due to the potential high dimensionality of the sensor’s data.
Also, there is a probability occur a single attack that can affect
multiple sensors at the same time and mislead the operations
of the system [30]. We will survey many detection methods
first and then compare them in the following subsections.

A. DETECTION METHODS
In this subsection, we survey most of the detection methods
in the literature in detail as follows.

The major contribution of the authors in [13] is that they
propose nine types of attacks to the components of the

water distribution system such as sensors, PLC units, and
SCADA system as shown in Fig. 2. The detection method
is simple and trivial. For the limitations, the attacks model
is applied on a simple WDS that has one pump, one tank,
one valve, and a few actuators; experiments on a complex
water distribution system network are needed as well as a
well-designed detection method.

The authors in [30] develop a detection algorithm to
identify local anomalies that affect each sensor individually
and also identify the global anomalies that affect multiple
sensors at the same time. The proposed algorithm includes
three layers as shown in Fig. 4: 1) a simple statistical detection
layer to determine outliers; 2) an Artificial Neural Network
Model (ANN) layer to detect contextual anomalies based
on data from one sensor, and 3) a Principle Component
Analysis (PCA) layer to detect anomaly behaviors among
multiple sensors. We explain the detailed methods, attacks,
results, and limitations as follows.
• Layer-1: For the first layer, a simple statistical detection
method to determine outliers by calculating the upper
and lower boundaries. The upper boundary is equal
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FIGURE 4. An anomaly detecting algorithm [30].

FIGURE 5. An artificial neural network model [31].

to the sum of the mean value and the product of the
standard deviation and an upper multiplier in the data
set, while the lower boundary is equal to the subtraction
of the mean value from the product of the standard
deviation and a lower multiplier in data set. Therefore,
any value that is greater or less than the upper boundary
or lower boundary, respectively, will be classified as
outliers.

• Layer-2: For the second layer, a trained ANN model
includes multiple layers of interconnected artificial
neurons that perform nonlinear computations as shown
in Fig. 5. It has an input layer, multiple hidden
layers, and an output layer. The input layer consists
of independent neurons and each neuron is multiplied
by a connection weight to the hidden layers. Then,
the combination of bias and all weighted inputs is fed
to an activation function as shown in Fig. 6. If the result
of the summation process is greater than a threshold
of the activation function, the neuron output will be
able to be fed to the next input layer. To adjust the
relationship between the input layer and the output layer,
every neuron has a specificweight which can be adjusted
by applying a Backpropagation (BP) algorithm to update
the weight. The BP algorithm is used to compute a
gradient and to reduce errors in the predicted output
values of the training data set [33].

• Layer-3: For the third layer, the PCA method is used to
reduce the multi-dimensional sensor data and to project
it to new axes called Principle Components (PCs). Each

FIGURE 6. The mathematical of artificial neural network model [32].

PC will classify the dataset as normal for the dataset
whose maximum variance is large; otherwise, the PC
will classify it as an anomaly for the lower variance
dataset.

• Attacks: The authors also adopt the C-Town Distribution
System as shown in Fig. 3. The authors adopt two
datasets: 1) the sensor data without attacks over one year
and 2) the dataset with labeled five kinds of attacks over
6 months. As shown in Fig. 3, the first attack targets to
attack PLC5 that connects between PU10 and PU11 and
the connection between PLC9 and PLC5. The second
attack targets to attack water level data of tank1 which
affects on control operation of PU2. The third attack
targets to change the pressure value of the valve and
pumps 4 and 5. The fourth attack intends to attack
PU7 by attacking the water level data of Tank4. The fifth
attack targets to attack PU6 and PU7.

• Results: The algorithm is tested on C-Town Distribution
System as shown in Fig. 3. The proposed algorithm
can identify all the labeled attacks with no delay.
Also, it identifies three new attacks that have duration
attacks less than the original minimum expected attacks
duration in the given compromised set.

• Limitations: The limitations are summarized as follows.
First, the third layer in the algorithm that adopts PCA
could not recognize the exact component that was
compromised during the detected attack 3 because
the discovered anomalies are obtained from multiple
components at the same time. Also, the authors do
not provide a solution for this so that there is a
probability to lose a huge amount of water in case that
the physical attacks damage assets of the water system
without identifying those compromised components.
Second, the algorithm issues false alarms which put
the system under attack status for a few hours even
after there is no attack existed. Third, training the
ANN with increasing the number of hidden layers is
time-consuming.

The authors in [34] propose an algorithm to identify
malicious attacks by checking the integrity of sensors’ data
and actuators’ rules and identifying the anomalies in the
data. Then, they adopt an optimization approach to extract
low dimensionality of sensor data and separate them from
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all the SCADA data measurements. We explain the detailed
methods, attacks, results, and limitations as follows.

• Part I : An attacker can attack the water level sensors
to change the values. The first part checks the integrity
of the data system and actuators’ rules to protect the
SCADA system from compromising by attackers. The
first part includes two functions.

- - The first function is called ‘‘Actuators Rules
Verification’’ which is to check the integrity of the
actuators’ rules. For example, one of the basic rules
of actuators is to activate or deactivate a pump based
on the measurement of water level sensors. If the
water level in a water tank is less than the minimum
threshold, the pump should be activated. Otherwise,
the pump should be deactivated. If this rule is not
followed, there is an attack on the sensor data or
actuators’ rules. The algorithm also determines the
time of the attack.

- - The second function is called ‘‘Data Verification’’
which is to compare the data of all variables with the
range of the normal operation. First, the function
determines the minimum and maximum water
levels values and then checks if any level reading is
less or greater than the bounds of the minimum and
maximum water level values. Second, the function
checks the pump statue with the pump water flow
value. For instance, if the pump statue is turned
ON, the pump water flow value must not equal to
zero; otherwise, the pump water flow must equal
to zero. Third, the function also checks if the valve
statue works correctly with the flow valve. Finally,
the function checks the level of pressure to see if
it is below or above normal threshold values of
pressure.

• Part II : The second part detects anomalies and isolates
them from the actual SCADA system data set based on
an optimization algorithm. The measurement values of
the SCADA system during the period can be represented
as a matrix. The matrix includes the true values of
SCADA measurements without interrupting by noise or
attacks (L), false values of attacks (A), and noise values
(N). The total measurements data is donated by (Y) at
a specific time as Y = L+A+N. The authors assume
that L is a low-rank matrix and it is nonconvex so that it
is difficult to minimize it computationally. To convert
the matrix to a convex optimization problem and to
extract the low dimensional data from SCADA, they
run an optimization framework called CVX. CVX is
software that uses Matlab language to model the convex
optimization problem. It requires a training data set
which is Y measurements of the SCADA system. Also,
the software selects tuning parameters to minimize the
percentage of errors in calculating the convex problem to
extract the anomalies.Moreover, the authors assume that
A is a sparse matrix to determine the attacks. If A = 0,

there are no attacks on the measurements values (Y).
The A matrix should contain zero values in all the rows
and columns except one row that can have non-zero
values. Then, they determine the threshold value of A
and compare the non-zero values with the threshold.
If the non-zero values are greater than the threshold,
the attacks are presented.

• Attacks: The authors also adopt the C-Town Distribution
System as shown in Fig. 3 under eight attacks. The first
attack targets to attack the low-level water sensor in
Tank5. The second attack targets to attack a high-level
water sensor. The third attack targets to attack a water
overflow sensor in Tank1. The fourth attack tends to
attack PU10 and PU11. The fifth and sixth attacks
target actuator rules of controlling PU2, respectively.
The seventh attack targets to pressure value of PU7. The
eight attack targets actuator rules of controlling PU6 and
PU7.

• Results: The authors test the algorithm on the C-Town
Distribution System as shown in Fig. 3 under eight
attacks. The results show that the data verification algo-
rithm can detect all types of attacks except the seventh
and eighth types of attacks, while the actuator rule
algorithm identifies all labeled attacks for compromised
data set.

• Limitations: The limitations are summarizing as follows.
First, the Data Verification algorithm could not identify
all the eight labeled attacks. Second, the low dimen-
sional data still appear on the SCADA measurements
although the purpose of adopting the optimization
algorithm is to extract low dimensionality sensors’ data
completely from SCADA measurements’ data to detect
attacks. In other words, the optimization algorithm is not
very effective.

The authors in [35] propose an intrusion detection method
to detect Denial of Service attacks (DDoS) in smart cities.
DDoS attacks can disrupt the service by flooding the system
with large numbers of requests and make it inaccessible to
the users [37]. For instance, DDoS can affect the performance
of a smart water plant by sending large numbers of requests
to a data controller as shown in Fig. 7. As a result, a data
controller sends harmful control signals to the water pumps
causing the change of the pumping speed at the pumps
and the disruption of the services. A machine learning
algorithm is applied to the smart water plant dataset to
detect DDoS attacks that disrupt the services by changing
the pump speeds. The algorithm clusters DDoS attacks to
multiple attack types, build a Deep Restricted Boltzmann
Machine model (RBM) and build a Feed-Forward Neural
Network model (FFNN) to detect the attacks. We explain
the detailed methods, attacks, results, and limitations as
follows.
• Step-0: The initial step is to determine each type of
DDoS attack based on the dataset by applying a K-mean
clustering algorithm. It defines k categories of data
and identifies for each category centroid point. Then,
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FIGURE 7. DDoS attacks on smart water plant [35].

FIGURE 8. Restricted boltzmann machine model [36].

it calculates the distance between the elements and
the centroid point and assigns the elements to their
categories based on the smallest data centroid.

• Step-1 The first step is to apply the RBM model that
learns the high-level six features of smart water plant
data from sensors and smart meters. These features
include water level 1, water level 2, water flow 1, water
flow 2, pump speed 1, and pump speed 2. The RBM
model contains one input layer and multiple hidden
layers and there is no output layer as shown in Fig. 8.
Each input layer has many variables multiplied by a
specific weight which are then connected to the hidden
layers. The summation process of all products with a
bias is fed to an activation function to produce the output
that determines if the hidden state is activated or not.
Then, the reconstruction is calculated in the same way,
but in the opposite direction that starts from the hidden
layers to the input layers.

• Step-2: The second step is to build FFNN model layers
that consist of one input layer with multiple neurons, one
or more hidden layers, and one output layer as shown
Fig. 9. Each neuron in the input layer has a directed
forward connection to the neurons in the hidden layers
without any loops or cycles. The FFNNmodel is trained
to classify smart water plant data as normal data or
anomalies as DDoS attacks that change the speed of the
water pump.

FIGURE 9. Feed forward neural network model [37].

• Results: The results show that the performance of the
FFNN model algorithm without applying the RBM
model layers achieves an accuracy rate of 93% and
the FFNN model algorithm with the RBM model
including only one layer achieves a high accuracy
of 97.5%. However, the accuracy rate is dropped when
the number of RBM model layers increases to 97.1%.
Also, the FFNN model algorithm trained with the RBM
model including two layers achieves an accuracy rate of
around 97%, while the FFNN model algorithm with the
RBMmodel including three layers achieves an accuracy
around 97%.

• Limitations: The limitations are summarizing as follows.
First, the increase in the number of layers in the RBM
model hurts the performance of the system and the RBM
model becomes unable to detect the attacks. Second,
when the RBM model converts sensor data of smart
water plants to binary representation, it causes loss
of the information and reduces the reliability of the
performance. Furthermore, the authors only provide a
detection method without any recovery solutions to
recover attacks and isolate the compromised water
components.

The authors in [38] propose an algorithm to iden-
tify anomalies including three modules: control rule and
consistency module, pattern recognition module, hydraulic
and system relationships module. We explain the detailed
methods, attacks, results, and limitations as follows.
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• Control rule and consistency module: The control rule
and consistency module check the consistency of data
with specific control rules given in the data set of control
rules. Based on the control rules, PLCs control the
water system and give control commands based on the
collected data from sensors and actuators. An adversary
can tamper with the control rules and also modify the
obtained data to cause some inconsistency in the WDS
dataset.

• Pattern recognition module: The pattern recognition
module contains distinct patterns for hydraulic param-
eters. There is a pattern for every hydraulic parameter
and also there is a pattern for a combination of
multiple hydraulics parameters. These patterns are
developed based on datasets free from cyber-attacks.
Then, the authors compare these developed patterns with
the current WDS dataset to identify the anomalies. If the
WDS dataset does not follow the developed patterns,
anomalies occur.

• Hydraulic and system relationships module: The
hydraulic and system relationships’ modules are devel-
oped based on the relationships of WDS components.
For instance, the physical information of the water level
in the tank and pump station flow can be calculated
to derive the information of demand from another
component such as mass balance. The calculated values
of these components are compared with the collected
data of WDS components to detect the attacks.

• Results: The authors test the algorithm using a collected
dataset for 6 months. The algorithm shows the efficiency
of the algorithm to identify the anomalies and detect the
attacks. The total hours of operations are 4177 hours
and the anomalies are observed in 666 hours. The
algorithm detects 62 cyber-attacks and calculates the
duration time to detect each attack. The longest period
that the algorithm spends to detect the attack is
87 hours, while the shortest period to detect the attack is
2 hours.

• Limitations: The limitations are summarizing as follows.
First, the algorithm detection time needs to be enhanced
to minimize detection time. Second, comparing the
water dataset with the given patterns of modules is not
enough to detect some attacks.

The authors in [44] propose a methodology to detect
cyber-physical attacks onWDS bymolding the component of
WDS as a logic graph, e.g., a graph contains interconnection
between sensors and actuators. Then, the algorithm in [44]
computes a control function for each subgraph and compares
the computed value of the control function with the new
value of the control function. When an attacker tries to
compromise the components, the new value of the function
control graph will be different from the original value of
the control function and the attack occurs. The algorithm
also recovers the attacks by replacing the comprised value of
water components with an estimated correct value to mitigate
the impact of attacks. The method was tested on a simple

WDS and needs to extend in the future for testing on a
complex WDS.

The authors in [39] propose an ensemble methodology
to detect cyber-physical attacks by creating four modules.
The first module is responsible to check if the operations
of pumps and valves follow the right control rule based on
the observed water levels in each tank. For example, if the
water level in a tank is less than the threshold, the pump
should be turned on. The second module contains a statistical
method to monitor the sensors and actuators based on the
calculated upper and lower boundaries. If any value is above
the upper boundary or below the lower boundary, it will be
considered as outliers. The third module has an Artificial
Neural Network Model (ANN) model to train the dataset and
predicts the anomalies. The fourth module contains Principle
Component Analysis (PCA) to classify data as normal or
anomalies. The results show the ability of the method to
detect all the labeled attacks and it identifies the locations of
the compromised components for most of the labeled attacks.
However, there is a need to develop the algorithm to increase
the ability to recognize the compromised components
when attacks occur from multiple components at the same
time.

The authors in [45] propose a model-based fault detection
methodology to detect cyberattacks on WDS. First, the
authors create a dataset free from attacks by adopting
the EPANET simulator to simulate the WDS. They define
the normal errors which are expected in the WDS due to the
differences between the EPANET and the actual WDS and
then create another dataset with attacks to produce errors in
the SCADA readings [45]. The proposed algorithm in [45]
compares the normal errors and the errors produced in the
presence of attacks for SCADA readings to discover potential
cyberattacks. The results show the ability of the algorithm to
detect attacks from SCADA readings, but the reliability of
the algorithm is decreased since the sensor’s data with noise
affects the accuracy of the results.

The authors in [40] adopt Long Short Term Memory
Recurrent Neural Network (LSTM-RNN) method to train the
SWaT testbed dataset and predict the attacks. RNN is one
type of deep neural network and it feeds the output layer as
the input for the next layer. A propagation algorithm is used
to update the weight for the gradient value to increase the
ability of the algorithm to predict results. However, RNN has
a vanishing gradient problem so that the algorithm cannot
update the weight because the gradient value is very small
and this leads to a poor result. The LSTM algorithm is used
to solve the vanishing gradient problem in RNN and increases
the ability ofmodel learning. LSTM includes amemory block
that consists of an input gate, a forget gate, and an output gate
to increase the ability of the model to learn data and predict
results. The results in [40] show that the proposed method
detects the labeled attacks with high accuracy. However,
the proposed method is trained with a small sensor dataset
and it should be extended to train whole the sensor dataset in
the SWaT testbed.
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The authors in [41] adopts Autoencoder neural net-
works (AE) algorithm that includes an encoder and a decoder,
where the encoder encodes and processes the input data
to reduce dimensionality and the decoder reconstructs data
from encoded data and obtains a small reconstruction error
measured from all data. If the reconstruction error is larger
than the small reconstruction error, an anomaly occurs. The
proposed algorithm in [41] can detect all the labeled data, but
the performance is decreased when all the SCADA system is
compromised.

Most of the WDS adopt a single site Event Detection
System (SSEDS) to detect contamination based on sensor
readings. The authors in [46] develop a Multi-Site Event
Detection System (MSEDS) method to detect contamination
for all the datasets ofWDS and not only for the sensor dataset.
The proposed method simulates the quality of water-based
on six characteristics: ‘‘Chlorine, Electric Conductivity,
pH, Temperature, Total Organic Carbon, and Turbidity’’.
Then, the method calculates the errors between sensor
readings and the predicted values of the simulation model.
Moreover, the method classifies these errors into normal or
abnormal based on thresholds that determine the six water
quality characteristics. The method focuses only on water
contamination and improves the detection of contamination,
but it does not study other attacks and detection.

The authors in [47] propose a smart fuzzing method
to identify network attacks that spoof the sensor readings
and command actuators over the network. They adopt two
machine learning algorithms, LSTM and Support Vector
Regression (SVR), to train data set and classify datasets based
on thresholds of fitness functions. If the predicted value is
greater than the threshold of a fitness function, an attack
occurs. The results show that the proposed method can
identify 27 attacks, but the performance is slow. Moreover,
the method does not detect attacks other than network attacks.

The authors in [48] propose a method to detect DDoS
attacks and test on a dataset of smart water distribution
plants. The method adopts the RBM model to reduce the
dimensionality of data and uses four different algorithms
to classify data into normal and abnormal data. First, they
determine 10 types of DDoS attacks based on a k-means
clustering algorithm. Then, they apply the one-layer RBM
model to four algorithmswhich are FFNN, FNNN automated,
rain forest, and support vector machine to classify data.
Then, they apply the two-layer RBM model to the four
algorithms and repeat the same process until the RBM
model reaching to 5 layers. The results show that the FNNN
automated algorithm has the best accuracy to detect attacks.
Furthermore, the performance is the best when the RBM
model has one layer and with the increase of the number
of layers in the RBM model, the complexity is increased,
causing the decrease of the performance of detecting attacks.

The authors in [42] design some jamming attacks which
block the communication channels to disallow the communi-
cations between PLCs and the physical process. The goal of
the jamming attacks is to control or damage a SWaT testbed.

The results in [42] show that the SWaT testbed is responded
to and had negative impacts on water overflow. Furthermore,
the authors in [42] provide a simple detection method to
detect attacks by comparing the measurement values with
their properties. However, the detection method needs to be
improved as future work to enhance the security of both the
physical layer and the network layer.

A competition called BATADAL was organized in a
conference in California in 2017 to compete for attack
detection algorithms to detect cyber-physical attacks in
the WDS [21]. The authors in [21] summarize various
detection methods of seven team participants at BATADAL
and evaluate them based on metrics such as detection time
and the ability to identify the compromised components.
The first team adopts a method that extracts features based
on calculated mean and covariance and then adopts a rain
forest algorithm to classify data into normal and abnormal
data. The second team adopts district metered areas to
reduce the dimensionality of data and then adopts recurrent
neural networks to classify data and to predict the attacks.
The third team proposes a method that first checks the
integrity of rule operations, and then classifies data based
on a deep neural algorithm called convolutional variational
autoencoder. The fourth team proposes a method that first
checks the integrity of SCADA data and actuators’ rules,
and then adopts an optimization algorithm to minimize the
computation time. The fifth team proposes a model that has
three layers to detect attacks, including a layer using an
outlier detection method, a layer using an artificial neural
network algorithm to classify data, and a layer to determine
the anomalies based on principle component analysis. The
six-team proposes a method with three modules to check
control rules, integrity of data, and the relationships among
components of WDS. The seventh team proposes a model
based on EPENANT to simulate a WDS and compare the
data of the actual water system with the simulation model
to detect the attacks. The results show that all the teams
can detect cyber-physical attacks, but the seventh team won
the competition by achieving the best performance overall.
However, all the proposed algorithms are trained based on
the medium size of a WDS and the large size of WDS should
be considered in the future.

B. COMPARISONS
We compare existing detection methods as shown in Table 3.
We also provide a general comparison of detection methods
based on different selection criteria as shown in Table 4.
We compare some of them as follows.

These papers present in-depth researches on the impacts of
cyber-physical attacks on water distribution systems (WDS).
The objective of these studies is to detect cyber-physical
attacks by identifying anomalous behaviors in the WDS.
Table 1 shows the different types of cyber-physical attacks
among several papers that disrupt the services and compro-
mise the main components of WDS. The paper [13] proposes
all the cyber-physical attacks while the papers [30], [34],
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TABLE 3. Comparison of detection methods.
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TABLE 4. General comparison of detection methods.

[35], and [38] only use some of the attacks. The paper [30]
adopts only four types of attacks and the paper [34]
adopts 6 types of attacks. Moreover, both the paper [35]
and the paper [38] adopt the same types of attacks that
aim to compromise the sensors and actuators. Also, both
the paper [13] and the paper [34] adopt the same types
of attacks that aim to compromise the sensors, actuators,
PLCs, communication links between sensor and PLCs,
communication links between actuators and PLCs, and
Communication links of multiple PLCs. We observe from
Table 1 that only the paper [13] defines SCADA attacks
and attacks on communication links between PLCs, which
can disable completely the WDS. Table 1 also shows
that several papers adopt the same types of attacks that
target compromise sensors, actuators, communication links
between actuators and PLCs, and communication links of
multiple PLCs.

Table 3 compares several papers and their details. The
paper [13] focuses on building an attack model by using
a simple method without providing a detection solution.
However, the attacks model can be used in the papers [30],
[34], [35], and [38] that aim to develop anomaly detection
algorithms to detect cyber-physical attacks. Specifically, The
paper [13] creates nine classes and identifies the features
for each attack including the action, the start time, and the
end time. The paper [30] adopts 3 layers to detect attacks
by using the statistical method, the ANN model, and the
PCA method, sequentially. The paper [30] also shows that
the statistical method and the ANN model are used to detect
attacks from individual sensors while the PCAmethod detects
attacks from multiple sensors at the same time in a short
time. The paper [34] adopts Actuators Rules Verification
algorithm, Data verification, and an optimization algorithm.
The paper [34] also shows that the optimization algorithm
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minimizes the detection attack time.We observe from Table 3
that the paper [35] adopts the RBM model and the FFNN
model to detect attacks. All of the RBM model, the FFNN
model, and the ANN model are artificial neural networks.
However, the main difference between the RBM model and
the FFNN model is that the RBM model includes only one
input layer and one or more hidden layers, while the FFNN
model and ANN model include one input layer, one or more
hidden layers, and an output layer. The FFNN model is
one type of ANN model and both of them can use linear
or nonlinear transformation, but the RBM model is always
nonlinear transformation. The RBM model must convert real
data to binary data which causes loss of information, while
the FFNN model can receive binary or real data. The RBM
model adopts to learn a large number of features and it has
an energy function to reduce the energy. However, it cannot
classify the data. The FFNN model can learn features and
classify the data, but the accuracy is less than the RBMmodel.
Table 3 also shows that both the PCA method and the RBM
model are used to reduce the high dimensional data but the
RBM model is better and faster than the PCA method in the
dimensionality reduction. The paper [38] adopts a control
rule and consistency module, a pattern recognition module,
and a hydraulic and system relationships module that works
together to identify all attacks.

Table 4 shows a comparison among several papers based
on different selection criteria. The authors in [13] propose
nine types of attacks and show the importance of developing
detection algorithms. As we explained earlier, only the
paper [13] does not provide a solution to detect attacks, while
others papers develop an algorithm to detect cyber-physical
attacks. Table 4 also shows that the paper [30] first adopts
a simple statistical method that can easily calculate the
results. However, there is a probability to detect false outliers.
Then, the paper [30] also adopts the ANN model that is
appropriate to learn large numbers of features, but it can suffer
from the overfitting problem that reduces the reliability of
the model to detect attacks. The overfitting problem occurs
when the model is trained with a large number of data and
learns noise so that the accuracy of the predicted results
reduces. To avoid the overfitting problem in The paper [30],
the PCA method is adopted to reduce the number of features
to the most important features. However, there is less risk
of some information that affects the prediction results. The
paper [30] has a false alarm for a long time. The paper [34]
shows that all the actuators’ rules and data verification are
simple algorithms and cannot identifies the complex types
of attacks. The actuator rules algorithm can identify all the
eight label attacks, while the data verification algorithm
identifies six label attacks. The paper [34] targets to extract
low dimensional data sensors completely from SCADA and
to minimize the computational time data by adopting an
optimization algorithm. However, the optimization algorithm
cannot extract all the low-dimensional data sensors. The
paper [35] adopts the RBM model to increase the accuracy
to detect attacks. However, the RBMmodel must convert real

data sensors to binary data which causes losing information.
Moreover, The paper [35] adopts the FFNN model that
is suitable to learn a large number of features, but the
overfitting problem still risky for the FFNN model. Also,
the FFNN model is memoryless and forgets the learning
features after many stages in the training data. The authors
in [38] adopt three modules to detect attacks, but it has a
large time overhead. The paper [34], the paper [35], and the
paper [38] can identify all the compromised components,
while the paper [30] identifies some of the compromised
components.

In summary, integrating physical water infrastructure with
cyber systems exposes the WDS to cyber-physical attacks.
As we indicated above, there are some cyber-physical attacks
and detection algorithms available. However, many detection
algorithms are still not optimal for identifying all the attacks.
Furthermore, there are inadequate automated monitoring and
reporting that allow appropriate responses in a short time to
detect or mitigate attacks.

V. FUTURE RESEARCH DIRECTIONS
In the above sections, we observe the following conclusions.
WDS is a critical infrastructure and we cannot continue
normal life without water. However, Cyber-physical attacks
are big challenges and can cause severe impacts on the
security level of WDS. We summarize many cyber-physical
attacks and their impacts on the WDS and many detection
methods.We observe that the number of attacks is still limited
and we believe that in the future, more attacks will emerge.
Furthermore, the existing detection methods are not optimal
andmost of them could not detect all the attacks. In the future,
there are many research directions that people (including us)
can work on them.
• First, designing accurate, better detection methods is
important. Most of the current methods adopt machine
learning or artificial neural network algorithms. How-
ever, high dimensional data and ensemble training
data set have some drawbacks of these approaches.
Moreover, ensemble training data set can affect the
accuracy of the algorithms to identify the attacks
especially in the detection methods that adopt machine
learning or artificial neural networks. Enhancing the
data training process by reducing the false-negative
rate is still a big challenge. Also, hybrid methods
using the advantages of different methods deserve better
studies. Furthermore, since all the surveyed papers
cannot detect all the attacks, designing a comprehensive
detection method to detect all attacks is deserved more
studies.

• Second, we can improve the security of network and
communication to increase the reliability of exchanging
data among different components of WDS. There are
heterogeneous communication networks to exchange
data such as Home Area Network (HAN), Wide Area
Network (WAN), and wireless communication (Wi-Fi),
etc. However, the diversity of network communication
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types can cause a big challenge to the security of
WDS. There are many problems such as heterogeneous
network authentication, access control, privacy protec-
tion, key management, information storage, and security
devices that should be studied in the future. Furthermore,
Modern WDS not only exchange data over networks
but also store and process these data in central systems
such as SCADA systems. We observe that many attacks
target SCADA systems to control completely the water
system [15]. Proper cryptography tools are needed to
be deployed in proper locations in the WSD. Where
and how to deploy these tools in the WDS need careful
studies to prevent attacks.

• Third, Internet of Things (IoT) with other smart
devices empower the WDS by allowing transparency
to the processes in the water supply chain, ensuring
real-time monitoring, and automatic processing. How-
ever, theWDSbecomesmore vulnerable to attackers due
to the limitation of resources. Both security and privacy
are still major problems especially in IoT devices due to
their attributes such as the low battery, small memory,
small capability, lack of regulations, etc. The privacy
violation reduces the level of acceptance of the water
system generally. The major aim of privacy violation is
to expose sensitive information to unreliable and unde-
pendable parties after achieving the feat of getting access
to the data by hacking it through the unguided portion of
the IoT system. For example, user information on water
consumption can be exposed when a smart meter reads
the water consumption by the user several times. Also,
the SCADA system can be kept in advanced technology
like cloud and fog to process the consumption data and
store that personal information, financial information,
and produce the bill. However, security and privacy
are also still challenging and there is the probability
to expose and breach the dataset of water consumers.
Furthermore, some of the smart water devices have
their geographical location accessible. Thus, an attacker
may effortlessly get unrestricted authorization to the
device to steal the information. There isn’t a universal
security standard for IoT technologies. An appropriate
level cryptographic algorithm should be designed for the
WDS that can be suitable with the limitation of new
smart technologies such as low power, small storage,
small size, etc.

• Fourth, most of the attention has been paid to quantify
the impact of attacks on the WDS. However, a little
resilience study is achieved to build WDS with more
resilience and recover faults and attacks. Faults can
occur due to failure or faults of main components such
as sensors, PLCs, SCADA systems, etc. The failure
might trigger many issues such as pipe breaks, tank
failure, pump outage, and valve locking. The current
WDS deploys redundant software or hardware to recover
faults, but this is very costly. WDS should be designed
to be more resilient and fault-tolerant when faults

and attacks happen. Furthermore, WDS is a real-time
system and should be operating continuously even after
a fault occurs. It is important to develop fault/attack
tolerance techniques that can increase resilience, isolate
the faulty/attacked components, and recovery from fail-
ures/attacks to minimize the bad effects. Deep learning
algorithms can be adopted as fault-tolerant solutions
and more studies should be conducted to increase the
ability to determine exact locations of faults/attacks and
to provide mitigation and recovery.

• Finally, current attacks on water systems are limited and
are mostly similar among different papers. Designing
novel attacks on water systems are also needed to test
the security and robustness of the systems. Collabo-
rated attacks, multiple-factor attacks, and anti-detection
attacks can be designed on water systems as a future
research direction.

In summary, the WDS can be enhanced by prevention,
detection, mitigation, and recovery mechanisms. Both secure
software and hardware need to be considered. Cryptographic
algorithms, security network/ communication protocols,
cyber-physical system designs, device-level security (such as
IoT security), etc., should be considered. There is still very
limited research on security for WDS in the literature as
indicated in this paper. There are a lot of research topics that
can be carried out in the future.

VI. CONCLUSION
A Water Distribution System (WDS) is a critical infrastruc-
ture for providing high-quality water services by transferring
clean water to consumers and recycling the dirty water back.
It operates based on the main components, such as pipes,
tanks, sensors, PLCs, SCADA systems, etc. However, WDS
is prone to cyber-physical attacks that impact the basic
operation and disrupt the service. Therefore, it is necessary to
develop and implement solutions to increase the security of
theWDS by preventing, detecting, mitigating, and recovering
cyber-physical attacks. In this paper, we provide a com-
prehensive survey that shows the impacts of cyber-physical
attacks on the WDS and we survey the common detection
methods that mitigate the negative impacts of cyber-physical
attacks. We analyze themwith details, especially on methods,
evaluation results, and limitations. We also compare them
based on different evaluation criteria and provide future
research directions. We realize that there is a shortage in the
security research of WDS and we hope that our paper can
trigger more research to increase the security of WDS against
these attacks and threats.
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