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ABSTRACT Age is an important human attribute that needs to be determined for various purposes,
including security, health, human identification, and law enforcement. Hence, there is an increasing research
interest in automatic age estimation using biometric traits such as face and gait. In recent years, gait
analysis has received growing attention due to the pervasive nature of video surveillance. Gait signals that
measure the manner of walking can be obtained using vision and sensor-based techniques. Individual gait
patterns obtainable from videos, images, or sensors are shown unconsciously and are not easily obscured.
Additionally, gait signals can be obtained unobtrusively with cameras placed at a long distance because
gait does not require high-resolution images. However, the extraction of age-associated gait features is a
challenging task due to various gait covariates. These covariates include clothing and view changes for
vision-based gait; walking slope and footwear for sensor-based gait. This paper provides a survey of scientific
literature on age estimation using gait features. We focus on the approaches to extracting age-associated
gait features, namely, vision-based and sensor-based approaches, how they may be affected by the different
covariates, and domain-specific applications. Tomake this work useful for as wide of an audience as possible,
we also include discussions on key topics such as existing datasets, evaluation strategies, and open challenges
that should be addressed in the future.

INDEX TERMS Age estimation, age group classification, gait, gait age, gait feature extraction.

I. INTRODUCTION
Age is an important human attribute that needs to be deter-
mined for various purposes, including security, health, human
identification, and law enforcement. Given its importance,
it is not feasible to rely on human discretion for age esti-
mation [1]. Automatic age estimation involves automatically
labeling a human with a precise age or age group based on
physical attributes. The age attribute of an individual could
be classified into two categories: the apparent age inferred
from physical attributes; and the chronological age, which is
the total number of years the person has lived from birth [2].

There has been a lot of research on automatic age esti-
mation using face images [3]–[5]. Face-based age estimation
has found practical application in many domains, such as
preventing cybercrime and age verification in the gaming
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industry. For example, Innovative Technology1 (ITL) offers
age verification as a service for the online gaming market,
using face images obtained from selfies of online gamers [6].
A limitation of face-based age estimation is that its per-
formance depends on face image quality and exposure. For
example, most surveillance cameras produce low-resolution
images in which a subject’s face could be occluded. Hence,
face-based age estimation systems may be unsuitable for live
surveillance. In recent years, gait analysis has received grow-
ing attention due to the pervasive nature of video surveillance.
Individual gait is unique and is considered a behavioural
biometric trait. It comprises posture and observable periodic
patterns shown during bipedal locomotive activities such as
walking, running, and jogging. In comparison with other
biometrics, gait has many advantages. Individual gait pat-
terns obtainable from videos, images or sensors are shown
unconsciously and are not easily obscured. Additionally, gait

1https://innovative-technology.com
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FIGURE 1. Gait research trends in gait-based age estimation, gait and
aging, and gait recognition showing that research on gait-based age
estimation is still in its infancy and has not received nearly the same
research attention as gait recognition in general.

signals can be obtained unobtrusively with cameras placed at
a long distance because gait does not require high-resolution
images. For example, Watrix,2 a prominent artificial intelli-
gence company in China, developed software that recognizes
people by gait. In 2018, Chinese authorities began a trial
deployment of this software as a surveillance tool to identify
citizens from up to 50 meters away, even with their backs
turned or their faces occluded [7]. While the software’s initial
release required recording clips for analysis, Watrix later
released an update that enabled real-time person identifica-
tion [8].

The extraction of age-associated gait features is a chal-
lenging task due to various gait covariates. These covari-
ates include clothing and view changes for vision-based
gait; walking slope and footwear for sensor-based gait.
Before 2001, gait features had been extracted for human
recognition [9]–[11] and authentication [12], [13]. In 2001,
Davis [14] classified pedestrians as adults or children based
on their walking styles. Other early attempts on age estima-
tion using vision-based gait include the works of [15]–[17],
and [18] in 2005, 2010, 2014, and 2015 respectively. The
first attempt on age estimation using sensor-based gait was
made by Riaz et al. [19] in 2015. These early works and
medical research on gait and aging paved the way for more
research in gait-based age estimation. However, research on
gait-based age estimation is still in its infancy and has not
received nearly the same research attention as gait recognition
in general, as age estimation requires careful feature selection
and more data. Due to the availability of age-annotated data
and the challenges involved in gait feature extraction, only
a few early studies focused on age estimation using gait.
These studies were conducted using self-collected datasets
or relatively small datasets. In the year 2017, the largest gait
dataset for age estimation was published [20], and there was
a corresponding increase in the number of related papers.

2 http://www.watrix.ai

TABLE 1. Related reviews on learning age from gait.

The trends described above are shown in Fig. 1. Based
on a systematic search on Google Scholar,3 we compare the
numbers of research papers published in gait recognition,
medical gait, and age estimation from gait between 2010 and
2020. From the figure, it is interesting to note that the number
of studies on gait-based age estimation between 2019 and
2020 surpasses the total number of related publications before
2019. This increase in research interest is likely due to the
recent increase in the number of publicly available large
datasets and the deep learning revolution, which enables auto-
matic feature extraction from silhouette images for further
analysis.
Our Contributions: As shown in Table 1, the related

reviews on gait-based age estimation [21]–[23] have coverage
only up to 2019 and present general overviews on age and
gender estimation using gait features. We aim to fill this gap
by providing a comprehensive survey of scientific literature
on age estimation using gait features from 2001 to 2021.
We focus on the approaches to gait feature extraction, namely,
vision-based, and sensor-based approaches, how they may
be affected by the different covariates, and domain-specific
applications. This survey aims to go beyond just a summary
of the existing approaches to age estimation using gait by:

1) introducing the readers to the notions of age estimation
using gait;

2) presenting a critical analysis of age-associated gait fea-
tures and descriptors and how they have been applied
for age estimation;

3) discussing the current approaches to gait feature extrac-
tion in age estimation and how they are affected by
covariates;

4) suggesting domain-specific applications for each gait
feature extraction approach;

5) assessing publicly available gait datasets suitable for
age estimation;

6) outlining some current issues that should be addressed
in the future.

3https://scholar.google.com. Query: ‘‘gait recognition OR identification -
robot’’ and ‘‘gait age OR aging OR old’’
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FIGURE 2. The overall process of gait age prediction showing the three
main components in gait age prediction: gait sensing, gait feature
extraction, and age estimation.

For the discussions in this paper, three age groups are
defined, namely: child: (age = (0, 15) years); adult: (age =
[15, 65) years) and senior: (age ≥ 65) years.
The rest of this paper is organized as follows.

Section 2 gives a high-level overview of the processes
involved in age estimation using gait features. This overview
includes gait sensing, feature extraction, age estimation func-
tions, and factors affecting gait variability. In Section 3,
we present a review of scientific literature on gait features
as they are used for gait age prediction. We conclude the
section with a brief discussion on the suitability of features
based on the age estimation task. Section 4 discusses pub-
licly available gait datasets with age metadata and metrics
used for evaluation. Finally, before concluding in Section 6,
Section 5 highlights the current progress, potential domains
of application, open challenges, and potential research areas
in age estimation using gait.

II. OVERVIEW OF AGE ESTIMATION USING GAIT
Human gait is characterized by two key attributes – the way of
walking and posture [24]. While walking is a voluntary pro-
cess, the overall gait is regulated by the nervous system [25].
Gait changes are part of the human growth process, and it
takes some time for a child to reach gait maturity. During the
first year of birth, a child goes from being carried to walking
on all fours and then progresses to walking unsurely on two
feet. Somewhere between ages 2 and 7, a child reaches some
level of walking maturity and can walk confidently. Then,
at age 60, the gait begins a decline [26].

Automatic age estimation using gait involves labeling a
person with a precise age or age group based on extracted gait
features. Gait is a unique behavioral biometric with attributes
that can be modeled and learned to predict human age. While
the actual age of a subject is referred to as chronological
age, the age estimated based on gait is referred to as gait
age [27]. Therefore, the terms gait age and age from gait
are used interchangeably throughout this paper. As illustrated
in Fig. 2, gait age prediction involves three main components:
gait sensing, feature extraction, and age estimation. These

components are introduced in this section but discussed in
greater detail in the subsequent sections.

A. GAIT SENSING AND FEATURE EXTRACTION
Gait sensing is performed using either gait sensors or vision-
based techniques such as images or video recordings. A gait
feature is a measurement of an observed gait attribute, and a
gait signature is a vector of a subject’s gait features. Gait fea-
ture extraction is the process of obtaining the gait signature of
subjects. Depending on the method of capturing gait, existing
approaches to gait feature extraction are either vision-based
or sensor-based. A camera is also a kind of sensor, but for
simplicity, we categorize gait from cameras as vision-based
and gait from other types of sensors as sensor-based. Prepro-
cessing and post-processing steps may be applied depending
on the method of acquiring gait.

1) GAIT FROM SENSORS
In the sensor-based approaches, gait features such as accel-
eration and gait speed are extracted from wearable sensors
attached to the subject’s body. Pressure and force-based
gait features such as ground reaction force (GRF) are
extracted from floor sensors installed on walking platforms
or pressure-sensitive shoe insoles. Gait features such as stride
length and range of motion can also be extracted using sen-
sors.

2) GAIT FROM VIDEOS OR IMAGES
In the vision-based approach, gait features are extracted
from images or videos of human walking sequences using
a model-free or model-based approach. The model-based
approaches utilize a skeleton model that includes the main
body joints but ignores the general appearance of subjects.
A skeleton model is fitted to the subjects’ bodies to mea-
sure parameters based on body parts. On the other hand,
the model-free approach is based on the appearance of sub-
jects and does not require prior modeling of the human body.
It involves background subtraction and binary silhouette gen-
eration. Silhouette images are grayscale and contain only
the general outline and appearance information of subjects.
Hence, the terms ‘‘model-free’’ and ‘‘appearance-based’’ are
often used interchangeably.

B. AGE ESTIMATION
Gait age prediction is often formulated as a classifica-
tion problem or a regression problem. In the regression
approaches, age is taken as a continuous value, and the pre-
dicted age could take on any value within a specified range.
This solution is referred to as Real-Value Age Encoding
(RVE) [28]. On the other hand, the classification approaches
adopt Classification Age Encoding (CAE), where each age or
predefined age group is taken as a separate class.

Other techniques used for age estimation include rank-
ing and granular learning, which are based on classifi-
cation, regression, or a combination of both. In ranking
approaches, classification tasks are broken down into a series

100354 VOLUME 9, 2021



T. B. Aderinola et al.: Learning Age From Gait: A Survey

FIGURE 3. The factors that affect spatiotemporal gait variability shown
under three categories – internal, external, and demographic.

of classification subtasks for proper modeling of the ordinal
information in age [31], [32]. In granular learning techniques,
age estimation is performed from coarse-to-fine age groups.
More specifically, age group classification is performed and
repeated for each classified age group [33]. Granular learn-
ing takes advantage of age group-dependent features and
improves age estimation performance [34].
Evaluation: In classification tasks, age groups are pre-

dicted for each subject in a testing set. Performance is
evaluated by measuring the prediction accuracy, that is,
the proportion of correctly predicted age groups to the total
number of subjects in the testing set. In regression tasks,
the performance is evaluated by measuring the deviation of
a subject’s predicted age from the subject’s actual age. This
deviation is measured as the prediction error (in years). The
prediction error across several subjects is measured as the
Mean Absolute Error (MAE) or Mean Squared Error (MSE).
Lower values of MAE and MSE are preferred. We discuss
evaluation metrics in greater detail in Section 4.

C. SPATIOTEMPORAL GAIT VARIABILITY
While individual gait is unique, it is influenced by various
factors that lead to spatiotemporal gait variations even in the
same individuals. These factors are collectively known as
gait covariates. They include emotion, walking speed, and
viewpoint. The approaches to gait feature extraction for age
estimation are affected in different ways by gait covariates.
For example, in an experiment conducted by [25], children
and adults were allowed to go on free walks with sensors
to note each time their heels touched the ground. The time
between consecutive heel strikes was measured as the inter-
stride interval (ISI). There were variations in ISI for both
children and adults, but the ISI of the children showed more
variation. In general, spatiotemporal variations reduce as gait
matures [35].

Gait covariates are not part of gait and may or may not be
observable. Although their effect on gait is often transient,
they have considerable effects on the extracted gait features.
Hence, gait feature extraction is perhaps the most important
and challenging process in gait age prediction.Wefirst briefly

TABLE 2. Effect of covariates on age-associated gait features.

discuss the types of covariates and how they can influence gait
age prediction.We discuss factors that affect the spatiotempo-
ral variation of gait under three categories – internal, external,
and demographic (Fig. 3). The internal factors includemuscle
strength, nervous system function, and the general state of
health of the individual. External factors include viewpoint,
carried objects (COs), worn objects (WOs), multi-tasking,
path angle of elevation, and walking speed. The demographic
factors include age, gender, and race. Since this paper focuses
on gait age prediction, we take age as the main variable
and consider other factors as covariates. We summarize the
effects of these categories of covariates of age-associated gait
features in Table 2.

1) INTERNAL FACTORS
Health is a significant influencer of gait. Gait affected by dis-
ease or disability is known as pathological gait. For example,
the effects of degenerative diseases such as Parkinson’s dis-
ease on gait have been well studied [37]. This paper focuses
on healthy gait because the existing datasets used for research
on gait age prediction only include gait features acquired from
healthy individuals.

The other internal factors that affect spatiotemporal
gait variability include strength and emotion. These often
affect the model-based features such as walking speed and
sensor-based gait features such as range of motion. Adults
are physically stronger than children and have a more bal-
anced and symmetrical walking motion [38]. Studies have
shown that compared to adults, seniors have a slower walking
speed, shorter step length, and reduced range of motion in the
ankle joints [39]. The decline in gait speed in seniors can be
attributed to a decrease in stride length [40], which could, in
turn, be attributed to a decrease in muscle strength with age
[41]. In a recent study, Roether et al. [42] demonstrated that
emotions influence gait by identifying anger, sadness, fear,
and happiness from gait features.

While medical and physiological studies can measure the
impact of internal factors on gait, research in pattern recogni-
tion focuses on external and observable factors and estimate
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FIGURE 4. Hierarchical view of age-associated gait features.

demographic factors from gait patterns. Therefore, an exhaus-
tive review of internal factors that affect gait variability is
beyond the scope of this paper.

2) DEMOGRAPHIC FACTORS
There are variations in gait for individuals of different genders
but of the same age or age group, affecting gait features.
Studies [43], [44] have shown gender-based differences in
stride length, gait speed, cadence, and range ofmotion (ROM)
of the hip and ankle. According to Callisaya et al. [45], the
relationship between gait and age varies depending on gender.
For males, the relationship between gait and age is simple
and linear. However, for females, the relationship between
gait and age involves more variables and is more complex.
For example, worn objects and carried objects differ widely
among males and females in most cultures. Men tend to
dress more plainly and carry backpacks, which requires them
to lean forward to counterbalance the added weight [46].
On the other hand, females traditionally carry handbags,
which reduce their arm swings. Additionally, females often
wear high-heeled shoes, which require more adaptability to
maintain a balanced gait.

It is possible to improve the accuracy of age estimation
by incorporating gender information. However, this approach
requires either knowing the gender of all subjects in advance
or gender prediction as a separate task [47]. Lu and Tan [16]
partially mitigated this challenge by assuming that the gen-
der information for randomly selected training samples was
missing. Hence, the labels used were 0 for male, 1 for female,
and 0.5 for missing values.

3) EXTERNAL FACTORS
The performance of gait as a biometric is affected by
covariates such as view angles, carried objects, and dress-

ing. According to Connie et al. [48], the most significant
gait covariate is the view angle. The method presented by
Khamsemanan et al. [49] was an attempt to perform gait
recognition across different views. To facilitate research on
multi-view gait analysis, [50], [51] recently released two
large multi-view datasets with 14 viewpoints for each subject.
Leveraging on recent advances in pose estimation, [52], [53]
proposed gait recognition methods that use body joint coor-
dinates as features or inputs into Graph Convolutional Neu-
ral Networks [54]. Varying walking speeds also presents a
challenge in the measurement of spatiotemporal gait fea-
tures. When a subject alters walking speed, static features
relating to body size are not affected, but dynamic fea-
tures such as stride length and ROM are. This covariate can
be addressed by normalizing with walking speed or apply-
ing transforms such as wavelet transform on gait sequence
data [55].

III. LEARNING AGE FROM GAIT FEATURES
This section presents a review of techniques for gait age pre-
diction following the hierarchical structure of age-associated
gait features shown in Fig. 4.

A. GAIT FEATURES FROM VIDEOS AND IMAGES
In most approaches to gait age prediction, gait features
are extracted from videos or images containing walking
sequences of subjects using computer vision approaches.
The vision-based features are either model-based or model-
free. While the model-based features are obtained by mea-
suring body parameters from skeleton models fitted to the
subjects in the video or image, the model-free features are
extracted from silhouette images obtained after background
subtraction.
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FIGURE 5. Gait Cycle Phases. Reprinted from [56], with permission from
IEEE. 
 2018, IEEE.

TABLE 3. Definition of common age-associated gait features.

1) GAIT AGE FROM MODEL-BASED FEATURES
Model-based gait features could be broadly categorized as
biological or kinematic. Biological features are based on the
subject’s shape and size, such as limb lengths, body height,
head height, and derived features such as head-to-body ratio.
These could also be referred to as static features, as they
remain constant throughout a subject’s gait cycle. On the
other hand, kinematic features such as stride length and step
length are dynamic and vary during locomotion. They mea-
sure the distances covered while waking and the amount of
time taken for different gait cycle phases (Fig. 5). We define
some gait features in Table 3 and compare children, adults,
and seniors based on gait features in Table 4.

a: BIOLOGICAL FEATURES
According to studies [38], [57], certain body ratios provide
age information. One of these is the head-to-body ratio, which
is larger in children. Using the head-to-body ratio as a feature,
Ince et al. [17] performed age classification of pedestrians as
child or adult. Additionally, children have shorter limbs, and
their upper limbs appear closer to the ground. Children also
tend to walk with their eyes focused on the ground, giving
them a forward-tilted posture. Biological features are often

TABLE 4. Age group discriminative model-based gait features.

sufficient to classify subjects as children or adults but may not
be discriminative enough for more fine-grained classification
or age regression. For example, subjects within the age range
30 - 60 years would all be classified as adults based on
their head-to-body ratios. More fine-grained classification or
regression can be achieved using kinematic features or hybrid
features that combine biological and kinematic features.

b: KINEMATIC FEATURES
A study by Sutherland [58] revealed that children between
12–18 months of age have reciprocal arm swings and
heel-strikes, suggesting a difference in the wrist and ankle
movement of children and adults. Due to their relative short-
ness of limbs, children have smaller arm swings and stride
length, while they have higher cadence than adults and
seniors [38]. Davis [14] made the earliest attempt on age
classification with only 15 participants. A point model of
the human body was used to perform a spatiotemporal anal-
ysis of head and ankle movements. A correct classification
rate of 95% was achieved in classifying subjects as children
(3–5 years) or adults.

Using features based on minimum foot clearance obtained
from 58 subjects walking on treadmills, Begg et al. [15]
performed age classification using Support Vector Machines.
Zhang et al. [41] proposed an age classification technique
using Hidden Markov Models. Contour features extracted
from silhouette images were sufficient to model the subject’s
shape variations while walking and classify the subjects as
either young or elderly. Frame to Exemplar Distance (FED)
was applied for dimensionality reduction of extracted contour
features.

In a Baltimore Longitudinal Study of Aging [34], there
were 190 participants with ages ranging from 32 to 93 years.
These were divided into middle-aged (32 – 57 years), old
(58 – 78 years), and oldest (79 – 93 years). At preferred
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FIGURE 6. Illustration of model-based body gait showing body joints and
angles, the center of mass (COM), and center of pressure (COP). Reprinted
and modified from [64], 
 2021, with permission from Springer.

walking speed, the range of motion (ROM) of the ankle (θ5
in Fig. 6) was lower for the middle-aged, while hip ROM (θ3
in Fig. 6) was lowest for the oldest group. Within the middle-
aged group, stride width reduced with age, while stride width
increased with age within the old. These findings suggest
that age-associated gait changes are age group-dependent.
Hence, age estimation performance can be improved
by granular learning–considering successively smaller age
groups and learning the age-associated differences within
each.

Wu et al. [60] studied the kinematic characteristics of
subjects from the middle-aged, elder, and the young with
mean ages 52.1 years, 74.8 years, and 23.3 years, respec-
tively. Spatiotemporal parameters including gait speed, stride
length, and step length were measured. The range of motion
(ROM) of the angle formed by the center of pressure (COP)
and center of motion (COM) was also measured. The most
significant differences in spatiotemporal parameters were
between the middle-aged and young subjects. A more recent
study [65] discovered differences in the cadence and stride
length of healthy adults and seniors. At the same walking
speed, adults were reported to have higher cadence, longer
stride length, and higher minimum toe clearance (MTC) than
seniors. Seniors spent more time in the double-support stance
phase and less time in the swing phase than adults. Adults
showed greater flexion for both knee and ankle angles, with a
lower ROM at the hip. Seniors also have a bent posture, wider
bodies, and greater arm swings [38]. Yang and Wang [29]
proposed a descriptor based on the lower limb joint angles.
The joint angles were extracted as time-series signals during
subjects’ walks. The periodic signals obtained were expanded
as Fourier series to solve the problem of missing data caused
by occlusion. The harmonic coefficients of the resulting
signal were then obtained by using the genetic algorithm.

FIGURE 7. Silhouette images with GEI as the rightmost image of each
row. Reprinted from [66], with permission from IEEE. 
 2006, IEEE.

The moduli of the coefficients obtained were used as feature
vectors in age classification.

c: HYBRID FEATURES
While biological and kinematic features contain age-
associated information, higher accuracies are often attain-
able by a fusion of biological and kinematic features. Some
features can also be derived from both biological and kine-
matic features. An example is the step factor, which keeps
increasing until the age of 4 years, after which it remains
constant [38]. Hediyeh et al. [61] explored step frequency
and step length obtained automatically in uncontrolled envi-
ronments for age and gender classification, achieving an
accuracy of 86% for age classification. In a study to com-
pare the performance of face, gait, and speech features,
Punyani et al. [21] combined gait speed, head-to-body ratio,
and gait height to perform age estimation.

Chuen et al. [16] extracted features including stride length,
stride frequency, head length, body length, head-to-body
ratio, leg length, and stature. The body parts and joint posi-
tions were identified and labeled from the silhouette images
of subjects, and features were extracted. The extracted fea-
tures were used in classifying subjects as either adults or
children. Using skeleton models obtained from an RGB-D
sensor, Yoo and Kwon [62] performed age and gender classi-
fication. They extracted features such as shoulder width, hip
width, spine length, leg length, step width, and joint angles
and achieved an accuracy of 85.58% for age classification.

Hema and Pitta [63] proposed gait energy image projection
models (GPM), which combines the longitudinal and trans-
verse projections of the gait image. The transverse projection
captures variations in image height, while the longitudinal
projection captures variations in image width across the gait
cycle. This descriptor mainly focuses on the subject’s head
and arm movements, body size, and stride length.

Aderinola et al. [64] attempted age group classification
usingwalking sequences of 154 subjects obtained from public
domain videos repositories such as YouTube.4 First, they per-
formed pose estimation using a state-of-the-art pose estima-
tion framework [67]. Then, they extracted the head-to-body
ratio, lower limb length, step length, upper-limb-to-ground
distance, cadence, and gait speed from body joint pixel
coordinates. They achieved 96% accuracy in classifying

4https://www.youtube.com
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TABLE 5. Summary of model-based age estimation techniques.

the subjects as children, adults, or seniors. A summary of
model-based age estimation techniques is shown in Table 5.

2) GAIT AGE FROM MODEL-FREE FEATURES
Model-free gait features are also referred to as appearance-
based features since they are based on subjects’ general
shape and appearance in images or videos.Model-free feature
extraction involves two main processes, namely, background
subtraction and silhouette generation. In some gait recogni-
tion tasks, gait is represented as a binary silhouette sequence.
The average silhouette image, also known as Gait Energy
Image (GEI), was proposed by Han and Bhanu [66]. The GEI
is a compact and robust gait descriptor widely used as an
appearance-based gait descriptor for age estimation. Given a
gait video sequence with N frames, the GEI, G (x, y) can be
obtained from binary silhouette images Bn (x, y) as:

G (x, y) =
1
N

∑N

n=1
Bn (x, y), (1)

where n is the frame number and (x, y) is the 2D image
coordinate. GEIs include both space and time information.
In comparison to the traditional representation of gait with
binary silhouette sequences, GEIs are compact, lightweight,
and robust. Each row in Fig. 7 shows examples of binary
silhouette images with their corresponding GEIs. Since GEIs
are affected by viewpoint variations in gait, Lu et al. [68]
proposed a cluster-based average gait image (C-AGI). Unlike
GEIs, C-AGIs can model human gaits from varying views
and poses, but this causes excessive intra-class variations.
In more recent studies [69], [70], gait is taken as a set of
gait silhouettes. This approach is more robust to view and
walking variations and has achieved state-of-the-art accuracy
in multi-view gait recognition. For other state-of-the-art gait
representations for gait recognition that could be applied to
age estimation, the reader is referred to [71]–[73].

We categorize model-free features as deep, handcrafted,
or hybrid features. Deep features are extracted using Con-
volutional Neural Networks (CNNs). CNNs require no man-
ual feature selection, as they can learn features automati-
cally from silhouette images. On the other hand, handcrafted
features are more suitable for classical machine learning
techniques, and results obtained using handcrafted features
are often more interpretable than those obtained using deep
features.

a: DEEP FEATURES
Convolutional Neural Networks offer the unique capability
of automatic feature learning from input GEIs and can per-
form well with large-scale data. Berksan [74] explored this
to evaluate CNN architectures for gender classification and
age estimation using average silhouette images as features,
achieving an MAE of 5.74 years for age estimation. Using a
large gait database with more than 60,000 subjects, Sakata et
al. [75] performed age estimation using a DenseNet. Using a
deep residual network, Zhang et al. [76] performed a multi-
task classification of subjects based on age and gender. The
results obtained by [76]–[78] suggest that multi-task learning
can improve the accuracy of age estimation. For example,
learning age and gender in parallel can improve the accuracy
of age estimation. However, this is not always the case.
Instead of parallel multi-task learning, Sakata et al. [47]
proposed a sequential multi-task CNN for age estimation by
predicting gender as a first step.

Compared to model-based features, appearance-based gait
features often show greater disparities in the gait age and the
actual age of subjects. For example, depending on the quality
of life and habits, a forty-year-old man may have a younger
gait age than a twenty-year-old man based on appearance.
To properly model these uncertainties, Sakata et al. [79] pre-

VOLUME 9, 2021 100359



T. B. Aderinola et al.: Learning Age From Gait: A Survey

TABLE 6. Summary of model-free age estimation techniques.

sented a method that predicts the age of subjects with a confi-
dence score. Xu et al. [80] also performed uncertainty-aware
age estimation and demonstrated its effectiveness in human
search and counting by age group.

Additionally, appearance-based gait often varies widely
with gender, dressing, and carried objects. To account for
the effects of gender, Abirami et al. [81] presented a method
that relates age-group with gender, using the Hilbert-Schmidt
Independence Criterion (HSIC) to project high-dimensional
data onto a low dimension subspace for age estimation. Li et
al. [82] proposed amethod tomitigate the challenge of carried
objects by using generative adversarial networks (GANs).
Given GEIs with or without carried objects as input, the GAN
is trained to generate GEIs without carried objects. To model
the ordinal information in age. Zhu et al. [83] posed the
age regression task as a series of binary age classification
sub-tasks. The proposed neural network architecture contains
sub-networks capable of learning the local and global gait
features.

The extraction of GEI or average silhouette features
from subjects requires at least one gait cycle. This require-
ment introduces latency in the gait age prediction process.
To address this and attempt real-time gait age prediction,
Xu et al. [87] reconstructed the silhouette sequence of an
entire gait cycle from a single image for age estimation.

b: HANDCRAFTED FEATURES
Using Gaussian process regression, Makihara et al. [27] per-
formed age estimation using three silhouette-based features:
GEI, FREQuency domain features, and Gait Periods (GP).
The FREQ features achieve the lowest MAE of 8.2 years.
Lu and Tan [18] proposed a Gabor-filtered GEI, which
showed superior performance to the original GEI feature in
age estimation tasks. Different age labels were encoded as
a binary sequence, and a multilabel guided subspace (MLG)
was proposed as a projection to characterize the relationship
between age and gender. Makihara et al. [38] also used
a multi-view dataset to classify subjects into four classes:
children, adult males, adult females, and elderly, using the
average gait features for each class. They first selected
nine age groups and then performed Linear Discriminant
Analysis (LDA) to view the inter-class distances between
adjacent age groups. Adjacent age groups with inter-class
distances below a threshold were then combined to form
a class.

With a similar approach, Li et al. [33] first cluster gait
features with age labels. Then, using manifold learning tech-
niques, they train a support vector regressor for each cluster.
Lu and Tan [84] also proposed an ordinary preserving mani-
fold learning technique, which they applied to age estimation
using a multiple linear regression model.
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TABLE 7. Summary of sensor-based age estimation techniques.

c: HYBRID FEATURES
Inspired by the improved performance offered by biometric
features fusion, there have been attempts to improve age
estimation performance through a fusion of gait descriptors.
For example, [85] had proposed a Silhouette Model (SM)
descriptor for age group classification based on the lon-
gitudinal and transverse projections of subjects’ silhouette
images during the gait cycle. The longitudinal projections
describe the stride length, arm swing, and body size, while
the transverse projection describes the height and posture of
subjects. As an improvement on SM, Mansouri et al. [30]
proposed SGF, a fusion of SM, GEI, and FED. They showed
that the fusion-based descriptor performed better than any
of the individual descriptors for age classification. It has
also been shown that gait offers better performance in age
estimation when combined with features obtained from face
images [86]. Table 6 shows a summary of model-free age
estimation techniques.

B. GAIT AGE FEATURES FROM SENSORS
In the sensor-based approaches, gait features are extracted
from wearable sensors attached to the subject’s body, floor
sensors installed on walking platforms, or audio signals.
Floor sensors measure the forces or pressures exerted during
the stance phase of gait, also referred to as Ground Reaction
Forces (GRF). A GRF profile is obtained when these forces
are measured for a footstep.

By fusing the data frommultiple low-cost wearable inertial
sensors, several gait parameters can be reliably estimated. For
example, [92] estimated step length from low-cost Inertial
Measurement Units (IMUs) placed on both feet of subjects.
Qiu et al. [93] obtained lower limb joint angles of subjects.
Gait parameters such as gait speed, stance phase, and swing
phase can also be measured using inertial sensors [94]. Wear-
able sensors such as accelerometers measure the acceleration
of subjects during locomotion as a time-series signal. Since
acceleration is a function of body mass and forces acting
on the body, accelerometer-based features capture a lot of
gait information [36]. Gait features can also be extracted
from the sound signals generated during a gait cycle. For
example, the sound signal generated during a subject’s heel
strike occurs periodically and is distinct from the more subtle
signal generated during the swing phase.

These approaches are commonly used for person recog-
nition. However, sensor-based features have been shown to
contain discriminative features that can be used to estimate
age, gender, and height [19]. In a recent competition for
age and gender classification using wearable integrated mea-
surement units (IMU sensors), a mean absolute error (MAE)
as low as 5.39 was obtained using accelerometer-based gait
features [90]. Since acceleration is a function of mass and
force, the acceleration values recorded fromwearable sensors
depend on how close they are to the subject’s center of
mass and center of pressure. Riaz et al. [19] estimated age,
gender, and height from the accelerations and angular veloc-
ities obtained from IMUs attached to subjects’ chest, lower
back, right wrist, and left ankle. They applied the moving
average technique to suppress noise in the raw acceleration
features. Using Support Vector Machines (SVM) and Deci-
sion Trees, Khabir et al. [88] extracted time-domain features
from inertial sensor data for age estimation. They eliminated
noise using a low-pass Butterworth filter. Gillani et al. [89]
performed age estimation and gender classification based on
accelerometer-based gait features collected from inertial sen-
sors. Using accelerometer-based features, Yuhan et al. [91]
classified subjects as young-middle age (18 – 65 years),
healthy older (65 years and above), and geriatric patients.
A summary of sensor-based approaches to age estimation is
presented in Table 7.

C. SUITABILITY OF GAIT AGE FEATURES
The age estimation task is often cast as classification, regres-
sion, or ranking. As with any pattern recognition task,
the kind of features required for classification differs from
those required for regression. Sensor-based gait features can
be used for both age group classification and regression
(Table 7). However, vision-based features may vary in their
applicability to age estimation tasks depending on whether
they are model-free or model-based.

Model-free gait descriptors are lightweight and require
little computational power. Their compactness makes them
suitable for the storage of large amounts of gait data. Hence,
the largest gait datasets make use of the model-free GEI
descriptor. Convolutional Neural Networks offer the unique
capability of automatic feature learning from input GEIs and
can performwell with large-scale data. Due to the availability
of large amounts of well-annotated data and the robustness
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of GEIs, many model-free techniques can take advantage of
the power of deep learning for age group classification, age
regression, and age ranking.

Working with model-based features often involves a man-
ual feature selection procedure, which is time-consuming and
requires domain expertise. Moreover, since most publicly
available datasets are model-free, model-based approaches
often use modest-sized self-collected datasets. Whereas deep
learning models offer automatic feature selection and pow-
erful prediction capabilities, they require large datasets. The
small size of model-based datasets and the feature selection
requirement make them unsuitable for deep learning models.
Additionally, due to the wide variability of gait across ages
and age groups, it may be challenging to estimate specific
ages directly from model-based gait features. Hence, most
model-based approaches use conventional machine learn-
ing approaches for prediction and perform only age group
classification (see Table 5). Only Punyani et al. [21] per-
formed regression using model-based features. The main
advantage of model-based features over model-free features
is the greater interpretability of age prediction results.

IV. PERFORMANCE BENCHMARKING
In recent years, there is wider availability of public datasets
with age information that can be used for performance evalu-
ation of age estimation techniques. This section discusses the
publicly available datasets and the most common evaluation
metrics for gait-based age estimation.

A. DATASETS
While many public gait datasets are available, datasets with
no age metadata are unsuitable for age estimation. Public gait
datasets containing age metadata are listed in Table 8.

The USF dataset was published by the University of South
Florida. The initial version of the dataset [95] contained
452 walking sequences from 74 subjects, with 75% being
male. The dataset contains variations in the walking surface,
viewpoint, and footwear. The current version of the USF
dataset [96] contains 122 subjects with 1870 gait sequences
extracted from video sequences. The number of subjects is
very few, and the subjects’ age range is small. There are
no children, neither are there seniors in the dataset. Addi-
tionally, the male-to-female ratio is more than 2:1, which
may introduce gender bias in predictions. Notwithstanding,
the USF dataset contains many sequences per subject and is
often used to evaluate gait recognition and gait age prediction
techniques.

The TUM-GAID dataset [97] was collected at The Tech-
nical University of Munich using Microsoft Kinect sen-
sors. This dataset has the advantage of being multi-modal,
as Microsoft Kinect sensors output visual images, depth
images, and audio streams. Additionally, the TUM-GAID is
the only publicly available multi-modal sensor-based dataset
containing age and gender metadata. However, with 305 sub-
jects, 186 of whom are male, the TUM-GAID dataset is

relatively small and not well balanced in terms of gender.
Also, there are no children and seniors in the dataset.

Vajdi et al. [98] published a dataset based on accelerometer
data collected from 93 subjects. The data was collected from
two mobile phones attached to each subject’s body. One was
attached to the right thigh, and the other to the left side
of the waist. Each subject walked a total of 640 meters.
Since acceleration and angular velocity data were captured,
the dataset is suitable for gait recognition and more general
gait analysis based on walking motion. So far, this is the
only publicly available accelerometer-based gait dataset con-
taining age and gender metadata. The dataset is balanced in
terms of gender – the male-to-female ratio is very close to
1. However, the subject size is small and does not include
children and seniors.

The Osaka University Institute of Scientific and Industrial
Research (OU-ISIR) has published several datasets suitable
for age estimation. The first was the OU-ISIR Treadmill
dataset C [38], which includes 88 males and 80 females
between the ages of 4 and 75 years from 25 view angles.
Each 10-year age group in the dataset consisted of at least
10 subjects, making the dataset very diverse and robust in
terms of age. However, the size of this dataset is relatively
small. Additionally, it was collected on treadmills, whichmay
not accurately model the normal walking gait of subjects.

The OULP dataset [99] with normalized silhouette images
was obtained from the walking sequences of 4007 subjects.
The OULP dataset is large, gender-balanced, and all age
groups are represented. However, the number of seniors in
the dataset is few as compared to children and adults. Besides,
the dataset does not include any variation in walking condi-
tions.

On the other hand, the OULP-Sensor [100] is the largest
inertial sensor-based gait dataset to date. The walking path
slope angle of subjects was varied to make the data more
robust. Four different types of sensors were used and placed
around the subjects’ waists – back, left, and right. Both
acceleration and angular velocity were captured, making the
dataset suitable for gait recognition and general gait analysis
based on walking motion. With the subjects’ ages ranging
from 2 to 78 years, all age groups are represented. In addition,
the dataset is well balanced in terms of gender, with 389males
and 355 females. Themain limitation of this dataset is that the
walking sequence for each subject is relatively short – a total
of 12 meters.

The OULP-Age dataset [20], with more than 60,000 sub-
jects, is by far the largest gait dataset in the world. It includes
the average silhouette images of the subjects’ walking
sequences. The subjects’ ages range from 2 to 90 years.
Both male and female subjects are equally represented in the
dataset. Between the ages of 0 and 70 years, each 5-year age
group consists of 500 subjects or more. The main advantage
of this dataset is its coverage of a very large population.

The OULP multi-view dataset, OUMVLP [50], is the
largest multi-view gait dataset. With average silhouette
images obtained from walking sequences of 5144 males and
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TABLE 8. Publicly available gait datasets containing age metadata.

5193 females, the OULMVP dataset is balanced in terms
of gender. The cameras were placed at 14 viewpoints with
15-degree intervals for each subject – 7 views between angles
0 and 90◦ and another 7 views between 180◦ and 270◦. The
wide view angle variation makes the OULMVLP dataset very
suitable for evaluating multi-view gait recognition and gait
age prediction techniques. However, the age information for
some of the subjects is not provided.

The OUMVLP-Pose dataset [51] was generated based
on the OUMVLP dataset. The dataset includes the pose
sequences of all the subjects in the OUMVLP dataset.
The pose sequences were extracted using two state-of-the-
art pose estimation frameworks. Sharing the advantages of
the OUMVLP dataset, the OUMVLP-Pose is the largest
model-based gait dataset and is suitable for evaluating gait
recognition and gait age estimation techniques. However,
some pose sequences are missing, as well as the age metadata
of some subjects.

VersatileGait [101] is a large synthetic dataset hav-
ing 11000 silhouette images generated directly from game
engines. It is the first publicly available synthetic gait dataset.
Apart from its size, the dataset includes complex scenarios
such as dressing and flexible viewpoint angles. Aside from
high-level metadata such as identity, fine-grained descrip-
tions such aswalking style, age, and gender, are also included.

B. EVALUATION METRICS
The evaluation metrics used for gait age prediction include
mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), cumulative score (CS), and cor-
rect classification rate (CCR). For consistency in comparison
among the different techniques, we only report MAE and
MSE, and CCR.

1) REGRESSION METRICS
Metrics used for gait age regression tasks include MAE,
MSE, RMSE, and CS. Given an evaluation dataset with N

subjects, let yn be the actual age, and ŷn the gait age of the nth

subject. The MAE, MSE, and RMSE are each given as:

MAE =
1
N

∑N

n=1

∣∣yn − ŷn∣∣ (2)

MSE =
1
N

∑N

n=1

(
yn − ŷn

)2 (3)

RMSE =
√
MSE (4)

Lower values of MAE, MSE, and RMSE mean better
performance. TheMAE is the most usedmetric for regression
in gait age prediction. However, a fewworks, such as [88], use
MSE for evaluation. The MSE metric places higher penalties
on errors than the MAE.

Apart from obtaining the performance of gait age predic-
tion using the MAE, MSE, or RMSE, it is possible to gain
more insight into the performance of an age regression model
by determining its error tolerance. This is often achieved by
using the cumulative score, CS (k), given as:

CS (k) =
Ne≤k
N
× 100% (5)

where e =
∣∣yn − ŷn∣∣, the absolute prediction error for sample

n, k is the set error threshold, and Ne≤k is the total number of
samples for which e ≤ k . CS (k) shows the percentage of test
samples for which the absolute error is within the set error
threshold.

2) CLASSIFICATION METRICS
The accuracy score or correct classification rate (CCR) is
commonly used as the main evaluation metric in age classifi-
cation tasks. In binary classification, CCR can be obtained
in terms of the True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN). However, age
classification is often cast as a multi-class problem with more
than two target age groups.

Given a dataset with N samples and C classes, let pn
be the predicted class, and xn the actual class of the nth
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sample, p, x ∈ [1, 2, . . .C]. The CCRmay be generalized for
multi-class problems by using the Kronecker delta δ (pn, xn):

δ (pn, xn) =
{
0, if pn 6= xn
1, if pn= xn

(6)

CCR =
1
N

∑N

n=1
δ (pn, xn) (7)

While the CCR is often used as the main metric in clas-
sification tasks, it could sometimes be misleading. Some
more reliable measures of model performance include the
class-weighted precision, recall, and F1 score. For multi-class
problems, they can be obtained from the confusion matrix,
M ∈ NC×C , which can be represented as:

M =


n11 n12 n13 . . . n1C
n21 n22 n23 . . . n2C
n31 n32 n33 . . . n3C
...

...
...

. . .
...

nC1 nC2 nC3 . . . nCC

 (8)

where nij is the number of predictions for class i when the
actual class is j, and the diagonal elements, nii represent
correct predictions. The precision for class i shows the pro-
portion of samples predicted to be of class i that truly belong
to class i. It can be obtained by dividing the diagonal element
of row i by the sum of all row i elements. On the other hand,
the class recall shows the proportion of samples in class j
that are correctly predicted. It can be found by dividing the
diagonal element of column j by the sum of all column j
elements.

If we denote the diagonal elements of M as m ∈ NC ,
the precision, recall, and F1-score for class x, x ∈

[1, 2, . . .C] can be written as:

precisionx = mx

/∑C
j=1Mxj

(9)

recallx = mx

/∑C
i=1Mix

(10)

F1x = 2×
precisionx × recallx
precisionx + recallx

(11)

V. DISCUSSION
This section discusses the current progress of gait age pre-
dictions, potential applications in the laboratory and real-life
scenarios, and challenges in gait age prediction that should be
addressed in the future.

A. POTENTIAL APPLICATION DOMAINS
Gait age prediction is by no means a solved problem as
gait feature extraction remains a challenging task due to
the various covariates. Additionally, feature fusion is usually
necessary to improve the performance of gait age prediction.
To the best of our knowledge, gait age prediction has not
been deployed for public use. One question that may arise
for public deployment is, ‘‘Which gait modality is best suited
for gait age prediction?’’

The vision-based and sensor-based approaches to gait fea-
ture extraction each have their merits and demerits. However,
no single approach can be said to be generally better than
the other. Instead, their suitability depends on the application
domain. The application domains can be grouped generally
as gait in the lab and gait in the wild. Gait in the lab refers to
application areas in which gait is collected under constrained
conditions with control over the covariates such as dressing,
gender, carried objects, walking speed, walking slope, and
footwear. Gait in the wild refers to gait collected with little
or no control over these covariates and many others.

1) GAIT IN THE LAB
Sensor-based gait analysis is more predominant in gait in the
lab research, such as medical research, where there is strict
control over gait covariates. One of the main advantages of
sensor-based gait features is that they are not affected by
external covariates such as viewpoint and dressing. Sensor
data can provide precise gait data, but it often requires spe-
cialized equipment and a laboratory setting with constraints.
Though inertial sensors are relatively low-cost and gait fea-
tures can be extracted from inertial sensors embedded in
smartphones and smartwatches, acquiring gait features from
sensors is still not unobtrusive, and wearable sensors must be
carried by the subjects.

Evenwith recent developments, including the development
of pressure-measuring floor tiles and shoe insoles [36], the
question remains whether sensor-based techniques can be
deployed on a large-scale outside laboratory setting. Potential
use for sensor-based gait age is gait simulation based on age-
associated gait features. Age-based gait simulation could be
used in specific domains such as animation and gaming to
make character movement more realistic based on age.

2) GAIT IN THE WILD
Gait signals in the wild can only be acquired using
vision-based techniques, either model-based or model-free.
Though more computationally expensive, the model-based
approaches do not require background subtraction and are
more robust to external covariates such as clothing and carried
objects. Hence, model-based techniques may be more suit-
able for gait in the wild.

Also, to take full advantage of gait age prediction for
surveillance, prediction should be done in real-time, which
can be achieved more easily with model-based techniques.
Sincemodel-free approaches are based on average silhouettes
or a set of binary silhouette images, they require several video
frames to capture at least one gait cycle. This requirement
introduces some latency in gait age prediction. To address
this, Xu et al. [87] proposed amodel-freemethod that predicts
age and gender from a single image. Given a single image,
they reconstruct the complete gait silhouette sequence for age
estimation and gender classification. They demonstrated the
efficacy of this method for real-time age and gender predic-
tion. However, the accuracy of gait age prediction depends on
the accuracy of the generated average silhouette.
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Potential application domains for gait age prediction in the
wild include public surveillance, security, and access control.
For example, the age group of a masked criminal can be pre-
dicted from public surveillance footage; an unattended child
can be detected in a public place; a minor can be prevented
from buying an alcoholic drink from a vending machine, and
so on.

B. CHALLENGES IN GAIT AGE PREDICTION
Several issues and challenges in gait age prediction have not
been addressed or are yet to be thoroughly addressed in the
literature. They include:

1) GAIT AGE UNCERTAINTY
Errors in age estimation often arise due to disparities between
predicted age and the actual age of subjects. These disparities
arise because age prediction is based only on observable pat-
terns. Subjects’ gait patterns may be affected by unobservable
factors such as disability, quality of life, and health. Hence,
gait age prediction should include some corresponding level
of uncertainty. To the best of our knowledge, only the works
of [79] and [80] present methods that predict subjects’ ages
while considering these uncertainties.

2) EFFECTS OF TIME-LAPSE
Several datasets consider covariates such as view angle,
dressing, and carried objects. However, no gait dataset pro-
vides gait information of subjects over a long time. For
instance, the FG-NET face dataset [102] provides face images
of the same individual across different ages, which could be
used to simulate the effects of aging on face images. It would
be worthwhile to have gait datasets that would enable the
simulation of aging effects on gait. To the best of our knowl-
edge, the only works that attempt gait-based age progression
are [103] and [104].

3) VIEW INVARIANT GAIT AGE PREDICTION
Viewpoint is one of the main covariates of gait. Certain gait
features can be obtained in the frontal view, while others
can be obtained only in the sagittal view of gait. There are
numerous studies on gait recognition across different views.
However, there is a need to study which view of gait offers
the most age-discriminating features. Studies in this area can
give insight into gait features that are both view-invariant and
age-discriminative.

4) MULTI-MODAL GAIT AGE PREDICTION
Research in biometrics has found that a fusion of features
from different biometric modalities offers higher accuracy
in recognition tasks. While there are fusion approaches that
combine different types of gait features for age prediction,
only the work of [86] combines gait with another biometric
modality for age estimation. In the study, age estimation was
performed by fusing gait features with features obtained from
face images of subjects.

5) REAL-TIME GAIT AGE PREDICTION
If gait is captured based on posture and how humans walk,
what is the minimum number of steps required to capture age-
discriminative features? This question needs to be answered
if gait age prediction would be applied in the real world.
Many existing approaches to gait age prediction introduce
some latency due to the number of steps or video frames
required to capture sufficient gait information. One research
that attempts to solve this problem is [87], which reconstructs
the silhouette sequence of a complete gait cycle from a single
image.

VI. CONCLUSION
Automatic age estimation is a rapidly growing research area
that finds practical use in medicine, security, surveillance,
and access control. Gait age prediction takes advantage of
the uniqueness and unobtrusive nature of human gait. The
list of potential practical applications is limitless. For exam-
ple, based on the manner of walking, the age group of a
crime suspect can be predicted based on surveillance footage;
unattended children in public places such as airports can be
detected, and so on.Many of these require obtaining subjects’
features from a distance in an unobtrusive manner, making
gait a perfect candidate.

Compared to research on face-based age estimation, gait
age prediction is still in its infancy and has not been well
studied. With the current progress in gait age prediction,
it is still essentially unusable in real-life scenarios, that is,
in the wild. This is perhaps due to the challenges involved in
obtaining gait features, such as the effects of covariates on the
performance of gait features. However, these covariates apply
mainly to gait features and have little or no effect on biomet-
rics obtained from other modalities. Future research in gait
age prediction will most likely overcome these challenges by
fusing gait features with features from other biometric modal-
ities that are not affected by the same covariates, making for
more robust age prediction methods.
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