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ABSTRACT With the development of artificial intelligence and Internet of Things (IoT), the era of industry
4.0 has come. According to the prediction of IBM, with the continuous popularization of 5G technology,
the IoT technology will be more widely used in factories. In recent years, federated learning has become a
hot topic for Industrial Internet of Things (IIoT) researchers. However, many devices in the IIoT currently
have a problem of low computing power, so these devices cannot performwell facing the tasks of training and
updating models in federated learning. In order to solve the above problems, we introduce edge computing
into the IIot, so that the device can complete the federated learning operation. In order to ensure the security of
data transmission, blockchain is introduced as the main algorithm of equipment authentication in the system.
What’smore, in order to increase the efficiency and versatility of trainingmodel in IIoT, we introduce transfer
learning to improve the system performance. The experimental results show that our algorithm can achieve
high security and high training accuracy.

INDEX TERMS Federated learning, blockchain, Industrial Internet of Things, transfer learning, Security of
Internet of Things.

I. INTRODUCTION
At present, with the rapid development of IoT technology and
the arrival of industry 4.0 era, IIoT has begun to enter our
production and life [1]. Based on IIoT technology, modern
sensors and controllers with sensing and monitoring capabil-
ities can be integrated into the process of industrial produc-
tion, and then real-time data collection, intelligent analysis
and mobile communication can be realized to improve the
level of industrial manufacturing, realize the transformation
of traditional industrial manufacturing to modernization and
intelligence, and achieve a qualitative breakthrough. From
the application status of IIoT technology, it shows many
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advantages, such as security, real-time, automation, embed-
ded, interoperability and interconnection [2].

With the continuous development of artificial intelligence
technology in the world, artificial intelligence gives IIoT a
broader development space, which is also the development
trend of IIoT technology in the future. Based on the technol-
ogy of IIoT, the robot and automation technology in industrial
production will be improved accurately, and the manufac-
turing factory will eventually develop towards the direction
of unmanned factory [2]. As shown in FIGURE 1, it is a
schematic diagram of the IIoT. FIGURE 1 is a scene of arti-
ficial intelligence learning in three factories. In FIGURE 1,
we can see that each time the training is carried out, each
factory will transmit its own training data to the cloud server,
and then the cloud server will receive The data is trained, and
then the training results are distributed to various factories.
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FIGURE 1. Schematic diagram of industrial internet of things.

The traditional machine learning scheme needs to migrate
the data collected by each factory from the local equipment to
the centralized cloud for training [3]. However, there are still
serious problems in transferring data from local devices to
centralized cloud. For example, the confidential information
of each factory is likely to be leaked to competitors, and
the transmission of all data will occupy large bandwidth
resources. Therefore, the concept of federated learning is pro-
posed. Federated learning is a new machine learning scheme,
which can protect user privacy without transferring data from
local devices to centralized cloud. Federated learning shows
the viewpoint of distributed learning, rather than collecting
the whole data set from users. It enables devices to train
models based on local data to protect users’ privacy. The
global model is updated iteratively by collecting local model
updates from the device. Then, the central device feeds back
the global model update to the user. This iterative process
works until it converges to the accuracy of a global federated
learning model [4].

Federated learning has been applied and developed in
the IIoT. However, there are still many problems in its
application.

1. According to [5], many factories have now applied IoT
devices to daily production. But with the development of
technology, the performance of these devices will not be
able to meet the demands of more and more data processing.
However, replacing all of these devices will consume a lot of
money.

2. The equipment in the IIoT will generate and process a
large amount of data, and it will also make the equipment in
the IIoT vulnerable to various attacks [6].

3. In some application scenarios of IIoT, we cannot obtain
more scientific and complete data for federated learning,
which also makes it difficult for some devices to be intelligent
in industrial production. [7].

In the current IIoT environment, the computing power of
IoT devices is too low to perform federated learning operation
and update model tasks [2]. In order to solve the problem
that the IIoT devices cannot optimize the model due to
its low computing power, a federated learning mechanism
based on edge computing and blockchain is designed in this
manuscript to enable multiple factory edge servers to upload
parameters and distribute them uniformly after cloud training
model. A complete upload training distribution cycle mecha-
nism is formed, which can effectively solve the problem that
the fixed effect of the edgemodel cannot be improvedwithout
the user’s original data being uploaded.

With the rapid growth of data scale and computing
resources, machine learning has made great progress in the-
ory and practice. Traditional machine learning methods usu-
ally rely on the basic assumption that the data generation
mechanism does not change with the environment. However,
in various application fields of machine learning, such as big
data analysis, natural language processing, computer vision,
bioinformatics, etc., the above assumptions are often difficult
to be established because of their strictness. How to analyze
and mine large-scale data in non-stationary environment is
one of the most challenging frontier directions in modern
machine learning [8]. Transfer learning relaxed the con-
straints that training data and test data must obey independent
and distributed constraints in traditional machine learning,
so it canmine the unchanging essential features and structures
of the domain between two different but interrelated fields,
which makes the supervised information such as annotation
data can be transferred and reused among the fields. Transfer
learning is the basic method to solve the scarcity of target
task annotation data, and its research is still in a challenging
stage. The purpose of this algorithm is to transfer the existing
knowledge to solve the learning problem that there are only
a few labeled sample data in the target domain. In the IIoT
environment, transfer learning also has a good application
prospect. Many training tasks in the IIoT have certain inter-
operability. If transfer learning is applied to these tasks, it will
save a lot of time and computing resources [7].

The essential goal of federated learning is to protect the
privacy of users. In the IIoT environment with limited com-
puting power, this paper proposes to transfer the data of low
computing power devices to the edge server of the factory
intranet for computing. But there is a risk of data leakage
in the process of data transmission. Therefore, this paper
proposes to use blockchain in data transmission and device
verification, so as to ensure that information is not leaked
in the process of user data transmission, and user data is
only transmitted to specific terminals recognized by users for
training.

The main contributions of this manuscript can be high-
lighted as follows.

1. Aiming at the problem that many devices with low
computational power are not suitable for federated learning
in IIoT, this manuscript proposes a strategy to submit the data
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of low computing power devices to edge computing server in
factory intranet for training.

2. In view of the data security problems in the process of
data transmission, this manuscript uses blockchain to protect
the security of data.

3. This manuscript proposes the combination of federated
learning and transfer learning in the IIoT environment to
improve the generalization of the training model.

II. RELATED WORKS
A. DEVICE IDENTITY AUTHENTICATION BASED ON
BLOCKCHAIN
In recent years, blockchain technology has attracted
widespread attention, especially the core supporting tech-
nology of the digital cryptocurrency system represented by
Bitcoin [9]. The blockchain network provides a ‘‘trustless’’
environment where users can conduct transactions without
relying on a central trust agency. Currently, blockchain tech-
nology has been used in government [10], healthcare [11],
digital rights management [12], IoT [13], [14] and other
fields. Literature [15] proposed a small decentralized record
management system that uses blockchain technology to pro-
cess EMR. In response to the needs of patients, hospitals and
medical researchers, it uses blockchain technology to verify
identities, grant permissions, share data and protect privacy.
Literature [16] proposed a blockchain-based product own-
ership management system. Since the forgers cannot prove
that they have real products on the system, they cannot clone
the real labels. Literature [17] proposed a blockchain-based
smart grid data protection system, which uses the features
of blockchain to be non-tamperable, traceable and collective
maintenance to solve the trust problem between participants
on the smart grid. Literature [18] proposed a new auto-
matic food transaction system based on alliance blockchain,
which uses alliance blockchain technology to set permis-
sions and authentication for different roles in food transac-
tions to protect the privacy of multiple stakeholders. The
above-mentioned studies have proved that the blockchain
has good application prospects in data transmission and
storage.

Based on the above scheme, this manuscript proposes
a secure transmission scheme in the IIoT, which uses the
blockchain decentralized architecture to continuously record
the transmission data in and out of the node to ensure the
security of the data. This solution can realize the identity
authentication of IIoT devices and the secure transmission of
data, creating conditions for data sharing between devices in
federated learning and edge computing.

B. EDGE COMPUTING
In recent years, with the development of sensor technol-
ogy, electronic technology and industrial automation, most
industrial manufacturing processes can be monitored. This
also generates a huge amount of data, the complexity of
the manufacturing process and the frequency of commercial

activities also generate a large amount of data [19]. How to
use the data generated in the production process to extract
valuable information to improve the production process is the
main requirement of intelligent manufacturing, such as fault
diagnosis, predictive maintenance and parameter optimiza-
tion for important equipment [20]–[22]. All intelligent tech-
nologies are inseparable from the analysis of data, and data
analysis tasks are computationally sensitive tasks that require
a lot of computing resources. This is difficult to satisfy in
an industrial environment, especially data-driven technology
represented by deep learning [23]. Although cloud computing
can provide certain computing services remotely, it cannot
fully meet industrial needs due to uncertain delays and high
communication costs [24]. Therefore, once the concept of
edge computing is proposed, it has been widely used in
industrial environments [25], [26].

In the industry, edge computing technology has been
researched and studied by researchers. Literature [27] out-
lines the application of edge computing in the IIoT and
the possible architecture of the future IIoT. Literature [28]
outlines the application, opportunities and challenges of edge
computing technology in IIoT under the development of 5G.
And came to the view that edge computing technology
is an important deployment mode of IIoT in the future.
At present, there are few researches on edge computing
to provide computing resources for low computing power
devices in IIoT.

Based on the above solution, this manuscript proposes
to transmit data from low-computing power devices in the
IoT to edge computing devices for training and updating.
This program improves the efficiency of federated learn-
ing and creates excellent conditions for federated learning
in the IIoT.

C. TRANSFER LEARNING
In the field of machine learning, traditional machine learning
methods are usually limited to solving problems in a single
domain, that is, training data and test data are required to
obey the same distribution. When the feature distributions of
training data and test data are different, it is often necessary
to retrain the model on the new data set. However, in practical
application, the cost of data reacquisition is very high or
sometimes difficult to achieve. It is necessary to transfer use-
ful knowledge learned from the source domain to the target
area. Since the rise of transfer learning in 1995, researchers
have extended the traditional machine learning methods to
the transfer learning, including the transfer learning based
on nuclear learning [29]–[34], the transfer learning based on
reinforcement learning [35]–[38], the manifold based learn-
ing and the deep learning [39]–[42].

At present, transfer learning technology has been widely
used, and it is also being integrated with federated learning
technology. Based on the above solution, this manuscript
proposes an appropriate federated transfer learning method
for low performance devices in the IIoT.
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III. APPROACH
A. DEVICE IDENTITY AUTHENTICATION BASED ON
BLOCKCHAIN
1) BLOCKCHAIN SYSTEM ARCHITECTURE
The IIoT blockchain system designed in this manuscript
builds a block network of IIoT devices, edge servers, and
cloud servers. In this network, the IoT device node does not
undertake data calculation work, we let the existing cloud
server be the creation node. We choose the Ripple [43]
consensus algorithm as the consensus mechanism. In the
blockchain system designed in this manuscript, when a node
initiates an application, the billing node will verify the iden-
tity of the node and sign it if the verification passes. When
the number of signatures in the entire blockchain system is
not less than 51% of the total number of summary points in
the current blockchain system, the current blockchain system
considers that this node has passed the audit of the blockchain
system. Otherwise this request will be discarded.

The basic architecture of blockchain is shown in
FIGURE 2. Each block refers to the hash of the previous
block head and stores it in the linked list to form a blockchain.
The block structure includes block head and block body.

FIGURE 2. The structure of block.

The block header contains the address of the previous
block, and its function is to connect the current new block
with the previous block. The time stamp indicates the cre-
ation time of the block. The Merkle root is generated by the
transaction records in the block creation process through the
hash process of the Merkle tree. The block body is composed
of transactions and the number of transactions. Transaction
includes equipment type, data content, data, data generation
time, processing node and processing node signature.

2) IDENTITY AUTHENTICATION PROCESS
The main allocation schemes of traditional PKI authenti-
cation technology can be divided into centralization and

decentralization. The centralized key distribution scheme
can be understood as one of the trusted central nodes gen-
erating keys and distributing them to the communication
parties. Its main function is to issue and manage digital
certificate [44].

The IIoT device authentication scheme designed in this
manuscript can be improved by the above centralized key
distribution scheme.We use the cloud server as the key distri-
bution center through the consensus mechanism to distribute
and manage the secret key. We can take a registration process
as an example. First of all, IoT devices apply to the cloud
server for registration. The cloud server checks the identity of
the IoT devices through the consensus mechanism. After the
approval, the cloud server will generate a digital certificate
containing the public key of the current device and record it
into its own account book. Then the cloud server will send the
information of the device to other nodes in the blockchain.
Other nodes only need to verify the validity of the certificate
to know the validity of the current record. After verifica-
tion, other nodes will record the information in their own
account book.

B. EDGE COMPUTING
In this manuscript, for the lack of computing power in the
IIoT, the edge computing method is used to solve the problem
[45], [46]. In the design of this manuscript, each factory
will be equipped with its own edge server. When training is
needed, the device uploads its own data and its own device
number to the edge server in batches. The edge server sorts
all data using Quicksort, compares the data after sorting, and
deletes duplicate data. After the edge server has trained the
data transmitted by the device, the edge server will combine
themodel of the same type of equipment in the current factory
into a model for training. Finally, the combined training
model is uploaded to the cloud server, and the model returned
by the cloud server is distributed to the devices.

In this scheme, the edge computing device is located in
the factory intranet to ensure the privacy and security of
data. In addition, after the edge computing equipment merges
and updates the model of the same type of equipment in
factory, it can greatly reduce the occupation of public network
bandwidth and improve the efficiency of federated learning.

C. FEDERATED TRANSFER LEARNING
We designed a model training framework for federated trans-
fer learning for the scene of IIoT. A common method of
unsupervised domain adaptive is to divide the model into
two parts: feature extractor and classifier. Feature extractor
is used to map data to feature space, and classifier classifies
data based on features. In order to achieve better results
in the target domain, the distribution difference between
source and target regions in feature space need to be reduced.
In our framework, in order to measure the difference of the
distribution, the alignment loss function is the Maximum
Mean Difference (MMD), which is also a common alignment
loss function in unsupervised domain adaptation. The training
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process of unsupervised domain adaptive training is usually
divided into two parts: pretraining and fine tuning. Our frame-
work adopts the same model division method and training
process. First, the feature extractor and classifier are pre-
trained in the source domain; then the source domain sends
the weight of the feature extractor to the target domain, and
prepares for the fine tuning stage of the cooperation between
the two. In the fine tuning stage, the processing of each batch
of data can be divided into four steps: feedforward, classi-
fication loss function and gradient calculation, MMD loss
function and gradient calculation, model parameter updating.
The first, second and fourth steps are simple, and the source
and target fields can be operated independently without data
exchange. Step 3 is the most complex and requires a lot of
interaction.

The MMD loss function is defined as:

LMMD =
1
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where k
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)
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∥∥v− v′∥∥2) is a kernel function.
The loss function can be regarded as the sum of three parts.
Assuming that vi and v′j are the eigenvectors of the source
domain and the target domain respectively, the first part of the
loss function can be calculated independently, and the second
part of the loss function can be calculated independently. The
third part needs to use the data of two domains. Therefore,
one party needs to encrypt the data and send it to the other
party. In order to operate on ciphertext, our framework adopts
the Paillier homomorphic encryption algorithm. In addition,
the Paillier encryption algorithm does not support exponential
function operation, so we carry out Taylor expansion on the
exponential function in the kernel function and transform
it into polynomial function approximately. The approximate
transformed monokernel function can be expressed as:

k
(
v, v′

)
=

∑
cmfm(v)gm

(
v′
)
,

In this formula, cm is a constant, fm(v) is constant 1 or a
polynomial composed of vector elements, gm

(
v′
)
and fm(v)

have the same meaning. Therefore, in order to calculate
Part 3, one party needs to send all FM (V) of each eigenvector
to the other party.

For the calculation of MMD gradient of two domains,
we take the target domain as an example. For this domain,
the gradient of the first part ofMMD loss function is 0, and the
gradient of the second part can be calculated independently.
For the third part, the gradient is actually the sum of the
gradients of each kernel function, and the gradient of a single
kernel function can be expressed as:

∂k
(
v, v′

)
∂θ

=

∑
m

cmfm(v)
∂gm

(
v′
)

∂θ
.

Therefore, similar to the calculation of the loss function in
the third part, the calculation of the gradient in the third part
also requires the other party (in this case, the source domain)
to send all fm(v) of each eigenvector to the other party.
The detailed steps of Federated transfer learning algorithm

are illustrated in Algorithm 1.

Algorithm 1 Federated Transfer Learning Algorithm for IIoT
Devices With Low Computing Power Based on Blockchain
and Edge Computin
Require: Data generated by each terminal device.
1: for Before the trained model is optimal do
2: Each terminal device transmits data to the edge

server;
3: Edge server deduplication;
4: Edge server training model;
5: Each edge server uploads the trained model to the

cloud server;
6: The cloud server aggregates the models uploaded by

the edge server;
7: The cloud server transmits the aggregated model to

the edge server;
8: The edge server transmits the model to the device;
9: return Trained model.

IV. EXPERIMENTS
In this section, we conducted three experiments to ver-
ify the security of the blockchain authentication system,
the accuracy of federated learning and the accuracy of transfer
learning.

A. THE EXPERIMENT OF DEVICE IDENTITY
AUTHENTICATION BASED ON BLOCKCHAIN
In this part, in order to verify the security of the algorithm pro-
posed in this manuscript, we mainly carry out the following
experiments.

1) NETWORK TRAFFIC TEST
The purpose of network traffic test is to test the difference of
network traffic between the protocol and the wireless access
point without authentication, so as to measure the increase
of network traffic pressure caused by the protocol. Network
traffic test uses iftop to test network traffic, compares the
query requests sent directly to the blockchain with the request
traffic certified by this protocol, constantly changes the query
per second (QPS) and calculates the network traffic utiliza-
tion. In order to respond to the request timely and measure
the impact on the network more accurately, the number of
randomly selected service nodes is 1. In this case, there is no
need to run consensus protocol.

The network traffic test results are shown in Table 1. The
observation results show that the impact of this scheme on
the network traffic is one thousandth, and the impact on the
network performance of the program is negligible.

98634 VOLUME 9, 2021



P. Zhang et al.: Federated Transfer Learning for IIoT Devices With Low Computing Power

TABLE 1. Network traffic test results.

2) SECURITY ANALYSIS
Test the camouflage attack: using the private key that does
not match the user’s address to sign the packet, and then send
it to the wireless access point. The access point successfully
discards the packet.

Testing forgery attacks:For man-in-the-middle and unau-
thenticated attacks, this solution relies on digital signature
technology to effectively prevent it at all stages. Since the
attacker cannot pass the consensus authentication, he cannot
join the blockchain, let alone create a request transaction.

Test the replay attack: the same packet is sent to the wire-
less access point twice, and the wireless access point only
makes one request to the blockchain.

For denial of service attacks, the algorithm proposed in this
paper can ensure that users and wireless access points cannot
manipulate the nodes participating in consensus verification,
so that the verification traffic cannot be concentrated on a few
nodes, and the denial of service attacks are limited to a certain
extent.

To sum up, this scheme can ensure the security of
blockchain system, wireless access point and users, and
has certain scaling ability, which can balance security and
performance.

B. THE EXPERIMENT OF FEDERATED LEARNING
1) USE CASE
The experimental sample data used in this paper is the
connection information of network data in the 1999 KDD
(knowledge discovery in databases) competition in data min-
ing and network intrusion detection. The data format of
KDD99 data set is based on DARPA intrusion detection and
evaluation project jointly initiated and conducted by research
and projects agency of the US Department of defense and
Lincoln Laboratory of Massachusetts Institute of technology
in 1998. This batch of data records about 5 million network
traffic and connection information in 9weeks in the simulated
network environment of the US air force, including a large
amount of normal data and 39 attack connections. Although
KDD99 data was collected many years ago, it is still a set of
standard data for network security domain research in recent
years because of its comprehensive record information and
large amount of data. [47] The data set used in this experiment
is shown in the following table, which lists the various types
of attacks in this experiment and the proportions of various
types of attacks in each device.

TABLE 2. Intrusion detection experimental data.

2) EXPERIMENTAL ENVIRONMENT
This manuscript uses multi-client method to test federated
learning, and four terminals and one cloud server are set up in
the system. Each terminal has 10% of the randomly extracted
KDD99 data and ensures that the data stored by four terminals
is basically different.

In this experiment, in order to verify the accuracy of our
federated learning based on edge computing, we compare the
proposed algorithm with CSE and GRAE and FedAvg. In the
experiment, the local update of FedAvg algorithm is carried
out on the low computing power device (low performance
development board), and themachine learning algorithmCSE
andGRAE algorithm use the same data set as each device, but
only local training, not online update.

3) EXPERIMENTAL RESULT
In 100 rounds of training, we use the common centralized
machine learning algorithm CSE and GRAE and the FedAvg
to compare with the algorithm proposed in this manuscript.
The training mode of FedAvg algorithm is to train directly in
local low-performance equipment and then send the training
model to the cloud server for joint training, and then the cloud
server will feedback the training results to the equipment. The
experiment of the algorithm proposed in this manuscript is
that the local equipment sends the training data to the edge
equipment, the edge equipment sends the training results to
the cloud server, and the cloud server sends the results of
the joint training to the edge equipment. Then, we tested the
experimental results using the same test data set.

The experimental results are shown in FIGURE 3. For
example, in FIGURE 3, Device1 represents the accuracy
of all the algorithms which were trained and tested based
on Device1 dataset. The accuracy of the models tested on
clients differs from each other because the data distribution
of the respective clients are different. Specifically, for the
KDD99 data set, the accuracy rate of testing on Device3 is
the best, after 100 rounds of training, the accuracy of the
algorithm proposed in this paper can reach more than 99%.
While the accuracy rate of federated learning performed
on Device4 is the worst. In addition, we also find that the
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FIGURE 3. The accuracy of each device.

TABLE 3. Confusion matrix for binary classification problems.

federated learning approach proposed in this paper performs
best in all types of learning. This should be mainly due to the
general centralized learning method cannot update the model
well, limited by the limited training data set, cannot produce
good results. On the other hand, the standard federated learn-
ing method is limited by the limited computing power of
the device in the environment described in this manuscript,
which may have a negative impact on the model and affect
the accuracy of the model.

In addition to accuracy, we also measured three other
metrics in the experiments, including precision, recall, and
F1-Score. These criteria are useful for class wise evaluation
of the output of classifier. The precision, recall and F1-Score
can be obtained using the following formulas:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
,

Precision =
TP

TP+ FP
,

Recall =
TP

TP+ FN
,

F1− Score =
2 ∗ Precision ∗ Recall
Precision + Recall

,

The results are illustrated in FIGURE 4. The results show
that the proposed federated learning method performed best
on Device3, which is similar to the results of accuracy
tests. Compared with the standard federated learning method,
the proposed federated learning method shows an improve-
ment in FIGURE 4.

In conclusion, the proposed federated learning algorithm
achieves higher accuracy than other algorithms. The feasibil-
ity of low computing power devices participating in federated
learning in IIoT is verified.

FIGURE 4. The precision, recall, and F1-score of each device.

FIGURE 5. The accuracy of each algorithm.

C. THE EXPERIMENT OF TRANSFER LEARNING
In this section, we focus on testing the performance of
the transfer learning algorithm proposed in this manuscript.
Similar to the previous section, this section still uses the
KDD99 data set to test the results. However, different from
the previous section, we have different data sets for each
device. In this part, we divide the 10% KDD99 dataset into
five parts: Normal, DOS, Probe, R2L and U2R, and place
them on different nodes. Then the algorithm is trained and
tested by using the test data described in the previous section.

The results of several algorithms for the environment
described in this manuscript are shown in FIGURE 5 and
FIGURE 6. This manuscript mainly lists the accuracy and
F1- score of several algorithms. As can be seen from the
above two figures, for the Normal, Dos and Probe parts of
KDD99 dataset, the accuracy of our algorithm can reachmore
than 70%, which is far higher than the other three algorithms.
Although the accuracy of R2L and U2R parts is not high, it is
also far higher than other algorithms. Similarly, the results
of the F1-score of the algorithms in FIGURE 6 are similar to
this conclusion. From the test results, the algorithm described
in this manuscript achieves better transfer learning accuracy.
However, the algorithm for R2L and U2R training results of
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FIGURE 6. The F1-score of each algorithm.

the transfer has no good effect. But in general, the algorithm
proposed in this manuscript solves the problem that some
scenes in the IIoT lack complete data sets.

V. CONCLUSION AND FUTURE WORKS
This manuscript aims at the problem that the devices in the
IIoT are too low to complete the task of model updating
in federated learning. This manuscript proposes the use of
edge learning to solve the problem of insufficient computing
power of devices. At the same time, we also use blockchain
technology, and use transfer learning technology to improve
the overall performance of the IIoT system. Through exper-
iments, we verify the security and accuracy of our proposed
algorithm.

In the current industrial environment, artificial intelligence
and IoT will be the future development direction. The algo-
rithm proposed in this paper solves some problems, but there
are still some problems need to be improved, such as the accu-
racy of transfer learning is still not high, the encryption and
decryption of data transmission will still consume resources
and so on. This is also our future research direction, and we
hope that we can have better solutions to these problems.
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