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ABSTRACT The present paper targets a solution for permanent motor synchronous machine (PMSM)model
order reduction (MOR) using artificial neural networks and machine learning techniques for data dimension-
ality reduction. The neural networks are trained using data obtained from a series of electromagnetic Finite
Element Analysis (FEA), conducted in conditions imposed by the data dimensionality reductionmethod. The
workflow proposed to build the PMSMMOR, starts with data generation, goes further to its post-processing,
and finishes with the model training and experimental validation. In the study, data dimensionality reduction
procedure (adaptive data generation) is performed to increase the computational efficiency, also maintaining
the model accuracy. Different data reduction approaches are compared from the computational cost’s point
of view and their ease of use. The obtained results are compared to those obtained from FEA seeking the best
solution for building the dynamic model. The resulting ROM is included in a real-time control prototyping
platform to characterize machine’s performances. The model accuracy and its usability are proved in a
comparative analysis with simulated versus experimental measurements.

INDEX TERMS Artificial neural networks, adaptive data generation, machine learning, permanent magnet
synchronous machine, dynamic simulation, real-time.

I. INTRODUCTION
In the automotive domain, the permanent magnet syn-
chronous motor (PMSM) is preferred for both auxiliary and
traction applications due to its well-known performances
such as high power density and increased efficiency. The
modelling process of the electrical machine using elec-
tromagnetic simulations based on Finite Element Analysis
(FEA) represents the most accurate approach. However, its
accuracy comes with the cost of increased computational
time, evenwhen parallelization techniques are involved, mak-
ing it an inappropriate method for real-time applications.
For the latter, besides accuracy, the computational time rep-
resents an important parameter. Hence, high fidelity motor
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models need to be implemented in software packages that
allow dynamic analysis. The reduced order model (ROM)
is built using the data obtained from electromagnetic sim-
ulations, where only the relationship between the input and
the output is taken into account and included in the dynamic
model, usually in the form ofmulti-dimensional lookup tables
(LUTs). The FEA motor model is seen like a black-box
and it is employed in a series of simulations, resulting new
computed data. Themodels with stored parameters into LUTs
are dependent on the amount of the recorded data and on the
machine phase current’s range used to perform the electro-
magnetic simulations. In order to avoid the error introduced
by the LUTswhen extrapolating (i.e., duringmotor overload),
the current’s range is chosen to be a several times larger than
the rated one, leading to increased time for data computation.
Even more, the model’s accuracy is highly influenced by the
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current’s range decimation; the smaller the current steps the
higher the computational precision.

High-fidelity models can be achieved using modern meth-
ods, such as machine learning. The artificial neural network
(ANN), that has an increased capacity to fit non-linear func-
tions and to find patterns in the training data generated by
the FEA model, can provide fast description of the system
behaviour [1]. The implementation of an ANN consists in
defining the model’s inputs and outputs together with their
connection given by the network’s architecture and train-
ing algorithm. In the field of electrical machines, ANNs
are implemented for machine control, anomaly detection
and fault diagnosis, or for electromagnetic torque estima-
tion, as presented in references [2]–[4]. A switched reluc-
tance motor’s (SRM) accurate model based on hybrid trained
wavelet neural network (WNN) that combines genetic algo-
rithm (GA) with gradient descent (GD) methods to train the
network is proposed in [2]. In [3] and [4], torque estimation
methods and machine control techniques based on neural
network are detailed, reaching highly accurate results.

Furthermore, to reduce both computational and neural
network training times, the data dimension used to train
the network is minimized by applying machine learning
dimensionality reduction techniques. Different methods for
data reduction based on machine learning allow obtaining
quickly high-accuracy models. Such an example is presented
in [5], where a comparison of various data sampling and their
effect on the accuracy of an ANN for torque estimation is
discussed.

In this context, the paper proposes a flux-linkage quadra-
ture (dq) based model order reduction (MOR) obtained by
fitting twomulti-layer artificial neural networks (ANNs). The
novelty of this study rises from:

1) Involving data dimensionality reduction methods com-
ing from the machine learning domain in the process of
surrogate modelling. The reason behind this approach
is that the PMSM’s reduced order models developed
using neuronal networks trained with reduced data sets
are capable to reach high-accuracy results.

2) Describing the process of data computation and
network training, performed in a significantly
reduced amount of time, compared to the traditional
approach.

3) Evaluating the efficiency of the dimensionality reduc-
tion methods by performing a comparison between
the FEA, the experimental and the ANNs results
obtained after training the network with different
reduced data sets.

4) Quantifying the positive effect of data dimensionality
reduction methods on time dedicated to extract the
necessary data from electromagnetic simulations and
on the time dedicated to train the networks.

The PMSM surrogate models discussed in this paper
present reduced development time, although capable to offer
accurate results including the possibility to predict the torque
ripple.

The present paper is structured in the following sections:
the machine used to validate the dynamic model and the
machine governing equations are presented in Section II.
In Section III, the architectures of the neuronal networks and
the features of the training algorithm are discussed. The data
dimensionality reduction procedures and their comparison
in terms of accuracy and elapsed computational time are
described in Section IV. The experimental validation of the
theoretical studies is performed in Section V. Section VI is
dedicated to final conclusions.

II. FLUX-LINKAGE-BASED PMSM MODEL
A. MACHINE UNDER STUDY
The development and validation of the dynamic PMSM
model are based on the numerical analysis conducted on a
eighteen slots and six poles PMSM, having the stator teeth
surface shaped for torque and noise, vibration and harsh-
ness (NVH) characteristics improvement. Themachine cross-
section, its magnetic flux density and flux lines distributions
are shown in Fig. 1. The main specifications of the machine
under study are listed in Table 1.

FIGURE 1. Cross-section, magnetic flux density and flux lines of the
machine under study.

To construct the reduced order model of the machine under
study, several 2D finite element analysis (FEA) based simu-
lations are engaged at different rotor positions and armature
currents. The quadrature model currents (d- and q- axis) are
ranged from -200 [A] to 200 [A], with a step of 20 [A],
while the rotor position is varied from 0 to 60 mechanical
degrees.

TABLE 1. The main parameters of the machine under study.

B. MACHINE MODELING
The general description of a PMSM is based on a system of
equations referenced in a quadrature axes system, fixed to
the rotor. This system is denoted dq0 and its corresponding
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equations are listed in (1).

vd = Rsid +
d9d

dt
− ωr9q

vq = Rsiq +
d9q

dt
+ ωr9d

v0 = Rsi0 +
d90

dt
(1)

where vd, vq and v0 are the machine voltages, id, iq and i0
are the machine armature currents, Rs represents the phases
resistance, ωr represents the angular speed and ψd, ψq and
ψ0 are the flux-linkage.

Considering that the supply system is perfectly balanced
and the motor has star connection, the 0 components will be
neglected from the dq0 equation presented in (1). Extracting
from (1) the magnetic fluxes, their integral form results:

ψd =

∫
(vd − Rsid(ψd, ψq, θr)+ ωr9q) dt

ψq =

∫
(vq − Rsiq(ψd, ψq, θr)− ωr9d) dt (2)

where θr represents the rotor position.
The electromagnetic torque is usually computed as average

value, hence no cogging or distortion due to the sinusoidal
waveform of the magnetomotive force (MMF) due to the
stator winding distribution are taken into account:

Tem =
3
2
p(ψdiq − ψqid) (3)

with p denoting the number of pole pairs.
However, to design a high-accuracy dynamic machine

model, returning close to FEA and experimental results,
the cogging effect and the MMF distortion must be con-
sidered. In doing so, the computation of the instantaneous
torque will include its ripples. This has to be solved with-
out additional calculations. Hence, extracting from FEA the
torque function of the d- and q- axis currents and the rotor
position should be enough. From the same FEA model the
flux-linkage values are extracted, used also for building the
dynamic PMSM model.

III. ARTIFICIAL NEURAL NETWORK
The artificial neural networks (ANN) is a machine learn-
ing approach that mimics the human intelligence and has a
non-linear fitting capacity, which makes it a good candidate
for modelling reduced-order electrical machines [2]. There
are two basic ANN architectures: the single-layer ANN,
where the input neurons are directly linked to the output
neurons, and the multi-layers ANN, where the input neurons
are separated from the output ones by a hidden layer[1]. Even
if a network can have multiples hidden layers, no more than
three are commonly used [6].

In order to obtain accurate results, the ANN architecture
chosen to be implemented is amulti-layer network, consisting
in an input layer that transmits and distributes the information
to all the neurons of the intermediate layer, known as the
hidden layer. Here, the data computation is performed and

passed to an output layer that constitutes the model result.
Therefore, the considered network is a feed-forward one,
as the data is transmitted only from the left layer to the right
layer without feed-back connections. Furthermore, the nodes
of the same layer are not interconnected, but these are linked
to the nodes of the following layer, as depicted in Fig. 2.
This hidden layer handles data manipulation coming from the
input nodes by modifying specific parameters (i.e. weights
and biases) that describe connections of adjacent layers.

FIGURE 2. Neural network structure [7].

Fig. 2 depicts the process where the information coming
from the input neurons, xi, is multiplied with weights ele-
ments and then summed with bias ones. The result of this
process, performed in the hidden neurons, is expressed as:

zj =
n∑
j

n∑
i

wijxi + bij (4)

where the terms wij and bij represent the weight and the bias
between the ith input neuron and the jth hidden neuron. n
denotes the number of inputs.

The resulting input, z, is subject to a transfer function com-
puting the neural network’s output. A non-linear activation
function, the sigmoid function, is adopted in (5).

f (z) =
1

1+ e−z
(5)

A. MODEL IMPLEMENTATION
In order to create the reduced order model of the machine
under study, two ANNs are trained. The first one deals with
current estimation from the flux-linkage and rotor position,
while the second one estimates the torque based on the d-
and q-axis currents and rotor position. The block diagram of
the motor model developed in dq reference frame is presented
in Fig. 3.

The flux-linkage network has a structure composed of four
layers with 3 input neurons, 60 ones in the first hidden layer,
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FIGURE 3. Block diagrams for the motor dq reference frame model.

20 in the second hidden layer and 2 in the output layer. The
network is trained by imposing as inputs the d- and q-axis
flux-linkages and the rotor position, resulted from FEA, out-
puting the d- and q-axis currents. The connection between
the input and output layers is assured by the hidden layers.
Comparing the look-up-tables (LUTs)-based model and the
ANN-based motor model, the later needs less data processing
time. If the network is optimally trained and returns accurate
results, the process of flux-linkage inversion performed for
LUTs-based models, is avoided. The mathematical inver-
sion of 3D LUTs is known to be time consuming, reaching
the elapsed time of 1-2 hours. Hence, if the inversion is
eliminated, the overall process is solved faster, reaching a
good correlation between the input and the output within the
training process.

The network trained for torque estimation has a simple
structure, with only three layers. The input layer consists
of 3 neurons, the hidden layer has 100, while the output
one is composed by a single neuron. The training process is
performed by imposing the id, iq and the rotor position, θr,
as inputs and torque values as targets.

B. LEVENBERG-MARQUARDT BACKPROPAGATION
ALGORITHM
To train the developed multi-layer feed-forward ANN,
the Levenberg-Marquardt backpropagation algorithm
(LMBPA), is used. This is derived from the Newton algo-
rithm for non-linear functions minimisation [8]. Considering
that the Newton method for minimising functions uses the
function Hessian matrix (∇2F) and function gradient matrix
(∇F), the weights and biases are updated by the following
the rule:

wk+1 = wk − (∇2F)−1∇Fk (6)

Assuming that the function F , desired to be minimised
with respect to a vector parameter (in this case, weight
vector), can be expressed as the sum of square errors,
the Levenberg-Marquardt algorithm is minimising the error

function, E [9]:

E(x,w) =
1
2

T∑
t=1

N∑
n=1

e2t,n (7)

Here x is the input, w is the weight vector, t the training
sample and e2t,n is the error resulted for the training sample
t at output n. The difference is quantified as the absolute
error between the output reference (expected value) and the
obtained one, as follows:

et,n = y∗t,n − yt,n (8)

The Newton algorithm computes the minimum of the error
function using the Hessian matrix, obtained from the func-
tion’s second derivative:

H =


∂2 E

∂w2
1

. . .
∂2 E
∂w1wn

. . . . . . . . .

∂2 E
∂wnw1

. . .
∂2 E
∂w2

n

 (9)

The Levenberg-Marquardt algorithm approximates the
Hessian matrix from the Jacobian one, J , a parameter µ
and the identity matrix, I , as it is described in (10). It is
worth mentioning that if µ takes small values, the algorithm
transforms into Gauss-Newton algorithm.

H = ∇2E = JT J + µI (10)

where the Jacobian matrix is expressed as:

J =


∂e1
∂w1

. . .
∂e1
∂wn

. . . . . . . . .
∂en
∂w1

. . .
∂en
∂wn

 (11)

Calculating the gradient function using its Jacobian,
reduces the computation time:

gi =
∂E
∂wi
=
∂(

∑T
t=1

∑N
n=1 e

2
t,n)

∂wi

=

T∑
t=1

N∑
n=1

∂et,n
∂wi

et,n = Je (12)

Substituting (10) and (12) in (6), the Levenberg-Marquardt
algorithm weights updating rule is [9]:

wk+1 = wk − (JTk Jk + µI )
−1Jkek (13)

C. NEURAL NETWORK OVERFITTING
One of the main challenges when training a neural network is
to quantify the required invested effort to reach an optimal
level. Two important situations appear when training the
neuronal networks: underfitting, when the network is not
trained enough and is not reaching satisfactory results, and
the overfitting. The latter issue appears when the network
is trained to perfectly fit the training data by learning its
particularities. In doing so, its capability to generalize and
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adapt to new input data is decreased. Hence, even if the
network offers very good results for particular data, it will
prove poor performance in case of new inputs.

A solution to this problem may be to train multiple net-
works with different parameters (weights, biases) and differ-
ent data partitioning into training, validation and test samples,
until an adequate generalization is reached. In doing so the
model is capable to predict other data. Another approach
to avoid the overfitting drawbacks is the ‘‘early stopping’’
method. Using this method, the data is divided, based on their
destination, in training data, used to compute the network
weights and biases, validation and testing data. In parallel,
the errors coming from the validation and training are eval-
uated in order to analyse the generalisation capacity of the
network. Normally, the errors from training and validation
decrease during the training process. When the network starts
to overfit, the validation error increases and the training is
stopped [10].

However, the validation error can increase during a number
of successive iterations, hence a stopping criterion must be
included in the algorithm [10].

To avoid the overfitting issue, for the implemented neural
networks, the available data is divided in 70 [%] for the
training process, 15 [%] for the validation and 15 [%] for
testing. Moreover, the training process is stopped when the
validation error keeps increasing during 300 successive iter-
ations. The weights and biases, computed for the minimum
validation error, are returned. The generalization capability
of the developed neural networks is tested by imposing new,
unseen inputs and comparing the output with results obtained
from FEA simulations.

D. FLUX-LINKAGE VS. LINEAR ANN-BASED MODELS
To prove the necessity of building a flux-linkage-based
model, where both flux-currents and currents-torque relation-
ships are modeled with ANN structures, the model proposed
in Fig. 3 is compared with a linear model. The linear model is
an inductance-based one that relies on the linear relationship
between the fluxes and the self and mutual inductances.
Assuming that the three-phase supply currents system is per-
fectly balanced and the motor has a star winding connection,
the linear model can be expressed by the voltage equations,
where the state variables are represented by the quadrature
currents:

vd = Rsid + Ld
did
dt
+ Ldq

diq
dt
− ωrLqiq

vq = Rsiq + Lq
diq
dt
+ Lqd

did
dt
+ ωrLd id + ψmdωr (14)

where vd and vq are the machine voltages, Ld and Lq represent
the d- and q-axis inductances, Ldq and Lqd are the cross
coupling inductances, ωr is the angular speed and ψmd is the
permanent magnet flux.

The motor parameters (i.e., quadrature inductances) are
obtained as a function of d- and q-axis currents from

FIGURE 4. Flux-linkage and linear ANN-based models (a) d- axis current
(b) q-axis current and (c) electromagnetic torque waveforms.

FEA using frozen permeability method (FPM) [11], [12].
The inductances are included in the dynamic model using
2D LUTs.

Furthermore, in order to capture the torque ripple, the lin-
ear model uses for electromagnetic torque prediction the
Torque ANN with a three layers structure described in
Section III-A.

The accuracy of the flux-linkage model presented in this
paper is tested by comparing its results with those from the
linear and from FEA-based models. Hence, all three models
are fed by a sinusoidal 3-phase voltage system:

vk = vd cos(θr + α)− vq sin(θr + α) (15)

where k ∈ {a, b, c} and α ∈ {0, 2π/3,−2π/3}.
Both the torque and d- and q-axis currents obtained for

vd = 0[V ] and vq = 4.4[V ], when the rotor is turning at
a constant speed equal to 1500 [rpm] are shown in Fig. 4.
The presented results show the simulations of the flux-linkage
and linear ANN-based models compared to FEA ones. Even
if the linear model doesn’t require time for training a neu-
ral network or for LUTs inversion, the obtained results are
less precise. The electromagnetic torque waveforms are pre-
sented in Fig. 4 c). It can be observed that despite the fact
that both flux-linkage and linear models use a neural net-
work for torque prediction, the linear model is not able to
replicate the FEA values. This is because the linear model
is not able to accurately compute the armature currents,
as the voltage equations are linear modeled. The flux-linkage
ANN-based model is able to accurately predict the armature
currents using the Flux ANN structure and torque values
using the Torque ANN structure. Therefore, the flux-linkage
ANN-based model will be used for the next studies presented
in this paper.
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FIGURE 5. (a) Equally distributed data, EDD, (441 points), (b) LHS data distribution (220 points) and (c) Sobol sequence (220 points).

IV. DATA DIMENSIONALITY REDUCTION
Traditionally, the data used for electrical machines model
order reduction is non-adaptive. This means the data is
extracted from electromagnetic simulations with imposed
conditions, usually defined by a fixed number of d- and
q-axis currents and rotor positions. These are splitting the
input space in equal intervals, as depicted in Fig. 5 a), where
a number of 441 id and iq combinations, for every rotor
position, are used to train the neural network. The data is
extracted and stored in LUTs, or, in our case, the data is
used to train neural networks meaning that the information
is computed in a single step and the amount of data generated
may be more than the network requires in order to reach high
fidelity results.

To overcome this issue, a machine learning method was
implemented to reduce the data generated dimension used to
train the proposed neural networks.

A. ADAPTIVE DATA GENERATION PROCESS
The active learning method used to reduce the data dimension
is the adaptive samples generation. Using this technique,
the data necessary for network training is computed and
extracted in multiple steps. Firstly, a small amount of elec-
tromagnetic simulations are conducted in order to compute
and extract the necessary data to train the network and eval-
uate the output error. If this is under a desired threshold,
it is concluded that the network is sufficiently trained and
the process is stopped. If the network doesn’t behave as it
is expected, additional data computation is performed. The
process consisting in data generation, neural network training
and error evaluation is recurrent and it stops when the network
reaches a desired accuracy.

For the adaptive data generation process, the input samples
are created using a pseudo-random algorithm that fills the
input space uniformly, avoiding clusters and gaps within
data. In [13] three sampling methods, Monte Carlo (MC),
Latin Hypercube Sampling (LHS) and Sobol sequence, are
described and their performances are compared. The Sobol
sequence proves the best points distribution in n-dimensions.
As it can be observed in Fig. 5, sampling based on Sobol
sequence is characterised by increased uniformity of the input

FIGURE 6. Networks training relative errors expressed in [%].

points, compared with the LHS method. The main features of
the Sobol sequence are:

1) An increased space distribution as the number of
points, N , goes to infinite.

2) A satisfactory distribution for N goes to zero.
3) A fast converging algorithm.

B. IMPLEMENTATION
To maintain the ANNs results relative error under 1 [%],
the FEA simulations are performed for a number of input
samples obtained using both LHS and Sobol sequence meth-
ods. Hence, starting from 100 id-iq samples for every rotor
position, their number is increased until the targeted accuracy
is reached. The errors obtained using the Sobol sequence
method decrease once the number of id - iq combinations is
increased, a satisfactory error being obtained for more than
200 id-iq input samples. As depicted in Fig. 6 a), the mean
relative error obtained from both torque (represented with
black line) and flux networks (represented with red line) is
small for 200 id-iq training samples. Even if the Flux ANN
maximum error (marked with green line) is less than 1 [%],
the Torque ANNmaximum relative error is 2.84 [%], exceed-
ing the targeted value. Themaximum andmean relative errors
of the Torque ANN decrease under 1 [%] when the input is
increased with 20 samples. In doing so, the flux ANN errors
are slightly decreased with 220 id-iq input combinations.

Therefore, by generating data through Sobol sequence
method, the number of input samples for torque and
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flux-linkage neural network training is reduced to 220 points.
Comparing this with the classical data generation method,
Equally Distributed Data (EDD), presented in Fig. 5 a), where
the input consists of 441 samples, proves that the data dimen-
sion is reduced with 50 [%]. The amount of data computed
for neural networks training is reduced significantly. This
also has a positive impact on the elapsed time for FEA and
training, as shown in Table 2. Both time periods, dedicated
to FEA and ANN training are decreased, with up to 50 [%],
compared to the case when data is extracted for an equally
distributed input samples. Moreover, a comparison between
the training time obtained for different number of samples
can be identified in Fig. 7. New training data is generated
using FEA simulations, starting from a set of 150 samples up
to 441 samples, with variable step. It can be observed that
the training time increases significantly once the number of
samples is expanded. The training process for a Flux ANN is
highly time consuming due to its elaborated structure.

TABLE 2. The time dedicated to generate the data and train the ANNs.

The results obtained for an artificial network trained with
data from FEA at imposed input points generated with Sobol
sequence method are accurate enough with reduced training
time. On the other hand, the neural networks described in
Section III-A, trained with data from FEA with inputs gen-
erated with LHS method start to be accurate enough above
400 input samples. This is a direct consequence of its uneven
filling pattern of the input space. No extreme sample points
are taken into account, as observed in Fig. 5 c).
Figure 6 b) presents the relative errors obtained from the

Torque and Flux ANNs trained with LHS data. The Torque
ANN mean relative error for 400 samples is 1.1 [%] and
the maximum error is 2.9 [%], exceeding the reference (i.e.,
1 [%]). Hence, the number of samples is increased to 441,
decreasing the errors under the desired limit. Even if the
networks trained with data generated using LHS method are
accurate enough for 441 used samples, the dimension of the
input space is larger, compared with the EDD data and Sobol
sequence method.

A good agreement between FEA results, the networks
sequentially trained with full data dimension (EDD), reduced
data dimension using Sobol sequence (220 samples) and
LHS (441 samples) are identified in Fig. 8 a) and b). The
torque waveforms in steady state at rated speed are compared
in Fig. 8 a). In Fig. 8 b), the instantaneous errors are depicted
assuming the FEA results as references. It can be observed
that the Sobol 220 network computes the results closest to
FEA. This is a consequence of its capacity to uniformly fit
the input space samples.

FIGURE 7. The time dedicated to train the ANNs.

FIGURE 8. (a) electromagnetic torque and (b) instantaneous error of the
FEM and ANN models obtained for different data samples distribution,
at steady state.

C. SOBOL 220 NETWORK MODEL VALIDATION
To prove the accuracy and capacity to predict nonlinear
highly saturated machine behaviour of the ANNs trained with
Sobol 220 sequence, its results are compared to those from
FEA. Firstly, the validation is performed at rated current
and constant rated speed. One can observe in Fig. 9 a) that
the Sobol 220 network model is able to replicate the torque
ripple obtained from FEA simulation. Its harmonic content
is analysed in Fig. 9 b). It can be observed that for rated
current, the neural network model’s result is similar to the
one from FEA.

In the second and third study case, the machine is saturated
by increasing the phase current by five and eight times the
rated value. It is worth mentioning that the latter condition
is imposed in order to prove the neural network model’s
prediction capacity. The current value (i.e., eight times rated
current) is new, previously unseen, meaning that it was not
included in the current range for which the data was extracted
from FEA simulations. The torque obtained for five and then
for eight times the rated current are depicted in Fig. 10 a) and
Fig. 11 a). In both cases, a good correlation with FEA results
is identified, with an error under 1 [%]. Furthermore, it can
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FIGURE 9. (a) FEM vs ANN Torque comparison obtained for rated current
and (b) Frequency spectrum of the electromagnetic torque.

FIGURE 10. (a) FEM vs ANN Torque comparison obtained for 5 times
rated current and (b) Frequency spectrum of the electromagnetic torque.

FIGURE 11. (a) FEM vs ANN Torque comparison obtained for 8 times
rated current and (b) Frequency spectrum of the electromagnetic torque.

be observed that even when the machine is highly saturated,
the dynamic model is able to replicate the torque ripples
created by the distorted magnetic field and cogging effect.
The harmonic content of the resulted torques are presented
in Fig. 10 b) and Fig. 11 b). Although the amplitude of
the harmonics is changed, compared to the case of rated
current, the harmonic content of the neural network model
is similar to the one obtained with FEA. Therefore, the Sobol
220 ANN model can accurately predict the electromagnetic
torque under rated or increased saturation conditions and will
be compared with the experimental measurements.

V. EXPERIMENTAL VALIDATION
To prove the performances and the accuracy of the model
obtained using the methods presented in the previous sec-
tions, the results of the dynamic model are compared with
experimental ones. As detailed previously, the dynamical
simulation model was built in Matlab/Simulink environment.
In Section IV, a comparative analysis was presented, super-

imposing results from FEA and Simulink models for the
same machine, operated in the same conditions. At that point,
the high accuracy of the PMSM’s Simulink model using the
Sobol 220 networks for current and torque estimation was
proved. This was considered a preliminary validation step,
handshaking the FEA with the Simulink model.

The dynamic model was built using the equations detailed
in Section II, while the flux-linkages for the dq axes and
torque values were recorded and used to train the neural net-
works. The PMSM’s simulationmodel is presented in Fig. 12,
as general organization method of such flux-linkages-based
analysis program. The initial conditions of the two integrators
included in the dynamic model are set to be equal with the
quadrature values of the flux-linkage obtained at no-load
condition, for the initial rotor position.

As a PMSM requires electronic control to follow imposed
references, the authors attached to the PMSMmodel, in Mat-
lab/Simulink, the Field Oriented Control (FOC). This com-
putes the necessary voltages to be supplied to the machine to
ensure it pursuits the imposed speed reference independent
of its load torque. The interest of this study is not focused
on detailing the FOC, the reader being encouraged to visit
references [14] and [15].

What remains to be proved is the validity of the dynamic
machine model. This should return the same results like the
actual machine experimentally tested. By this, the results of
the simulation are proved to overlap those obtained on the
actual test bench. If this target is reached, one can consider
that all models, FEA, dynamic and real one behave identi-
cally, insuring high accuracy simulation results.

In order to perform a comprehensive analysis, the model is
referenced with random speed and load torque variations.

FIGURE 12. The Matlab Simulink PMSM model.

These are used for the laboratory testing of the actual
PMSM versus the modelled one. The setup of the laboratory
test-bench is depicted in Fig. 13, including: the PMSM under
study and its 3-phase inverter, a DC machine as load machine
connected to a programmable load, a currents measurement
unit and a NI RSeries FPGA used as general controller.

To avoid redundancy, the results will be presented in a com-
parative analysis superimposing the references with the data
from the simulation model and the one from the test-bench.

In Fig. 14, speed and torque variations are compared to
the references. One can observe that there is a quite good
agreement between the plots. It has to be mentioned that the
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FIGURE 13. The laboratory test-bench setup.

FIGURE 14. Simulated, measured and reference speed (a) and torque
(b) variations.

measured values were not filtered by any means in order
to have a realistic comparison of the raw data versus the
one obtained via simulations. It must be explained that the
generated torque is larger than the reference one because
themachine has to overcome, besides the load torque, the fric-
tion forces that appear during its operation. It can be observed
in Fig. 13 that the test-bench does not include a torque meter.
However, the authors identify the PMSM torque using the
dq currents and the machine parameters, based on (3). The
PMSMused is a custom-mademachine and for this reason the
FEA model is available in detail for the authors. The torque
from the FEA model, the test-data from the machine’s man-
ufacturer and the torque estimated by authors agree. Hence,
it is considered a 3-way validation assuring the authors that
the analytical estimation returns the actual electromagnetic
torque.

FIGURE 15. Simulated vs. measured dq machine currents.

Going further with the comparison, in Fig. 15 the id and
iq currents obtained from the simulation are compared to
those measured on the test-bench. Again, the good agreement
proves that the simulation model performs precisely like the
test-bench.

The random nature of the speed and load torque reference
profiles ensures coverage of a large range of possible machine
conditions. The results presented in this section prove the
accuracy of the simulation program compared to their mea-
sured homologous. However, not the simulation program
itself is the center of interest but the concept of engaging
machine learning techniques to create highly precise data
necessary to describe the PMSM. Actually, by these results
it is proven that using such a philosophy when generating the
model data, one can build a simulation program that performs
just like its real twin, using reduced data quantity.

VI. CONCLUSION
This paper presented a PMSM modelling approach charac-
terised by combining artificial neural networks and machine
learning techniques for data dimensionality reduction. Two
artificial neural networks were used for current and torque
prediction, proving increased capacity to fit the data extracted
from FEA that were performed accordingly with the data
reduction methods. To reduce the computational and net-
works training time, two adaptive data generation techniques,
the Latin Hypercube Sampling and the Sobol sequence were
implemented and described. The results (i.e., electromagnetic
torque and armature currents) obtained from ANNs trained
with different data sets were compared with the ones from
FEA and the accuracy and the capacity to decrease the com-
putational effort of the proposed networks was confirmed.

Comparing the results obtained from the dynamic mod-
els with the FEA ones, it was concluded that the network
trained with 220 × 61 input combinations generated with
Sobol sequence has the best performances, reducing both
computational time and data dimension with 50[%], keeping
the results relative error under 1[%]. Therefore, the 220 Sobol
network was included in the final motor model dedicated to
real-time platform integration.

An experimental validation of the PMSM model was car-
ried out by comparing results from the simulations with those
obtained in the laboratory. These proved the accuracy of the
simulation model and by this scientific value is added to the
study showing the benefits of engaging such methods when
it comes to high performance simulation programs.
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