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ABSTRACT Multimedia content delivery via the cellular infrastructure increases fast due to the very high
volumes of mobile video traffic generated by the billions of end devices populating the mobile data network.
A critical mass of mobile video content requests refers to the consumption of the same popular video
content, which is consumed by different end terminals spanning small geographical regions. Such content
requests place a great burden on the backhaul of content-agnostic cellular networks, which fail to exploit the
correlation of video requests to decongest their backhaul links. This creates redundant retransmissions while
fetching the same video content from a central server to the network edge, using the bandwidth-limited
backhaul at peak-time periods. With the integration of multi-access edge computing (MEC) capabilities
in 5G mobile cellular networks, mobile network operators can place popular video content closer to the
network edge at off-peak time periods, predicting user requests exhibiting a high correlation for a given
time interval over smaller geographical regions. In this paper, we investigate popular content placement
in multi-tier heterogeneous cellular networks where the edge network infrastructure can cooperate to create
content delivery (and placement) clusters to effectively serve correlated video requests. To this end, wemodel
the cooperative content placement problem using the multiple knapsack problem (MKP) formulation and
present an exact (optimal) bound-and-bound strategy to solve it. The performance of the proposed strategy
is evaluated in-depth using extensive system-level simulations and is compared against that of other state-
of-the-art algorithms. Valuable design guidelines and key performance trade-offs are discussed, paving the
way towards cluster-based cooperative caching in MEC-enabled cellular network setups.

INDEX TERMS Content caching, cellular networks, HetNets, MEC, multiple knapsack problem, branch-
and-bound, dynamic programming.

I. INTRODUCTION
The emergence of new technologies, such as the Inter-
net of things (IoT), machine to machine communications
(M2M), e-health, and vehicular communications has pushed
the cellular traffic much higher than anticipated [1]. Before
the outbreak of the COVID-19 pandemic in 2020, recent
reports [2] on cellular network traffic predicted a five-fold
increase of the monthly mobile traffic, from 33 exabytes
in 2019 to 164 exabytes by 2025, exhibiting an annual growth
of 31%. Mobile data traffic is dominated by mobile video
content, which in 2020 accounts for 63% of the total traffic,
while it is predicted to exceed 76% by 2025, exhibiting an
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annual growth rate of 30% [2]. The ever-increasing mobile
video traffic stems from the fast growth of high-bandwidth
demanding multimedia services, such as video on demand
(VoD), augmented reality, immersive media formats and the
multi-billions of mobile broadband subscriptions. On top of
that, online streaming is extensively used to support the daily
activities and working routine of humans around the globe,
especially after the outbreak of the COVID-19 pandemic,
which has accelerated the extensive use of online video
streaming services and teleworking.

Although mobile cellular networks are being upgraded
to accommodate the offered mobile data traffic load, e.g.,
through the deployment of new generation fronthaul and
backhaul technologies, the exponential increase of mobile
video traffic still brings the utilization of existing backhaul
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links to their capacity limits, questioning the scalability of
existing systems in light of the ever-increasing demand for
mobile video content delivery. Backhaul congestion is aggra-
vated by factors, such as the size of contents, the overall
number of video consumers and the characteristics governing
video consumption (e.g., screen size, quality of experience -
QoE - requirements, video resolution). Mobile video traf-
fic is dominated by multiple requests of the same popular
video content, creating overlapping end-to-end video content
delivery chains, starting from the edge network terminals and
ending to the servers hosting the requested content in the far
Internet.

Popular video segments are redundantly re-transmitted
from the central content server (residing in the far Inter-
net) to the end user equipment (UE) (residing at the net-
work edge) creating unnecessary utilization of intermediate
network resources, especially in heterogeneous cellular net-
works (HCN) with multiple network tiers and high deploy-
ment density [3]. This problem will be further exacerbated in
the fifth generation (5G) of mobile cellular networks, where
low latency requirements of less than 1ms are targeted for
specific service types co-utilizing the wireless medium [4].
To alleviate redundancy upon popular content transmission
throughout the cellular infrastructure and meet the high-end
performance targets set for 5G and Beyond mobile data
networks, the utilization of edge network caching has been
proposed as a cost-effective capacity-boosting network-layer
solution [5], [6].

Edge network caching consists of the edge content place-
ment and the edge content delivery phases. Edge content
placement refers to the process by which the storage of edge
network nodes is filled with popular content to reduce the
delay and backhaul overheads of fetching popular content
from central servers outside the network service domain
to the network edge. Edge content delivery refers to the
process by which the cached content is delivered to the
content consumers (edge users), utilizing multiple wireless
links and radio access technologies (RATs). The performance
of cache-enabled mobile cellular networks strongly depends
on the optimization techniques used to place popular video
contents in the edge network and on the mixture of tech-
nologies used to deliver the respective content to the end
terminals [7]–[9].

Edge content placement and delivery can utilize storage
resources available in different types of network elements,
including macrocell base stations (MBS), small base stations
(SBS), femtocell base stations (FBS) and UEs. Edge content
placement and delivery can utilize multi-access edge com-
puting (MEC) capabilities at the network edge, a technology
that has been long-viewed as the cornerstone for seamless
delivery of personalized video content. For example, MEC
nodes can [10] i) predict content popularity to locally store
popular video chunks in the near area of mobile users and
offload the radio access network (RAN) during on-peak peri-
ods (reducing thus the user-perceived latency), ii) employ
local transcoding on high-resolution videos to match the

screen resolution of mobile terminals (thus, enhancing the
user-perceived rate), and iii) move relevant content and con-
text closer to the end user (increasing thus the user-perceived
5G service availability) [11]. In the sequel, we will refer to
the cache-enabled (infrastructure) nodes, whose main role is
to cache popular video content and relay it to the end users
without transcoding, as mobile helpers (MHs).

In this paper, we are concerned with popular content place-
ment at the network edge and focus on the challenging sce-
nario where the edge network nodes of the HCN, which form
cache-enabled MEC clusters, coordinate the placement of
popular video contents and cooperate to deliver the respective
content to the edge users within their coverage. On the one
hand, node coordination refers to the employment of joint
decision making towards an optimized placement of popular
video contents over the entire MEC cluster (i.e. creating
a joint virtual storage pool of individual caches) without
allowing content partitioning (i.e. the entire content is stored
per node). On the other hand, cooperation in content delivery
assumes that if a requested content is found in the cache of
a node belonging to the MEC cluster, within which the user
request has been recorded, then the MEC cluster nodes shall
cooperate to relay the content to the serving node of the user
(i.e. the node where the original request has been made by the
user). Accordingly, a cache hit is considered to take place if
i) the content request of the user is made to a node belonging
to a tagged MEC cluster c and ii) any cache-enabled node
belonging to c has cached the requested content.

Without focusing on how the requested content is relayed
from a MEC node hosting the content to the MEC node
serving the user request, in the sequel, we formulate the
MEC-enabled cooperative content placement problem and
present an exact algorithm that enables joint content place-
ment into the individual caches of the MEC-enabled cluster
nodes. To this end, we use the cache hit probability (CHP) as
the optimization metric at the cluster level subject to a set of
constraints, which includes the placement of entire video files
per cluster with no repetition, no content partitioning, and the
limited cache sizes of the nodes.

The remainder of the paper is organized as follows.
Section II summarizes related works in the area and high-
lights the key differences of our modeling and optimization
approach in light of current state-of-the-art. Section III intro-
duces the system description and the problem formulation for
cooperative cluster-based content caching in MEC-enabled
HCNs. The proposed content placement strategy is presented
in section IV. In section V, we evaluate the performance
of the proposed content placement strategy using extensive
system-level simulations and provide detailed comparisons
with other state-of-the-art algorithms. SectionVI contains our
conclusions.

II. RELATED WORK AND MOTIVATION
Existing works on modeling and performance analysis of
edge network caching may be categorized into two broad
classes: non-cooperative, which assume that each MH acts
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autonomously and selects the content to be placed into its
cache using its own logic, and cooperative, which assumes
centrally planned content placement and delivery across mul-
tiple network nodes that cooperate to this end. Assuming
equal file size for popular contents and random request distri-
bution, the authors in [12], [13] have shown that cooperative
caching enables significant improvements on network perfor-
mance due to the enhanced utilization of edge computing and
storage resources. Under the same set of assumptions, a lower
download latency and better utilization of storage resources
has also been reported in [3]. In our previous work in [14]
we have formulated the non-cooperative content placement
problem for a singleMH using a 0/1 single knapsack problem
formulation given a generic file popularity and size distribu-
tion for popular video contents.

The authors in [12] have formulated the joint content
placement and delivery, showing that it is an NP-hard prob-
lem. Accordingly, they have relaxed the original nested dual
problem to a mixed integer non-linear program (MINLP)
and employed a branch-and-bound method to enable MHs
decide on their own the content to be placed in their cache.
Although the respective formulation and methodology used
to solve the problem is promising, the proposed system-wide
centralized optimization of the joint content placement and
delivery phases faces significant scalability challenges due
to the centralized aggregation of radio network information
from all nodes in the system and the required scaling of the
proposed solution to a very large number of nodes in the
HCN. The authors in [3] have decoupled the original joint
content placement and delivery problem by using i) integer
linear programming for solving the content placement prob-
lem and ii) employing unbalanced assignments for solving
the content delivery problem.

Content placement is typically formulated as a constrained
problem, which is modeled using different mathematical
frameworks. Depending on the proposed placement model,
different algorithms are used to solve the proposed formula-
tion. The survey work in [15] reviews the most widely used
modeling methods including, among others, game-theoretic,
stochastic, and predictive approaches. The authors in [16]
have used multiple-choice knapsack problems to model the
cooperative content placement problem in large instances.
The emphasis was given on caching layered videos using a
fully polynomial time approximation (FPTA) algorithm. The
authors in [17] have modeled content placement as a reward
maximization problem and solved it by reducing to solvable
linear programs. Similarly, the authors in [18] have used
mixed integer programming to model the content placement
problem and employed greedy algorithms to solve it. In [3],
the authors have used linear integer programming to model
the content placement problem and applied Lagrangian relax-
ationwith hierarchical prime-dual decomposition to decouple
its structure into two-levels, enabling solutions using the
sub-gradient method.

Greedy and heuristic algorithms are computationally
feasible in large-scale networks but exhibit sub-optimal

performance in the general case. In [19], the authors describe
a cooperative multi-tier caching system that is decomposed
into a series of independent knapsack sub-problems, which
are solved by using greedy methods. Focusing on adap-
tive streaming, the authors in [20] have used a polynomial
time greedy method to solve a series of knapsack problems,
in order to cache different versions of a video at the network
edge. Authors in [21], have modeled the content placement
problem using stochastic approach and have applied a fully
polynomial time approximation method where a random set
of contents is cached to the network edge, and the placement
probabilities within a tier are considered to be the same.
In [22], the authors employ stochastic geometry under fixed
cache size and bandwidth constraints, assuming a greedy
method to solve the proposed content placement problem.

The authors in [23] have used uncoded caching for the con-
tent placement phase (file partitioning without transcoding)
and index coding for the content delivery phase, by broadcast-
ing the coded messages. The Lyapunov function is employed
in [24] to allow hybrid cloud and edge content caching using
greedy and heuristic content placement algorithms. In [25],
content placement is modeled as amultiple knapsack problem
and dynamic programming (DP) is used to solve the uncoded
caching case. Nevertheless, the profit maximization problem
still depends on approximations of scaling, before the DP
is applied. Additional effort is required to deal with the
inhomogeneous content popularity over large geographical
areas, the limited storage and network capacity as well as
the heterogeneous characteristics of the cache-enabled edge
network nodes.

Different from the vast majority of existing approaches,
which typically formulate the problem of network-wide con-
tent placement given a content popularity distribution, in this
work we focus on the emerging scenario where the mobile
network operator (MNO) can assign the heterogeneous edge
network nodes of the HCN to MEC clusters of different
sizes and capabilities, e.g. different number of infrastructure
nodes per MEC cluster, different mixture of MEC node types
and cache sizes. MEC integration into the Radio Access
Network (RAN) will create an overlay layer of MEC service
areas, enabling MNOs not only to cope with the different
video popularities met across neighbor geographical regions
but also to adaptMEC service coverage to the actual topology
and capabilities of HCN nodes.

In light of the forthcoming MEC/RAN integration, current
literature includes a noteworthy amount of MEC clustering
techniques that incorporate different optimization criteria,
such as minimizing end-to-end delay of MEC services [26],
reducing traffic congestion within the MEC cluster [27],
enhancing MEC service coverage [28], or offloading core
network traffic to the edge MEC nodes [29]. Given the rich
literature in the area, in this work, we choose not to focus
on how to form a MEC cluster. Instead, we focus on how to
optimize content placement within a given MEC cluster of
known size (in terms of number of nodes) assuming poten-
tially different cache sizes across theMEC nodes. To this end,
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we consider that our strategy is used after the employment
of a MEC clustering technique. A key requirement is that
MEC clustering is performed such that intra-cluster content
exchange is performed at a low transmission cost, forming a
robust content delivery path between i) theMEC node serving
the video request directly to the end user and ii) theMECnode
that hosts the requested video content within theMEC cluster.

Without loss of generality, we consider that content place-
ment and intra-cluster content delivery is centrally coor-
dinated by a MEC cluster head. We further consider that
intra-cluster content delivery is performed in response to the
video requests, whereas content placement is performed on an
epoch-by-epoch basis.We define an epoch as the time interval
within which the list of popular video files is valid for the
entire MEC service area. The size and popularity of popular
files are assumed to be known to the MEC cluster head and
remain fixed for a given epoch. Current literature includes
a large volume of techniques for identifying popular video
contents and estimating their popularity distribution within a
target area [30].

Different from current state-of-the-art, we formulate and
solve a 0/1 multiple knapsack problem (ZOMKP) that inte-
grates the following two practical constraints i) MEC nodes
store complete files only (no file partitioning) and ii) only
one MEC node is allowed to store a given file within the
same MEC cluster (no file repetition). Both these constraints
result in a mathematically more involved problem but are
of high practical interest in realistic MEC-enabled setups
as explained below. Firstly, adding/removing cached seg-
ments of a given file from the cache of multiple MEC nodes
comes with increased communication and cache monitoring
overheads, whereas the released cache may not be fully uti-
lized (or be sufficient) to cache a new video file. Also, dis-
tributed (coded) caching in different nodes of theMEC cluster
requires perfect tracking of cached segments and sophisti-
cated multi-source transmission schemes to be implemented
within the MEC cluster. Secondly, even though redundant
caching of the same file at different MEC nodes increases the
availability of popular contents within the sameMEC cluster,
reducing the intra-cluster transmission cost given a cache hit,
also degrades the probability of having a cache hit event in
the MEC cluster due to the under-utilization of the avail-
able storage resources. Accordingly, the two requirements
of no file partitioning and no file repetition are in line with
MEC-enabled service provisioning, which primarily aims to
leverage edge network resources and avoid the utilization
of end-to-end links to the far Internet through the backhaul
network.

Different from the vast majority of existing works,
which typically relax the original problem formulation con-
straints to strike a good performance trade-off between
cache hit efficiency and computation time, in our work
we present an exact (optimal) content placement strategy
that employs a highly-effective bound-and-bound method-
ology that explores the full-state space of the problem in
a smart fashion. Compared to traditional branch-and-bound

methodologies, the proposed bound-and-bound strategy
exploits both an upper and a lower performance bound
to quickly eliminate sub-optimal solution branches without
going deeper into the evaluation of sub-optimal solution
branches. Using extensive system level simulations we val-
idate that under realistic MEC system setups, the proposed
bound-and-bound content placement strategy is computa-
tionally feasible. The main contributions of this paper are
summarized as follows:

• We investigate how content placement can be formulated
and optimized under the emerging MEC/RAN integra-
tion scenario, where the MNO can bundle edge net-
work, computation and storage resources to form joint
MEC/RAN service clusters (areas). The formation of
MEC service areas shall enable the MNOs to better
adapt to i) the local spatiotemporal file popularity in
smaller geographical areas and ii) the actual topology
and capabilities of HCN nodes.

• We provide a ZOMKP formulation of the coopera-
tive content placement problem within a given MEC
cluster, under practical constraints with regard to
the heterogeneity of cache sizes of cluster nodes,
the no-repetition of popular video files within the same
cluster, the non-uniformity of content popularity and the
un-coded placement of video files (no file repetition is
allowed within the same MEC cluster).

• We propose an exact bound-and-bound search strategy
to solve the proposed ZOMKP formulation. A lower
bound (LB) is obtained by fixing sequentially files to
the caches of MHs using the 0/1 single knapsack prob-
lem (ZOSKP) formulation in [14]. An upper bound (UB)
is obtained by assuming a virtual aggregate cache pool
of size equal to the sum of individual cache sizes of the
MHs and employing the ZOSKP solution in [14]. The
LB is used to avoid exploration of content placement
solution branches exhibiting sub-optimal performance,
whereas the UB is used to mitigate unnecessary compu-
tations towards the exploration of additional solutions.

• We provide extensive system-level simulations to eval-
uate the performance of the proposed strategy in
MEC-enabled multi-tier HCN, while we also com-
pare its performance to that of the widely-used greedy
and random content placement strategies. Moreover,
we highlight the key performance trade-offs governing
the content placement phase in MEC clusters, while
we also derive valuable design guidelines and discuss
best practices for MEC cluster formation and content
placement in multi-tier MEC-enabled HCNs.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM DESCRIPTION
We focus on the downlink direction of a multi-tier
MEC-enabled HCN, where each tier consists of HCN
nodes of similar networking capabilities. We consider that
the MNO employs a cluster formation algorithm to group
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FIGURE 1. (a) A system model example with three-tier HCN, (b) A content placement and delivery example.

a heterogeneous set of cache-enabled HCN nodes into MEC
clusters that will carry out the edge network caching process
(both content placement and delivery). A cache-enabledMEC
cluster can be composed byHCNnodes belonging to different
network tiers. In Fig. 1(a), we provide an illustrative example
of a three-tier system model instance, where UE-1 is out
of coverage of SBS-2. Without loss of generality, for each
MEC-enabled cluster, we consider that the content place-
ment is centrally planned by a cluster head (e.g. an MBS).
Cache-enabled nodes belonging to the same MEC cluster
may have different cache sizes (i.e. storage capacity), while
they are considered to follow the instructions of the MEC
cluster head to fill their cache with the allocated content
during off-peak periods.

We focus on the content placement process for a given time
period, which we term as the cache epoch. For a tagged cache
epoch, we consider that the cluster head concludes on a target
list of popular video files with known popularity and file size.
The popularity is evaluated on a per epoch and cluster basis,
while it can match the user request ratio on a per cluster
basis for the given popular video file. MEC cluster heads
are considered to deploy their own policy to infer the list of
popular files and the popularity distribution governing the list
within their coverage area, potentially encompassing infor-
mation from the MNO’s core network (e.g., using techniques
similar to those in [30]).

At any time, end users are considered to associate with
a serving HCN node, following the network discovery
and attachment protocols of the Radio Access Technol-
ogy employed by the HCN. If the serving HCN is not a
cache-enabled node belonging to a MEC cluster, it serves
the video request as usual (i.e., end-to-end connection to
the content delivery server at the Internet). However, if the

serving HCN node is a MEC node, it first examines whether
the requested video can be found in its local cache. If a local
cache hit takes place, the serving MEC node will serve the
video request without establishing an end-to-end connection
to the content server. If not, the serving MEC node will
subsequently seek the requested video content within the
MEC cluster it belongs to, e.g., by querying the cluster head,
or by utilizing a cache map available to all MHs belonging to
the same MEC cluster.

If the content is found in the cache of another MH belong-
ing to the same MEC cluster (cluster cache hit), in-cluster
content delivery methods shall be deployed to relay the
requested video content to the serving HCN node and, finally,
to the end user. Provided that files are not partitioned and
that a single copy of a popular file can be cached within a
given MEC cluster, it follows that in-cluster content delivery
comes down to the implementation of a direct, or a multi-hop
link between the servingMEC node and theMEC node (MH)
hosting the content, depending on the technologies available
in the MEC cluster. If the file cannot be found in the cache of
any cluster node (including the serving HCN node) then the
serving HCN node shall establish an end-to-end connection
to the content delivery server, hosting the requested video
content. Assuming that intra-cluster MEC content delivery
requires significantly lower delay and network overheads
compared to an end-to-end connection to the content deliv-
ery server in the far Internet, in the sequel, we consider a
cache hit event to take place if i) the serving HCN node is
part of a MEC cluster and ii) one of the MHs forming the
respective MEC cluster has a copy of the requested video
content in its cache. Note that the proposed problem for-
mulation and solution apply also when the user requests are
served by multiple MEC nodes, i.e. the CHP performance of
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the cluster is not affected by the methods used for content
delivery.

Let us now focus on the content placement process of a
given cache epoch and a tagged cache-enabled MEC clus-
ter of interest. Let N denote the number of nodes in the
tagged MEC cluster and let Ln denote the cache size (in bits)
of the n-th node belonging to the MEC cluster with n ∈
{1, . . . ,N }. Omitting indexes relating to the cache epoch, let
M = {fm : 1 ≤ m ≤ |M|} denote the set (list of size |M|)
of popular video files, where fm is the identifier of the m-th
file belonging to the list of popular video files. We also let ρm
and sm denote the (fixed) popularity and size of a tagged file
fm ∈M, respectively. Accordingly, we define the set of file
sizes S =

{
s1, s2, . . . s|M|

}
and the set of popularity values

(i.e. the popularity distribution) P =
{
ρ1, ρ2, . . . ρ|M|

}
,

where
∑|M|

m=1 ρm = 1. The content popularity values are
assumed to be normalized over the setM.

At the beginning of each cache epoch, the MEC cluster
head is assumed to be aware of the list of popular files M,
the size of popular files in S, the popularity values in P
as well as the number N and cache size values Ln of all
mobile helpers in n ∈ {1, . . . ,N }. Using those parameters
as an input, the cluster head implements its content place-
ment algorithm to decide on the popular files that should be
cached in the buffers of all N cluster nodes belonging to its
cache-enabled MEC cluster. For a given epoch, the content
placement strategy should take into consideration that i) the
number of MHs in the cluster is fixed to N , ii) the cache size
available per cluster node n ∈ {1, ..,N } is fixed and known
(Ln), iii) the size and popularity of files in M are fixed and
known (using sets S and P), iv) no repetition of popular files
is allowed across the caches of individual MHs forming the
MEC cluster, v) cluster nodes are considered capable to relay
content from another cluster node to another to server user
requests, and vi) file partitioning is not allowed (i.e. cluster
nodes cache entire files and not video chunks).

Assuming that the content placement procedure has con-
cluded, let Cn denote the set of cached popular files at the
nth MH and C =

⋃N
n=1 Cn the full set of cached files in the

MEC cluster, where Cn ⊆M and C ⊆M. Given the system
model constraints mentioned above, it readily follows that
Ci∩Cj = ∅ for i, j ∈ {1, . . . ,N } (i6=j) and that

∑
c∈Cn sc ≤ Ln.

Accordingly, the cluster head is required to maximize the
cluster cache hit probability (CHP), a metric that we define
on the basis of the popularity distribution characterizing the
libraryM as follows:

9C =
N∑
n=1

∑
c∈Cn

ρc (1)

B. 0/1 MULTIPLE KNAPSACK FORMULATION
Recall that the CHP is defined as the probability that a
requested video content is found in the cache of any MH
belonging to the MEC cluster where the original video
request has been made. In the sequel, we define the index

parameter xn,m to denote the realization of the event where the
n-the MH of the MEC cluster has cached the popular video
file fm ∈ M with n ∈ {1, . . . ,N }. Accordingly, xn,m = 1
if the event fm ∈ Cn holds true and xn,m = 0, otherwise.
Provided that file partitioning is not allowed and that MHs
belonging to the same cluster cannot cache the same popular
video file, it readily follows that

∑N
n=1 xn,m ≤ 1 for 1 ≤

m ≤ |M|. Accordingly, we present the ZOMKP formulation
in the context of MEC-enabled cluster-based edge content
placement in HCNs.

9C = argmax
xn,m,1≤n≤N ,1≤m≤|M|

N∑
n=1

|M|∑
m=1

ρmxn,m (2a)

subject to:
|M|∑
m=1

smxn,m ≤ Ln, 1 ≤ n ≤ N (2b)

N∑
n=1

xn,m ≤ 1, 1 ≤ m ≤ |M| (2c)

xn,m ∈ {0, 1} , 1 ≤ n ≤ N , 1 ≤ m ≤ |M|
(2d)

|M|∑
m=1

ρm ≤ 1 (2e)

In (2a), the xn,m values (1 ≤ n ≤ N , 1 ≤ m ≤ |M|)
should be adapted by the content placement strategy so as to
maximize the cluster-wide CHP 9C under the constraints of
Eqs.(2b)-(2e). Eq. (2b) formalizes the constraint that the total
size of video files placed per MH cannot exceed its cache size
limit. Eq. (2c) formalizes the constraint that a popular video
file cannot be cached in more than one MHs belonging to the
same MEC cluster (no file repetition). Eq. (2d) ensures that
file partitioning is not allowed (i.e. no intermediate values
are enabled). Eq. (2e) follows by construction of the file
popularity (i.e. the ρm values are probability values summing
up to one for all fm ∈M).

Note that by removing the constraint of Eq. (2e) we can
allow the popularity values of ρm (m ∈ {1, . . . , |M|}) to
take arbitrary values and not be normalized as probabilities
in view of a popularity distribution over the state space M.
However, in such an occasion, the proposed CHP metric
should be considered as a utility (reward) function rather than
a probability and be revised accordingly. For easy reference,
Table 1 summarizes the notation used for the main system
model parameters.

IV. PROPOSED SOLUTION
The ZOMKP is an NP-hard problem [8]. In this section,
we modify an exact bound-and-bound method that was
originally proposed in [31] and adapt it to the context of
our formulation in Eq. (2). The proposed bound-and-bound
content placement strategy is a modification of a typical
branch-and-bound state space exploration technique that pro-
gressively fills the cache of a tagged MH taking into con-
sideration both an upper and a lower performance bound to
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TABLE 1. Paper notation.

avoid the evaluation of inefficient solution branches. As a
branch we consider a content placement chain where i) the
placement of a given number of files has been fixed to the
cache of some MHs and ii) multiple options exist on fixing
the remaining files to the cache of some MHs with non-full
buffer. In the sequel, we consider that the MHs of the MEC
cluster under scope are sorted in increasing order of their
cache size, i.e., L1 ≤ L2 ≤ . . . ≤ LN , and that the popular
videos in library |M| are sorted in decreasing order of their
’popularity per size unit’, i.e., ρ1/s1 ≥ ρ2/s2 ≥ . . . . ≥

ρ|M|/s|M|.
The proposed strategy calculates the upper CHP perfor-

mance bound of the original problem assuming the ideal
scenario where files are placed into a single knapsack of size
L =

∑N
n=1 Ln. This scenario corresponds to the case where

all MHs of the MEC cluster form a virtual aggregate pool of
their cache resources, where files can be partitioned within
the underlying physical caches of MHs but only full files will
be cached in the aggregate MEC cache. The aforementioned
problem is equivalent to the ZOSKP for which optimal solu-
tion algorithms exist [14], [32]. A lower performance bound
is also calculated by independently fixing files into the caches
of MHs progressively (i.e. the MHs are filled one by one,
on increasing order of cache sizes) by using an algorithm
solving the individual ZOSKP formulations assuming that
popular files of the previous iterations are removed fromM.

Based on the lower and upper performance bounds,
the proposed strategy is capable of rejecting specific solutions
by i) progressively placings files into the cache of MHs,
ii) calculate the corresponding upper and lower performance
bounds conditioned on the aforementioned placements, and
iii) rejecting solution branches that exhibit poor CHP perfor-
mance through the use of a backtracking solution process.
A different stack data structure is used per MH to enable
effective backtracking of the partial solution and the explo-
ration of new solution branches (including the re-calculation
of upper and lower performance bounds).

In the following subsections, we explain the build-
ing blocks of the proposed bound-and-bound (BaB) con-
tent placement strategy that aims to solve the ZOMKP.
Section IV-A discusses an exact content placement strategy
of the ZOSKP, based on our previous work in [14]. The
respective strategy is used to derive upper and lower bound for

the CHP in section IV-B, where the proposed content place-
ment strategy for the ZOMKP formulation is also presented.
More details on why the proposed content placement strategy
is exact and optimal can be found in [31], [32].

A. EXACT STRATEGY FOR THE 0/1 SINGLE KNAPSACK
PROBLEM
Content placement to the cache of a single MH can be mod-
eled by the widely known 0/1-Knapsack problem and opti-
mally solved using dynamic programming (DP) [14], [32].
ADPmethod breaks one problem into multiple sub-problems
and solves them sequentially. In [14], we have presented an
exact algorithm that utilizes a two-dimensional array struc-
ture V of size (|M| + 1) x (L + 1), which is used to track the
different solution branches and infer on the optimal solution
to the problem. Each column of V corresponds to a ‘unit
size’ of the available MH’s cache, whereas each row of V
to the evaluation of a given file fm ∈ M. The values of
V [m, j] record the highest CHP value that can be attained
for the sub-problem where the first m popular files are to be
placed into a cache of a single MH j cache with size j units
(e.g. MBs). Accordingly, the optimal CHP value is given by
V [|M| + 1,L + 1].

Apart from obtaining the optimal CHP value, a backtrack-
ing process should be also performed on V to identify the
optimal content placement solution, i.e. which files should be
cached per MH. Starting from V [|M| + 1,L + 1], the back-
tracking process skips rows (of the current column) that have
the same value withV [|M|+1,L+1].When a different value
is found, the file corresponding the respective row is included
in the solution and the current column is updated by shifting
an equal number of columns with the size of the respec-
tive file. The process continues using the same methodology
and concludes when no different CHP values can be found
in V .
Algorithm 1 provides the pseudocode of the content place-

ment strategy used to solve the ZOSKP. The algorithm uses
as an input a library of popular videos M, a vector of
corresponding popularities P , a vector of corresponding file
sizes S and the available cache size L. The output of the
algorithm is the optimal content placement for the ZOSKP
problem, which we denote by 9∗ and an index vector x of
size |M| that indicates whether file m is selected (xm = 1),
or not (xm = 0). Steps 4-5 are used to initialize the algorithm
parameters, assuming that the call X = Zeros(x1, . . . , xk )
initializes the k-dimensional vector X of size x1 xx2 . . . xxk
with zeros. Steps 5-15 calculate the optimal CHP value in
a content-by-content fashion, whereas steps 15-27 conclude
the algorithm by backtracking the two-dimensional array V
to identify the file allocation xm leading to the derived
optimal CHP 9∗.

B. EXACT STRATEGY FOR THE 0/1 MULTIPLE KNAPSACK
PROBLEM
In this subsection we present an enumerative strategy where
the caches of MHs are filled progressively, evaluating the
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Algorithm 1: Exact Solution for a Single MH

1 Input:M,P,S,L
2 Output: 9∗Cn , x
3 Function: DP-ZOSKP(M,P,S,L)
4 V = Zeros(|M|,N );
5 x = Zeros(|M|);
6 for 1 ≤ m ≤ |M| do
7 for 0 ≤ j ≤ L do
8 if j ≥ sm then
9 V [m, j] =

max(V [m−1, j], ρm+V [m−1, j−sm]);
10 else
11 V [m, j] = V [m− 1, j];
12 end
13 end
14 end
15 9∗ = V [|M|,L];
16 m = |M| + 1, j = L + 1;
17 temp = V [m, j];
18 while m > 0 && j > 0 do
19 if temp 6= V [m− 1, j] then
20 xm = 1;
21 j = j− sm;
22 m = m− 1;
23 temp = V [m, j];
24 else
25 m = m− 1;
26 end
27 end
28 return 9∗, x
29 end

MHs in an ascending order based on their available cache size
(i.e. L1 ≤ L2 ≤ . . . ≤ LN ). In each iteration, the proposed
strategy evaluates whether a popular video file m, which has
not yet been assigned to a previous MH, will be cached to the
current MH, or not. In each iteration, the strategy evaluates
the files to be placed in the cache of MH n. Files that have
been currently evaluated for MH n are stacked into a data
structure Dn. A two-dimensional vector x̂ is used to store
the current (partial) solution of the ZOMKP instance, where
x̂n,m = 1 if file m is (temporarily considered to be) cached
in MH n and x̂n,m = 0, if not. When the content placement
strategy evaluates MH n, the caches of MHs 1, . . . , n− 1 are
assumed to be fully filled while the caches of MHs n, . . . ,N
will be empty.

The upper performance bound is calculated using
Algorithm 2 (section IV-B1), whereas the lower perfor-
mance bound by using Algorithm 3 (section IV-B2). The
proposed content placement strategy is implemented by
Algorithm IV-B (section), which combines the outputs of
Algorithms 1-3. The calculation of both upper and lower
performance bounds is based on the use of single ZOSKP
implemented by Algorithm 1.

1) UPPER BOUND CALCULATION
Algorithm 2 is used to calculate the upper CHP performance
bound conditioned on the placement of a given subset of pop-
ular video files fromM according to the allocation vector x̂.
In the sequel, we use the notation {Ln} to denote the array
of values taken by Ln and the notation {Dn} to denote the
arry of values taken by the stacks Dn, where n ∈ {1, . . . ,N }.
The allocation vector x̂ is a two-dimensional array of size N
by |M| that indicates whether file m is allocated to the
cache of the MH n, or not. At this point, it is important
to note that Algorithm 2 is called in intermediate steps of
the proposed bound-and-bound content placement strategy to
evaluate the CHP potential of solutions branches conditioned
on the placement of a subset of files according to x̂. However,
since the proposed strategy is enabled to call Algorithm 2
when the cache of the currently evaluatedMH i is not yet fully
filled, the identifier i is also passed as an input to calculate
the cache size remaining for the respective MH. Recall that
by this step, the proposed strategy will have filled the caches
of MHs 1, . . . , i− 1 and part of the i-th MHs cache.

Algorithm 2: Upper CHP Bound Calculation

1 Input:M,P,S, {Ln}, {Dn}, x̂, i
2 Output:9U
3 Function: UB-MKP(M,P,S, {Ln}, {Dn}, i, x̂)
4 L̄ =

∑N
n=i Ln −

∑
m∈Di

sm · x̂im;
5 M̄ = {fm ∈M : x̂nm = 0 for n = 1, . . . , i};
6 P̄ = {ρm ∈ P : x̂nm = 0 for n = 1, . . . , i};
7 S̄ = {sm ∈ S : x̂nm = 0 for n = 1, . . . , i};
8 [9̄U ,∼] = DP− ZOSKP

(
M̄, P̄, S̄, L̄

)
;

9 9U = 9̄U +
∑i

n=1
∑

m∈Dn
x̂nmρm;

10 return 9U ;
11 end

In step 4, Algorithm 2 calculates the available cache size
of MHs that have not yet been examined (i.e. helpers i +
1, . . . ,N ) adding the residual cache size of MH i based
on the placement of files depicted in the two-dimensional
vector x̂. In step 5, the algorithm identifies the set of popular
videos in M that have not been cached to MHs at previous
steps (including the current MH i). Steps 6 and 7 filter the
popularity and size of video files in M̄ that have not yet been
placed in any MH.

Accordingly, Algorithm 2 uses the set of non-cached video
files M̄, together with the respective sets of popularity
and file sizes P̄ and S̄, respectively, to deploy the ZOSKP
algorithm 1 on the respective sub-problem (i.e. 0/1 allocation
of files in M̄ into a single knapsack of size L̄). In step 9,
Algorithm 2 calculates the current achievable ultimate upper
performance bound of the ZOMKP formulation taking
into consideration the CHP following from the placement
described by the allocation vector x̂. To this end, step 9
adds i) the CHP obtained for the ZOSKP sub-problem
with library M̄ and single knapsack of size L̄ to ii) the
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CHP following from the placement of files performed in
previous steps according to x̂.

2) LOWER BOUND CALCULATION
The calculation of the lower bound (9L) is based on solving
N − i + 1 independent ZOSKP formulations sequentially
given the allocation vector x̂ and the identifier of the i-the
MH to which the cached is not yet fully filled. In each round,
the Algorithm 3 removes from the library files that have been
placed to previous MHs and a new ZOSKP sub-problem is
defined. Algorithm 3 implements the aforementioned proce-
dure to calculate a tight lower CHP performance bound con-
ditioned on the content placement described by the allocation
vector x̂. The solutions obtained by the aforementioned logic
are stored into a two-dimensional array x̃ and are provided as
an output of the algorithm.

Algorithm 3: Lower CHP Bound Calculation

1 Input:M,P,S, {Ln} , {Dn} , x̂, i
2 Output:9L , x̃
3 Function: LB-MKP(M,P,S, {Ln} , {Dn} , x̂, i)
4 9̄L =

∑i
n=1

∑
fm∈Dn

ρm · x̂nm;
5 M̂ = {fm ∈M : x̂nm = 0, n = 1, . . . i};
6 M̄ = M̂ \Di;
7 P̄ = {ρm : ρm ∈ P and fm ∈ M̄};
8 S̄ = {sm : sm ∈ S and fm ∈ M̄};
9 L̄ = Li −

∑
fm∈Di

sm · x̂im;
10 for n=i to N do
11

[
9̃L , y

]
= DP− ZOSKP(M̄, P̄, S̄, L̄);

12 9L = 9̄L + 9̃L ;
13 for 1 ≤ m ≤ |M| do
14 x̃nm = ym;
15 end
16 M̄ = M̂ \ {fm : x̃nm = 1};
17 P̄ = {ρm : ρm ∈ P and fm ∈ M̄};
18 S̄ = {sm : sm ∈ S and fm ∈ M̄};
19 L̄ = Ln+1;
20 end
21 return 9L , x̃;
22 end

In step 4, Algorithm 3 evaluates the baseline CHP accord-
ing to the content placement described by x̂, which refers
on the allocation of files into the caches of MHs 1, . . . , i.
In step 5 the algorithm identifies the set of files that have
not yet been placed to previous MHs (i.e. 1, . . . , i − 1).
In steps 6-9, the algorithm makes necessary initializations
to run the ZOSKP algorithm for the i-th MH, by excluding
files that have already been considered for MH i and are
included in Di(step 6), filtering the popularity (step 7) and
file size (step 8) vectors, and taking into consideration only
the residual cache available at the i-the MH (step 9).
In steps 10-19, Algorithm 3 performs a MH-per-MH

assignment of files to the caches of MHs i, . . . ,N . In more

detail, steps 11-12 are used to solve the ZOSKP sub-problem
for the n-th MH and to add the respective part of the
MEC-wide CHP to the lower bound 9L , steps 13-15
enable storing of the LB solution to the x̃ vector, whereas
steps 14-19 update the input parameters M̄, P̄ , S̄ and L̄ for
the next MH taking into consideration the content placement
that took place during step n of the for loop.

3) PROPOSED BOUND-AND-BOUND CONTENT PLACEMENT
STRATEGY
The proposed content placement strategy implements a recur-
sive enumeration method where the lower and upper perfor-
mance bounds are used to omit content placement branches
that lead to sub-optimal performance. In the sequel, we term
the proposed strategy as the Bound and Bound 0/1 Multi-
ple Knapsack Problem (BB-ZOMKP) strategy and present it
in the pseudocode form of Algorithm IV-B. The proposed
BB-ZOMKP strategy consist of four main parts: Initialize
(steps 4-8), BaselinePlacement (steps 9-24), ContentPlace-
ment (steps 25-40) and Backtrack (steps 41-56).

The Initialize part sets necessary strategy parameters
(steps 5-6) and evaluates the ultimate upper CHP perfor-
mance bound (steps 7-8), which is derived using the optimal
ZOSKP allocation (Algorithm 1) assuming the original file
library M and a single knapsack of a total L =

∑N
n=1 Ln

(i.e. files can be segmented within the MEC cluster but as a
total, the MEC cluster contains only full files). The Baseline-
Placement part is responsible for calculating the lower perfor-
mance bound 9LB and the corresponding file placement in x̃
(step 10), given a problem instance where the MHs’ caches
are partially filled (ZOKMP sub-problem). The respective
fixing is described by the Dn stacks and the allocation
vector x̂, which are both adapted during the ContentPlace-
ment part of the strategy (see below).

If the content placement solution found by the LB-MKP
algorithm results in improved CHP performance ψ (step 12),
then the solution is included in the final allocation vector x
(steps 12 -17). Accordingly, if the CHP of the respective
solution matches the ultimate upper performance bound9UB,
the proposed strategy concludes to avoid unnecessary com-
putations (steps 18-20). If not, the strategy continues and
verifies whether the current lower and upper performance
bounds match and if so, the Backtrack part of the strategy is
called (steps 21-23). This step enables the strategy to improve
the upper performance bound 9U and explore solutions with
higher CHP performance gains (i.e. closer to the ultimate
upper bound 9UB.
The ContentPlacement part of the strategy is the place

where the solution derived from the LB calculation during
the BaselinePlacement process is implemented by stacking
the respective files into the cache of each MH sequentially.
MHs are examined in ascending caching size (steps 26, 38
and 39), while the files fixed perMH are selected based on the
highest available ’value per unit size’ order (steps 27 and 29).
Recall that by construction MHs are ordered in ascending
cache size and files are ordered in descending ’value per
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Algorithm 4: Content Placement Strategy

1 Input:M,P,S, {Ln}
2 Output:9∗C, xnm
3 Function: BB-ZOMKP(M,P,S, {Ln})
4 [Initialize]
5 for n = 1 to N do Dn = ∅ end;
6 x̂ = Zeros(N , |M|); ψ = 0; i = 1;
7 9U = UB−MKP(M,P,S, {Ln} , {Dn} , x̂, i);
8 9UB = 9U ;
9 [BaselinePlacement]
10

[
9L , x̃nm

]
= LB−MKP(M,P,S, {Ln} , {Dn} , x̂, i);

11 if 9L > ψ then
12 ψ = 9L ; x = x̂;
13 for n = i to N do
14 for m=1 to |M| do
15 if x̃nm = 1 then xnm = 1; end
16 end
17 end
18 if ψ = 9UB then
19 9∗C = 9UB; return 9

∗
C, xnm;

20 end
21 if ψ = 9U then
22 Go to Backtrack
23 end
24 end
25 [ContentPlacement]
26 repeat
27 F = {δ : x̃iδ = 1};
28 while F 6= ∅ do
29 m = min {δ : δ ∈ F};
30 F = F \ {m};
31 Di = Push (Di, fm);
32 x̂im = 1;
33 9U = UB−MKP(M,P,S, {Ln} , {Dn} , x̂, i);
34 if 9U ≤ ψ then
35 Go to Backtrack;
36 end
37 end
38 i = i+ 1;
39 until i=N ;
40 i = i− 1;
41 [Backtrack]
42 repeat
43 while Di 6= ∅ do
44 Let m be content on top of Di;
45 if x̂im = 0 then
46 Di = Pop(Di, fm)
47 else
48 x̂im = 0;
49 9U =

UB−MKP(M,P,S, {Ln} , {Dn} , x̂, i);
50 if 9U > ψ then
51 Go to BaselinePlacement;
52 end
53 end
54 end
55 i = i− 1;
56 until i=0;
57 end

unit size’. Every time a file m is placed (fixed) into the
cache of MH n (steps 30-32), the upper CHP performance
bound is re-calculated (step 33) and if it is lower than the
current CHP performance ψ (step 34), part of the solution
will be backtracked using the Backtrack part of the algo-
rithm (steps 34-36). The procedure resumes after corrective
measures are taken using the Backtrack logic, potentially
running recursively part of the strategy again to identify a
better content placement solution.

The Backtrack part of the strategy is called under different
occasions, including the ones that we have discussed above.
The main role of Backtrack is to remove allocations from the
fixed MHs’ stacks Dn that are shown to deteriorate the CHP
performance of the conditional (partial) solution to the prob-
lem as depicted by the allocations Dn (steps 44-48). To this
end, Backtrack starts removing files from the MHs’ cache
that triggered the Backtrack call (e.g. through the Content-
Placement trigger in line 36) and then evaluates if the upper
bound CHP performance is improved through this action
(step 49). If not, the Backtrack logic continues to remove
files from the Dn stacks of the MHs (steps 41, 55 and 56)
until the BaselinePlacement call is triggered to take correc-
tive measures (steps 50-52). The proposed bound-and-bound
content placement strategy terminates either when a solution
is shown to attain the ultimate CHP probability9UB (step 20),
or when no further improvements can take place on the CHP
ψ attained by the current solution x (step 57).

V. NUMERICAL RESULTS
In this section, we assess the performance of the proposed
content placement strategy and compare it to that of two
widely used strategies: the random and the greedy content
placement strategies. Different variants of the two strategies
are found in current state-of-the-art, e.g. for random in [21],
[36]–[38] and for greedy in [19], [20], [22], [34], [35]. For our
performance comparisons, we have considered the following
variants in view of the ZOMKP formulation. The random
strategy arbitrarily selects content from the library M of
popular contents and places it without repetition to the caches
of all MHs belonging to the cluster. The greedy strategy
orders video files of M in descending order based on their
popularity and places them in the cache of MHs sequentially
without repetition, i.e. the cache of the first MH is filled by
skipping files that cannot fit, then the cache of the second
MH is filled with the remaining files, etc., until no other file
can fit into the cache of any MH. Similar strategies have been
considered in [21] and [33], respectively. In both the random
and greedy strategies, the MHs are ordered based on their
available cache size in ascending order, filling the caches of
MHs with smaller cache size first.

We investigate the performance of the proposed, ran-
dom and greedy content placement strategies using exten-
sive system-level simulations in MATLAB. To this end,
we consider a multi-tier HCN that includes two types of
cache-enabled MHs: small base stations (SBSs) and femto
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base stations (FBSs). Accordingly, we consider a MEC clus-
ter of a fixed number of N1 SBSs and N2 FBSs. The cache
size of each SBS is set according to a truncated normal dis-
tribution of mean cache size ξ1 GBs with standard deviation
σ1 GBs. On the other hand, the cache size of each SBS is
set assuming a truncated normal distribution of mean cache
size ξ2 GBs with standard deviation σ2 GBs. Thus, for a
tagged SBS MH i the cache size is given as Li = N (ξ1, σ 2

1 ),
whereas for a tagged FBS MH j the cache size is given as
Lj = N (ξ2, σ 2

2 ) with i, j ∈ {1, . . . ,N }. Accordingly, the total
cache size available in the cluster is distributed as follows
L ∼ N

(
N1 · ξ1 + N2 · ξ2,N1 · σ

2
1 + N2 · σ

2
2

)
.

Regarding the library of popular files M we consider that
it includes a total of |M| popular videos. The size of each
video is assumed to follow an exponential distribution of
mean size µ GBs (i.e. sm ∼ exp (µ) for m ∈ M). This
gives us on the average a total size (of all popular videos)
of E

[∑|M|
m=1 sm

]
= |M| · µ. The popularity distribution of

video files in M is assumed to follow the widely-accepted
Zipf distribution according to which, the popularity value ρm
of the mth most popular content in library M is given by
Eq. (3), where γ ≥ 0 is the Zipf parameter (a.k.a. popularity
skewness) and m ∈ {1, . . . , |M|}.

ρm =
m−γ∑|M|
j=1 j

−γ
(3)

Note that as the value of γ increases, a smaller amount of
videos in M exhibit high popularity and thus, the popularity
is concentrated to a smaller number of videos. On the other
hand, as the value of γ decreases, the popularity is distributed
in more videos and thus, a larger number of videos of lower
popularity are encountered. Unless differently stated, the val-
ues for the main simulation parameters discussed above are
fixed as in Table 2.

TABLE 2. Simulation parameter values.

According to the average bit rate values recommended
by Google for video uploads in YouTube [39] and the
NTT-DOCOMO guideline for video delivery in mobile data
networks in [40], the mean content size depends on the
video codec type, the video bitrate in Mbps and the type of
the application (e.g. gaming, music videoclips). In Table 3,
we summarize some common YouTube video types and
their respective size, whereas in Table 4 we overview the
limitations adopted by major social media providers on the

TABLE 3. Sample content statistics calculated from YouTube video upload
recommendation.

TABLE 4. Major social media video limits.

upload of videos to their platforms. According to the values
presented in this table, we fix the mean content size value µ
to 4GB, which corresponds to an HDR (4K) YouTube video
of display resolution 3840×2160 (2160p) at High FrameRate
and length of approximately 8 minutes at bit rate 66Mbps.
Such types of videos currently dominate the Internet traffic.
We further fix the Zipf skewness parameter to γ = 1.0, which
corresponds to the scenario where 10% of video contents
to account for 75% of the popularity (i.e. their popularity
probabilities sum up to 0.75).

A. IMPACT OF THE MH MEAN CACHE SIZE
We begin the performance evaluation of the three content
placement strategies for an increasing mean SBS cache
size ξ1. Note that in our simulations, we have set the FBS
mean cache size parameter ξ2 to be proportional to the respec-
tive SBS mean cache size value ξ1 as follows ξ1 = 20 · ξ2
(Table 2); thus, an increase to the mean SBS cache size also
increases proportionally both the FBS cache size and the
total cache size available in the MEC cluster under scope
(i.e. L ∼ N

(
ξ1(N1 + 20 · N2),N1 · σ

2
1 + N2 · σ

2
2

)
).

In Fig. 2 we plot the cluster-wide CHP for increasing SBS
cache size ξ1 under three different mean file sizes µ. Recall
that the cache size of the SBS MH i is distributed according
to a normal distribution Li ∼ N (x1, σ 2

1 ) and that the file
size of popular videos follows an exponential distribution
sm ∼ exp (µ). As expected, when the library size of popular
videos is fixed (M = 5000 - Table 2), an increasing cache
size at the SBSMHs improves the average CHP of the cluster
for all content placement strategies. The improvement of the

VOLUME 9, 2021 98893



T. M. Ayenew et al.: Cooperative Content Caching in MEC-Enabled Heterogeneous Cellular Networks

FIGURE 2. CHP performance for increasing SBS cache size and different
file sizes.

CHP for the random strategy is linear due to the random
utilization of the available cache size, whereas a fast increase
is observed for the proposed and greedy strategies in low ξ1
values, indicating that both strategies can better exploit the
additional buffer available to the cluster by the SBS MHs.

For the given set of fixed system parameters and a fixed
mean file size µ, the performance of the proposed and greedy
strategies is similar when the mean SBS cache size ξ1 is
small (e.g. ξ1 ≤ 50GBs). Nonetheless, the respective per-
formance gap grows rapidly as the SBS cache size increases
to higher values for all µ values under scope. The perfor-
mance improvement attained by the proposed strategy can be
explained as follows. The full state space of the ZOMKP can
be viewed as a content placement tree, where each e2e branch
is a solution instance fixing specific files to the cache of spe-
cific MHs. The number of solutions (size of the state space)
can be derived by taking into consideration all potential
file placements in the available cache of MHs (depth varies
depending on the file and cache sizes). Solutions that involve
the same sequence of (file-MH) placements share a common
route in the content placement tree, i.e. they are ancestors to
the same solution branch. Each content placement strategy
finds its way to the solution tree according to its logic. The
random strategy moves randomly from a parent tree node to
an ancestor, whereas the greedy strategy always places the file
with the current highest popularity until the caches of MHs
are unable to fit more files.

Accordingly, the greedy placement strategy moves through
the solution space by appending into the solution a file place-
ment with the current highest popularity value, attaining a
sequence of local optimums in a greedy fashion. In contrast,
the proposed strategy explores the solution tree by moving
in depth to assess the CHP performance of every solution
branch, using upper / lower performance bounds to elimi-
nate sub-branches (including their ancestor solutions) with
sub-optimal CHP performance and backtracking the current
optimal solution by moving back to the solution space tree
whenever necessary. In this fashion, the proposed strategy
is capable of exploring the full state space in a smart fash-
ion, identifying the optimal content placement and avoiding
unnecessary calculations.

The superior performance of the proposed strategy is also
highlighted by Fig. 3 as well where, instead of the CHP,
we plot the utilization of the available cache in a cluster-wide
scale under different mean file size values. Observer in Fig. 3
that the proposed strategy attains a utilization close to 100%
under all scenarios under scope, whereas the greedy and
random strategies are shown to leave a small amount of cache
resources underutilized (i.e. cluster cache utilization lower
than 1). For the given set of fixed system parameters (Table 2),
Fig. 3 illustrates that the impact of the mean file size µ
is negligible to the utilization of the available cluster-wide
cache size, i.e., the differentµ values considered in the legend
result in similar performance for each strategy.

FIGURE 3. Percentage of total used cache size for increasing SBS cache
size and different file sizes.

Regarding the combined impact of the mean file size µ
parameter and the mean SBS cache size ξ1, Fig. 2 illustrates
that a lower mean file size µ (e.g., µ = 4GB vs. µ = 12GB)
enables all strategies to attain a higher CHP, especially when
the mean SBS cache size ξ1 increases. This directly follows
from the fact that for a fixed number (and size) ofM, a larger
cache size shall increase the probability of all strategies to
make a better allocation to the caches of clusterMHs provided
that a larger volume of popular video files can fit in the
existing MHs’ caches. Besides, this is the reason why for a
lower mean file size µ = 4, the random strategy exhibits
a fast increase to its performance as compared to higher
mean file sizes (e.g. µ = 8, 12). Interestingly, the proposed
strategy for µ = 12GB is shown to attain a similar CHP
with the greedy strategy for µ = 8GB, highlighting that
the proposed strategy enables an enhanced utilization of the
cache capabilities available by theMHs constituting theMEC
cluster even when larger files are considered.

Let us now investigate the impact of a different mixture
of cache sizes across the SBS and the FBS MHs on the
cluster CHP performance, assuming that the mean cache size
of an SBS MH is proportional to the mean cache size of
FBS MHs with ratio β, i.e. ξ1 = βξ2. Fig. 4 plots the
impact of the FBS/SBS cache size ratio β on the cluster-wide
CHP under different mean cache size values for the FBS tier
ξ2 = 4, 8, 20 GBs. For β = 0 the CHP performance is
the result of utilizing only the N2 FBS MHs (i.e. no SBS
MHs since ξ1 = 0GBs). As expected, the performance of all
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FIGURE 4. CHP performance for a different mixture of SBS and FBS MHs’
cache size in the MEC cluster.

content placement strategies increases with ξ2 and β. In fact,
for ξ2 = 50GBs and β = 50, the available cache size in the
MEC cluster is sufficient to store the entire set of video files
in M, enabling all strategies to attain a CHP close to 1.

Similarly to Fig. 2, the CHP of the random strategy
increases linearly with the available cache size (modeled by
the ratio β in Fig. 4). However, the ratio of the CHP improve-
ment strongly depends on the mean cache size ξ2 assumed for
the FBS MHs. For β = 0 (i.e. no SBS MHs), we observe that
the random strategy performs poorly independent of themean
file sizeµ, whereas the proposed and greedy strategies exhibit
similar performance as they are able to exploit the available
cache size fitting popular files with higher popularity (e.g. for
ξ2 = 4GBs, they fit a single popular file on the average given
that µ = 4). As the β parameter increases and the mean FBS
cache size is higher, e.g. β > 40 and ξ2 = 20GBs, the CHP
performance of the random strategy is shown to fast close the
CHP gap with the proposed and greedy strategies, indicating
that random content placement can provide comparable bene-
fits with more sophisticated strategies if the MHs have a large
volume of storage resources available for content caching.
This observation can be useful to MEC clusters with high
storage capacity but low processing capabilities, enabling the
cluster head to deploy random content placement with good
CHP performance.

Nonetheless, random content placement when the MEC
cluster consists of SBS MHs with low storage capacity
(e.g. β < 20) performs poorly. On the contrary, both the
proposed and the greedy strategies exhibit high CHP perfor-
mance gains even when the available cache size at the FBS
MHs is low (e.g. ξ2 = 4GBs) and when the cache size of
SBS MHs is high (e.g. β > 20). In both cases, the proposed
content placement strategy outperforms the greedy strategy
enabling the MEC cluster to attain 3-5% better CHP perfor-
mance, especially when the total cluster size cannot support
caching of a large volume of popular video files in M (i.e.
CHP is lower than 1).

In Fig. 5 we investigate the interplay between increasing
the mean SBS cache size under different Zipf popularity val-
ues γ . Recall that a lower γ parameter corresponds to ’spread-
ing’ the popularity to a larger number of video files in M,

FIGURE 5. CHP performance for increasing SBS cache size and Zipf
popularity skewness γ .

whereas a higher γ parameter corresponds to ’concentrating’
the popularity to a smaller set of video files. Interestingly,
the performance of the random strategy is shown to remain
unaffected by the Zipf popularity parameter γ . This follows
from the fact that, on the average, random content placement
will result in caching video files with popularity summing
up to the same value. Fig. 5 also illustrates that a lower
Zipf popularity parameter γ (e.g. by comparing γ = 1.2 to
γ = 0.4) the performance of all strategies deteriorates.

Another interesting observation is that the performance
gap between the proposed and the greedy content place-
ment strategies fast increases as the value of γ is decreased
(e.g. compare γ = 0.8 and γ = 0.4). This readily follows
from the fact that a lower popularity skewness γ spreads
the popularity to more files leading to a large number of
files with comparable popularity but different size. Provided
that the greedy strategy is size-agnostic and assigns popular
video files to the cache of MHs taking into consideration
only the popularity of the files in M, it readily follows that
popularity-based greedy content placement is unable to infer
on an appropriate combination of video files to be allocated
to the available cache of MHs. This is a result of the different
file sizes andMH caches considered in our simulation (i.e. the
respective parameters are not assumed to be fixed and equal
for all files and MHs, respectively).

On the contrary, the proposed strategy is shown to better
adapt to the heterogeneity of both the file sizes met inM and
the cache size available to the MHs, enabling an enhanced
CHP performance as compared to the greedy strategy. In par-
ticular, when the popularity is spread to a larger volume of
video files (e.g. for a low popularity value γ = 0.4) and the
cache size available in the different types of MHs forming the
MEC cluster is more diverse (e.g. for ξ1 = 100GBs, SBSs
have 95GBs more cache available as compared to FBSs),
the performance gap between the proposed and the greedy
strategies largely increases. For ξ1 = 100GBs. we observe
that the respective performance gap reaches up to a 20%CHP
improvement in an absolute scale and 40% improvement in a
relative scale.

As a takeaway result, we conclude that the proposed
bound-and-bound MKP 0/1 strategy can better exploit the
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available cache size of MEC clusters with higher hetero-
geneity, in terms of available cache size per MH, enabling
the MEC cluster to attain a higher CHP performance. This
performance improvement is even more evident when the
popularity of video files inM is spread to a larger volume of
video files (e.g. when the Zipf parameter γ is lower). Taking
into consideration that the performance of the proposed and
greedy strategies is comparable for a higher values of the
popularity parameter γ , e.g. γ > 1.2, another interesting
observation is that in such scenarios, the MEC cluster head
may choose to run the greedy strategy instead of the proposed
one to save processing resources.

B. IMPACT OF THE FILE POPULARITY
In Fig. 6we assess the impact of the Zipf popularity parameter
γ on the CHP performance under different mean file sizes µ.
Note that for γ = 0.2 the popularity of contents is close to
uniform (1% of files account for 2.8% popularity), whereas
for γ = 2 a very small amount of video files concentrates a
very high popularity (1% content account for 98.8% of popu-
larity). Similar to Fig. 5 we observe that the popularity param-
eter γ has a small impact on the performance of the random
content placement strategy. Inmore detail, we observe a small
CHP deterioration of the random strategy for a small mean
file size µ = 3GBs due to the fact that when a very small
number of video files in M concentrates a high popularity
(i.e. high γ values) the random strategy select with a higher
probability a combination of files with lower popularity
(i.e. more allocation options result in low CHP performance).

FIGURE 6. CHP performance for increasing popularity skewness γ and
different mean file sizes µ.

On the contrary, the performance of both the proposed
and the greedy strategies is shown to fast increase with the
popularity parameter γ and even reach to9C = 1 for γ > 1.4
under the fixed system parameters under scope. This perfor-
mance trend readily follows from the fact that a higher γ
parameter translates to the concentration of the popularity in
M to lower volume of video files, enabling popularity-aware
strategies to fill the cache sizes available in the MEC cluster
with highly popular files while leaving less popular files
out of the content placement process if necessary. Another
interesting observation is that for the proposed and greedy
strategies, the impact of the popularity parameter γ on

the CHP performance strongly depends on the mean cache
size µ for low popularity values γ (e.g. γ < 0.8).
The proposed strategy is shown to outperform the greedy

strategy in terms of CHP probability, especially when the
file size of popular videos is high. For example, for µ =
9GBs, the proposed strategy is shown to attain a double-fold
increase on the CHP when the Zipf parameter is very low
(e.g. γ = 0.2). Once again, the proposed strategy is shown
to better handle the cache available in the MEC cluster even
for larger video files, if we consider that the CHP of the
proposed strategy for µ = 9GBs is higher compared to the
CHP performance of the greedy strategy for µ = 6GBs, for
all popularity parameter values under scope.

As expected, a lower mean file size µ enables all strate-
gies to better handle the storage capacity available in the
MEC cluster and increase the CHP performance. This readily
follows by comparing the performance of any strategy for
µ = 3GBs to the respective performance of the same strategy
for µ = 6GBs. Nonetheless, a constant increase of the mean
file size µ is shown to have different effects on the CHP
performance of all strategies, independent of the γ value.
For example, the CHP performance of the random strategy
for µ = 3GBs is shown to increase almost three-fold as
compared to the one for µ = 9GBs, whereas the CHP of
the same strategy for µ = 3GBs does not increase two-fold
as compared to the one for µ = 6GBs. Another interesting
observation is that for low popularity values of γ , where the
popularity distribution tends to be more uniform, the pro-
posed strategy attains the highest CHP gains as compared to
the greedy strategy. On the other hand, for high popularity
parameters γ , the CHP performance of the greedy and the
proposed strategies is comparable. This performance trend
can be useful to scenarios where the MEC cluster head iden-
tifies that the popularity of files concentrates to small number
of video files, enabling it to save processing resources by
employing the greedy strategy instead of the proposed (exact)
one.

In Fig. 7 we investigate the impact of the popularity skew-
ness γ under a different number of SBS and FBS MHs.
Note that as the number of SBS and FBS MHs increases,
the available cluster cache size is considered to increase
proportionally, i.e. the total pool of available cache resources
in the cluster increases proportionally. Similar to Fig. 6,
the CHP performance of the random strategy is shown to
deteriorate with γ , independent of the number of MHs in
the MEC cluster. Another interesting observation is that for
all strategies, a two-fold increase on the number of high-end
MHs (i.e. MHs with large cache capacity like SBSs in our
simulations) is shown to provide significantly larger CHP
gains as compared to the ones attained due to a similar
two-fold increase on the number of low-end MHs (i.e. MHs
with low cache capacity like FBSs in our simulations). This
readily follows from the fact that SBSs are considered to host
a 20x higher cache capacity as compared to FBSs, enabling
the content placement strategies to better handle popular files
of larger file sizes.
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The CHP performance gap between the proposed and the
greedy strategies is also shown to fast decrease as the popu-
larity skewness parameter γ increases. Fig. 7 that increasing
the number of high-end MHs can play a key role when the
popularity of video files in M is spread across more files,
i.e. the impact of N1 dominates that of γ for low γ values,
but the addition of more MHs will have a lower impact on
the CHP performance when the popularity of files in M is
concentrated in a lower number of files (i.e. for higher γ val-
ues). This performance trend can be used to adjust the MEC
cluster size dynamically in view of the popularity distribution
characterizing the library of popular video files, enabling the
formation of additional MEC clusters with a lower number
of MHs in order to better adapt the number (and structure)
of MEC clusters to the spatial diversity of content popularity
observed in a HCN.

FIGURE 7. CHP performance for increasing popularity skewness γ and
different number of SBSs N1 and FBSs N2.

Accordingly, we derive a valuable cluster formation design
guideline. If for a given geographical area a lower amount of
files concentrates a higher popularity (i.e. higher γ values)
but the content popularity distribution changes fast across
neighbor geographical areas, the MNO can form a larger
number of MEC clusters constituting by a lower volume of
MHs to better adapt to the diverse popularity met across
neighbor areas. On the other hand, if the content popularity
is known to be similar across neighbor geographical areas,
theMNOmay choose to form a smaller number ofMEC clus-
ters with an increased volume of MHs to attain an enhanced
network-wide CHP.

Another interesting observation is that the proposed con-
tent placement strategy can better adapt to the existence of a
limited number of MHs in the MEC cluster while attaining a
similar performance with that of the greedy strategy. In par-
ticular, we observe that the proposed strategy for N1 = 10
attains a comparable performance with that of the greedy
strategy for N2 = 20 (double-fold increase of high-end MHs)
even when the popularity parameter γ is medium-
to-high (>0.6).

C. IMPACT OF THE MEAN CONTENT SIZE
In Fig. 8 we plot the cluster-wide CHP for increasing mean
content size µ inM under different popularity parameters γ .

FIGURE 8. CHP performance for increasing content size µ and different
popularity skewness γ .

As expected, when a larger content size µ is considered for
popular video files inM, the CHP performance of all strate-
gies deteriorates. This mainly follows from the fact that the
available cache size on a per MH (and a cluster-wide) basis
remains fixed while the size of the cached content increases.
We observe a roughly linear performance deterioration for all
strategies above the mean content size µ = 4GBs value. The
performance deterioration is shown to strongly depend on the
popularity distribution parameter γ .

For the different γ parameters plotted in Fig. 8, we observe
that the performance of the random strategy remains roughly
unaffected by γ , while a constant increase of the γ parameter
(e.g. from 0.4 to 0.8, or 0.8 to 1.2) is shown to increase
the CHP performance of both the proposed and the greedy
strategies with a constant rate (e.g. for µ = 4 the CHP of the
proposed increases by roughly 20%when γ increases by 0.4).
Another interesting observation is that the performance gap
between the proposed and greedy strategies increases with
the mean content size of popular video files µ, highlighting
that the proposed strategy can better cope with larger contents
in M as compared to the greedy strategy.

Fig. 9 investigates the CHP performance for increasing
mean content size µ under a different number of SBS and
FBS MHs on the CHP. Recall that an increase to the number

FIGURE 9. CHP performance for increasing content size µ and different
number of SBSs N1 and FBSs N2.
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of SBS, or FBS, MHs results in a proportional increase of the
total cache size available in the cluster. For the given selection
of the Zipf law parameter γ = 1.0, we observe that the impact
of the number N2 of FBS MHs is negligible on the CHP
performance of both the proposed and the greedy strategy
when a large number of high-end SBS MHs is considered
(i.e. N1 = 20). However, when the number of high-end
MHs is lower (N1 = 10), the respective CHP improvement
observed by increasing two-fold the number of low-end MHs
is larger for both the proposed and the greedy strategies.
On the other hand, for the random strategy, we observe that
the CHP performance shows notable improvement with a
two-fold increase of either the SBS, or the FBS helpers,
an improvement that is shown to be similar between the
two scenarios (i.e. two-fold increase of N1 results in similar
improvements with a two-fold increase of N2).

Interestingly, for all content placement strategies,
the impact of increasing N1 and N2 is roughly the same on
the CHP independent on the values taken by the µ parameter
(e.g. the same improvement is observed while changing
N1 = 10 to N1 = 20 independent of the values taken
by µ and N2). This performance trend indicates that increas-
ing the number of MHs in the MEC cluster will result in the
same CHP improvement, independent of the mean content
size µ characterizing the files in libraryM.

D. IMPACT OF THE NUMBER AND TYPE OF
CACHE-ENABLED MHs
In Fig. 10 we assess the impact of an increasing number of
high-end SBS MHs under different values on the number of
FBSMHs. As expected, the performance of the random strat-
egy is shown to scale linearly with the number of SBS MHs
N1 in theMEC cluster. On the contrary, a fast improvement of
the CHP performance is observed for both the proposed and
the greedy strategies in lowerN1 values as the number of SBS
MHs increases, especially when the number of FBS MHs is
lower (e.g. compare N2 = 10 and N2 = 100 for an increase
of N1 from 1 to 4). This performance trend highlights that
the addition of only a few high-end MHs (like the SBS in our
simulations) has a high added value on the CHP performance,
especially when the size of the MEC cluster is low.

On the other hand, a similar performance trend is observed
for increasing the number of FBS MHs N2, when a high
number of SBS MHs already exists in the MEC cluster.
In more detail, as the N1 value increases, the proposed and
greedy strategies are shown to improve the CHP at a lower
rate for the same increase ofN2 (e.g. forN1 = 2 SBSMHswe
observe a higher CHP improvement when N2 changes from
10 to 40 as compared to that obtained for N1 = 16 for the
same N2 increase). This performance trend can be valuable to
the design of the cluster formation algorithm run by theMNO,
as it highlights that the CHP improvement following from
the addition of more MHs to a tagged MEC cluster should
be examined in view of the current mixture of MHs in the
cluster in order to maximize the added value following from
the formation of a larger cluster.

FIGURE 10. CHP performance for increasing number of SBS MHs N1 and
different number of FBS MHs N2 without fixing the total cache sizes LSBS
and LFBS .

The underlying performance trade-off is that, on the one
hand, the addition of more MHs can improve the CHP of a
given MEC cluster but at the same time, the same number
of MHs can be used to set up a new MEC cluster having a
different library M that matches better the user requests on
popular videos (which can be different in size and popularity
for neighbor geographical areas). To this end, the MEC clus-
tering algorithm should evaluate the addition of a new MH
in the MEC cluster not only in light of the content library
assumed per geographical area (and how good this adapts
to the actual MEC service coverage) but also in view of the
selected mixture of MHs allocated per MEC cluster.

E. IMPACT OF THE NUMBER OF POPULAR VIDEO
CONTENTS IN M
In Fig. 11, we assess the impact of an increasing number
of popular video contents in the library M under different
popularity values γ . The CHP performance of the random
strategy is shown to drop rapidly as the number of popular
video contents increases, in a roughly independent fashion
from the values taken by the Zipf parameter γ . Another
interesting observation is that when the popularity of files
in N is concentrated to a lower amount of video files in M,
the performance of the greedy strategy is very close to that of
the proposed (optimal) one. This performance trend can be
exploited to save computations at the MEC cluster head upon

FIGURE 11. CHP performance for increasing number of contents in the
library M and different Zipf parameters γ .
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content placement of popular video files that are character-
ized by large γ values (e.g. γ > 1.2).

Nonetheless, the CHP performance gap between the pro-
posed and the greedy strategies is shown to rapidly increase
with the library size |M|when the popularity is spread across
more video files inM (i.e. γ < 0.8). This performance trend
highlights the importance of employing more sophisticated
planning of the cluster-based content placement when the
popularity of video files in M is characterized by higher
γ values. As compared to the greedy and random strate-
gies, the proposed content placement strategy is shown to be
highly-robust against an increase of the number of files inM
as well as to a lower Zipf parameter γ .

F. PROCESSING OVERHEADS AND COMPUTATION TIME
In this section, we evaluate the performance of the three con-
tent placement strategies in terms of computation time neces-
sary to complete the content allocation to the caches of MHs
constituting the MEC cluster. Recall that this operation shall
be deployed on an epoch-by-epoch basis and the allocated
contents shall be replaced by new ones by the beginning of the
next cache epoch. Thus, each epoch is expected to last for at
least a few hours (or days). For our evaluations we have used
a standard desktop PC equipped with i) Intel(R) Core(TM)
i7-8550U CPU @1.8GHz, ii) DDR3 RAM of 8GBs, and
iii) a 64-bitWindows 10 operating system. All strategies were
implemented using a 64-bit version ofMatlab R2018b and the
respective computation time measurements were averaged
over multiple samples (>100 per tick). Most of the com-
putation time results have derived in line with the system
parameter values used to derive the CHPmeasurement results
of the previous subsections.

The main reason that led us measure that computation
time necessary for completing the content placement allo-
cation by each strategy is the fact that, in a general system
parameter setup, the proposed strategy is exact and solves a
NP-hard problem by exploiting the bound-and-bound search
algorithm, which eliminates non-optimal solution branches
a-priori (i.e. without exploring the entire state space of
branches leading to sub-optimal allocations). As a general
outcome of the simulation campaigns, we have observed that
for the given set of system parameter values, which are in
full accordance with practical content placement scenarios
in medium-sized MEC clusters of HCN nodes, the proposed
strategy requires only a few seconds to complete in a standard
desktop PC. This result suggests that the proposed bound-
and-bound exact content placement strategy is both optimal
and feasible in terms of processing overhead under realis-
tic MEC deployment scenarios (i.e. when the number of
MEC nodes is in the order of hundreds of cache-enabled
HCN nodes).

Interestingly, the proposed exact content placement strat-
egy typically required more computation time in parameter
setups where the performance of the proposed strategy is very
close to that of the greedy strategy, highlighting that such
marginal scenarios can be identified a-priori by the MEC

cluster head, which can switch from the proposed to the
greedy content placement strategy. Nonetheless, we note that
in all scenarios under scope, the computation time necessary
for deploying the proposed optimal content placement strat-
egy is in the order of a few seconds, enabling its practical
deployment in MEC clusters consisting of a few hundreds
of MEC-enabled nodes and a library size of thousands of
popular video files.

1) IMPACT OF LIBRARY SIZE AND NUMBER OF MEC MHs
In Fig. 12 we plot the computation time necessary for com-
pleting the content placement allocation for an increasing
number of video files in library M and different γ values.
Note that the parameter values considered in this scenario are
fully aligned with the ones used to derive the CHP perfor-
mance of all strategies in Fig. 11. First of all we observe that
the computation time necessary to complete for all content
placement strategies is in the range of sub-seconds under all
system parameter values under scope.We further observe that
the computation time increases proportionally to the content
library size |M| for all content placement strategies under
scope.

FIGURE 12. Computation time for increasing number of contents in
library M and different γ parameters.

According to Fig. 12, the proposed content placement
strategy is computationally feasible (sub-second computation
time) in MEC scenarios where the number of MEC-enabled
MHs is in the order of hundreds nodes, their cache size is in
the order of a few GBs, the mean size of popular videos is
in the order of a few GBs and the total number of popular
video contents selected for the library M is in the order of
a few thousands of files. As expected, the computation time
necessary for the random strategy increases linearly with the
size of the content library M, whereas the computation time
for the greedy strategy is shown to scale withM in a roughly
sub-squared fashion, due to the sorting algorithm employed to
order video files based on their popularity on a per MH basis.

In Fig. 13 we plot the computation time required for the
completion of all strategies assuming an increasing number
of SBS and FBS MH values. Once again, the time necessary
to complete the content placement logic for all strategies is in
the range of sub-seconds. The performance of the greedy and
the random strategies is shown to remain roughly unaffected
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FIGURE 13. Computation time for increasing number of SBS MHs N1 and
different number of FBS MHs N2.

by the number of MHs in the MEC cluster, including both
SBS (N1) and FBS (N2) MHs. On the one hand, this is
expected for the greedy strategy where the main processing
overhead comes from the sorting popular video files fm ∈M
based on their popularity ρm and scanning the order list until
the cache size of each MH is filled. On the other hand, this is
also expected for the random strategy where the files are ran-
domly allocated in a MH-by-MH basis and the entire list of
non-cached video files is to be scanned in order to concluded
that no other file can fit into the cache of a given MH.

The computation time necessary to complete the proposed
strategy is shown to increase linearly with the number of
high-end SBS MHs, under all N2 parameters under scope.
The inclusion of additional low-end FBS MHs is also shown
to add a roughly fixed computation overhead to the pro-
cessing requirements of the proposed strategy, independent
of the current value of the number of high-end SBS MHs.
For example, this can be observed by comparing the com-
putation time of the proposed strategy for N2 = 100 and
N2 = 10 under different N1 values. Notably, the computation
time needed to complete the proposed strategy is shown
to remain in the area of sub-seconds when the number of
high-end SBS MHs reaches N1 = 20 and the number of
low-end FBS MHs is set to N2 = 100, indicating that the
proposed bound-and-bound content placement strategy can
be readily deployed in medium-to-large sized MEC clusters
(i.e. >120 MHs).

2) IMPACT OF SBS MHs’ CACHE SIZE, ZIPF POPULARITY
PARAMETER AND MEAN FILE SIZE
In Fig. 14 we plot the impact of the SBS/FBS cache
size ratio β on the computation time of all content place-
ment strategies, under different SBS cache size ξ2 values.
As in Fig. 4, we use parameter ξ1 = β · ξ2 to increase the
SBS MH mean cache size ξ1 in proportion to the FBS MH
mean cache size ξ2. The value of ξ2 is assumed to remain
fixed. For β = 0 the MEC cluster consists of only FBS MHs,
i.e. ξ1 = 0 · ξ2. We start our discussion with the perfor-
mance of the greedy and random content placement strate-
gies. As shown in Fig. 14, the computation time necessary for
completing the content placement under both the greedy and
the random strategies is in the sub-second range. As expected,

FIGURE 14. Computation time for increasing number of the β SBS/FBS
cache size ratio and different FBS cache size ξ2 values.

the random strategy requires less computation time compared
to the greedy one, which is required to additionally order
the (remaining) files based on their popularity.

When the available cache size in FBSMHs is ξ2 = 20GBs,
the computation time required for both the greedy and the
random strategies is shown to drop with an increase of β.
The aforementioned trend follows from the fact that both
strategies run the content placement on a per MH basis as
follows: i) pick a MH to fill its cache, ii) scan the list of
popular video contents that have not been cached by previous
MHs, and iii) sequentially select (based on popularity order,
or randomly) a list of files to cache until the available cache
of the MH is full. Files which cannot fit into the cache of a
MH are skipped and the evaluation continues with the next
ones in the list of non-cached files, until no other file can
fit into the cache of the MH. Thus, in each iteration, the full
list of remaining files will be scanned per MH. As the mean
cache size of MHs increases, the number of non-cached files
remaining for content placement decreases fast, reducing the
overall computation time (Fig. 14). As a conclusion, the com-
putation time required for the greedy and random strategies
drops rapidly when the available cache of MHs in the MEC
cluster is high.

Let us now discuss the performance of the proposed con-
tent placement strategy. As expected, the proposed strategy
is shown to require more computation time compared to the
random and greedy content placement strategies; however, its
requirements are still in the scale of a few seconds. Hence,
the proposed content placement strategy is not only exact but
is also computationally feasible in scenarios where hundreds
of MEC-enabled MHs perform coordinated content place-
ment. In Fig. 14 we observe that under all ξ2 values under
scope, the computation time of the proposed strategy at its
highest point for b = 0, drops to a minimum as b increases
from 0 to low b values and then it increases again slowly
with b. For example, when xi2 = 20 GBs, the proposed strat-
egy requires the highest computation time (11 seconds) for
b = 0, reaches to the minimum requirement of 0.2 seconds
for b = 1 and increases again slowly above b > 1. A sim-
ilar performance trend is observed for other values of xi2
(e.g. 4 and 8 GBs).
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Recall that the proposed content placement strategy is
based on a dynamic exploration of the full state space
and uses upper/lower performance bounds to eliminate
sub-optimal solution branches, reducing unnecessary com-
putations whenever possible. Accordingly, the proposed
strategy requires more computation time when the bound-
and-bound exploration methodology should go deeper into
solution branches in order to assess their CHP performance.
When the state space consists of solutions with diverse CHP
performance values, e.g. due to the diverse cache sizes of
MHs, bound-and-bound exploration enables fast elimination
of sub-optimal solution branches avoiding in-depth exami-
nation. However, when the state space consists of solutions
with similar CHP performance, e.g. due to similar file and
cache size, bound-and-bound exploration should go deeper
into the examination of solution branches before eliminating
them, increasing the computation time.

When b is at the low end, cache diversity in the MEC clus-
ter is weak and the cache sizes of MHs are roughly the same.
Under this scenario, most of the solution branches involve
the placement of files into similarly-sized MHs, enforcing
the bound-and-bound exploration strategy to evaluate an
increased volume of placement combinations with similar
CHP performance. For that reason, in Fig. 14 we observe
a different behavior of the proposed strategy when b is low
(close to 1), as compared to the one for b taking medium-
to-high values (e.g. b > 4). For example, when b = 0 we
record the highest computation time for all ξ2 values under
scope (i.e. theMEC cluster includes only FBSMHs of similar
size). However, as b increases, the cache diversity is more
evident and the bound-and-bound strategy quickly reduces its
computation time. Above a certain b value, which depends
on the value of ξ2, cache diversity is well established and the
performance of the proposed strategy scales with an increase
of b, or ξ2. Once again, this performance trend follows from
the fact that a larger value of b, or ξ2, enables the MEC
cluster to cache more files, enforcing the bound-and-bound
exploration strategy to investigate feasible solution branches
in more depth and to increase its computation time.

Interestingly, when b is at the low end (i.e. SBS and
FBS cache sizes are similar), a larger mean cache size ξ2
reduces the computation requirements of the proposed strat-
egy. This performance trend can be explained as follows.
When a low cache diversity characterizes the MEC cluster
(low b values) and the cache size available per MH is close
to the mean file size µ = 4GBs, the state space is domi-
nated by a vast volume of solutions with similar CHP perfor-
mance that involve the placement of only a few files into the
caches of similarly-sizedMHs. As a result, bound-and-bound
exploration requires more computation time to eliminate
sub-optimal solutions. This effect is alleviated when the
available cache size ξ2 is larger, enabling an enhanced file
placement diversity per MH to be achieved.

In Fig. 15 we examine the impact of the popularity dis-
tribution parameter γ and the mean file size µ on the com-
putation time of all strategies, as the mean SBS cache size

FIGURE 15. Computation time for increasing SBS mean cache size ξ1
under different Zipf popularity parameter γ and mean (popular) file size
µ values.

ξ1 increases. The performance of the greedy and random
content placement strategies remains roughly unaffected by
the γ and µ values under scope, with a slight decrease of
the required computation time observed when the mean SBS
cache size is on the high-end of Fig. 15 and the mean file
size is low (i.e. µ = 4GBs). The main reason of the reduced
computation time necessary for both the greedy and random
strategies is that a lower mean file size µ results in a higher
content placement rate in the caches of MHs in the early
steps of the strategies. To this end, as the caches of MHs
are filled sequentially by both strategies, a smaller volume of
non-cached files will be available for subsequent MHs thus,
reducing the scanning time necessary for filling the cache of
MHs examined at the final steps of the greedy and random
strategies. A similar behavior has been discussed for both
strategies in Fig. 14.

Let us now assess the performance of the proposed con-
tent placement strategy. As expected, the proposed strategy
requires more computation time as compared to the baseline
strategies. Nonetheless, the computation time of the proposed
strategy still remains within feasible limits, which are of the
order of a few seconds for all γ and µ parameters under
scope. Notably, above a certainmean SBS cache size value ξ1,
which is close to ξ2, we observe that the computation time
remains roughly unaffected by the Zipf popularity parameter
γ and the mean file size µ, e.g., for ξ1 > 60 GBs. Similar
to what we have observed in Fig. 14, this result follows from
the fact that above a certain ξ1 value, the content placement
state space includes solution branches exhibiting a diverse
CHP performance. This enables the proposed strategy to
eliminate sub-optimal branches without going deeper into
their assessment. Accordingly, as shown in Fig. 15, the impact
of µ and γ is shown to be negligible, enabling the proposed
strategy to scale its computation time requirements only with
the mean cache size ξ2 available at high-end SBS MHs.
This follows from the fact that when the SBS cache size
is very large, high-end MHs can fit an adequate number of
popular video files, i.e. the large cache size dominates the
impact of the file size and popularity on the computation time
requirements.

On the other hand, similar to our findings from Fig. 14,
when the mean SBS cache size value ξ1 is comparable
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with the FBS mean cache size value of ξ2 (which is set to
10 GBs in this setup), an additional computation overhead
is observed for the proposed strategy (Fig. 15). Under this
scenario, we observe that a larger mean file size µ increases
the computation time of the proposed strategy, a performance
that can be validated by comparing the plots of the proposed
strategy for µ = 4 and µ = 8 GBs. This can be explained
as follows: a larger mean file size µ lowers the ’effective’
mean cache size of all MHs, reducing the average number
of popular video files that are cached into the buffer of a
given MH type. Besides, on the average, an SBS MH will
cache ξ1/µ popular video files and a FBS MH will cache
ξ2/µ files. This effect diminishes when the mean SBS cache
size ξ1 is high and the solution branches are highly diverse,
enabling the proposed strategy to lower its computation time
requirements (for ξ1 > 60 GBs in Fig. 15).

When ξ1 is at the low end, we further observe that the
impact of the Zipf popularity parameter γ varies depending
on the mean file size µ. As shown in Fig. 15, when µ is
low, the Zipf parameter value has a negligible impact on the
computation time performance, e.g. compare the plots of the
proposed strategy for µ = 4 GBs γ = 1.2 and µ = 4
GBs γ = 0.8. However, when the mean file size µ is larger
(mu = 8GBs) and ξ1 is at the low end, a larger Zipf parameter
γ (less files concentrate the highest popularity) is shown to
increase the computation time requirements of the proposed
strategy. This performance trend follows from the fact that a
higher mean file size µ reduces the average number of files
cached per MH (as explained above) and that for γ = 1.2
less files concentrate the highest popularity, enforcing the
proposed strategy to explore solution branches with similar
CHP performance in more depth, i.e. branches that involve
the placement of video files with low popularity.

Taking into consideration the results in Figs. 2 and 5,
we conclude that a higher computation time is necessary for
the proposed bound-and-bound exact content placement strat-
egy mainly under marginal system parameter setups where
the CHP performance of the proposed strategy is very close to
that of the greedy strategy. The processing complexity of such
marginal scenarios can be mitigated by the content placement
decision making entity by switching to the greedy strategy,
or employing relaxed upper performance bounds under the
proposed strategy. It should also be noted that a very low
computation time is required in scenarios where the proposed
strategy exhibits superior performance as compared to the
greedy and random strategies.

VI. CONCLUSION
In this paper, we have proposed a novel content placement
architecture where cache-enabled mobile helpers (MHs) can
be grouped into MEC-enabled clusters to perform coopera-
tive content placement in view of a library of popular video
files that remains fixed in size and popularity distribution.
Using a ZOMKP formulation with respect to constraints on
caching entire video files and not allowing an overlap of
cached files within the same MEC cluster, we have presented

an exact (optimal) content placement strategy that employs
bound-and-bound enumerate search of the content placement
state space, discarding solution branches that are identified to
lead in sub-optimal performance.

Using extensive system-level simulations we have shown
that the employment of the proposed bound-and-bound exact
strategy is both efficient and computationally feasible in the
context of cluster-based content placement in MEC-enabled
heterogeneous cellular networks. Valuable design guidelines
and best practices have been derived through the system-level
simulation analysis, highlighting key performance trade-offs
for MEC cluster formation and optimal content placement
in MEC-enabled HCNs. Future work includes the design of
MEC-enabled content delivery and cluster formation strate-
gies in view of the results derived in this paper.
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