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ABSTRACT Traditional measurement methods, like shipborne and aerial gravity measurements, cannot
cover the entire sea area. Satellite altimetry provides large-scale and high-precision observational data,
which can be inverted to give high-precision and high-resolution data on marine gravity anomalies. In this
paper, to improve the precision of computing the innermost zone effects in gravitational altimetry data,
the deflections of the vertical are expressed in the form of double cubic polynomials by treating the
innermost zone as a rectangle, based on the inverse Vening Meinesz formula. Furthermore, formulas for
computing gravity anomalies in the innermost zone are derived using a non-singular transformation. The
numerical experiments show that the relative error of the algorithm in this paper, which uses a non-singular
transformation, is less than 1.5%. Moreover, the practical computational results based on deflections of the
vertical for data with a resolution of 2’ × 2’ from the South China Sea and its vicinity also demonstrate
that gravity anomalies in the innermost zone have a non-negligible contribution when using a non-singular
transformation.

INDEX TERMS Satellite altimetry, non-singular transformation, gravity anomaly, inverse Vening Meinesz
formula, deflection of the vertical, innermost zone effects.

I. INTRODUCTION
Marine gravity anomalies reflect the internal structure of
the ocean, including the topography of the marine floor and
the geoid. They are widely used to construct the geoid,
in dynamic marine environmental research, and in offshore
oil and gas exploration. At present, marine gravity field
data are obtained from satellite altimetry inversion and
from shipborne and aerial gravity measurements. With the
development of artificial Earth satellite technology, satellite
altimetry technology has promoted the interdisciplinary
development of geodesy, geophysics, and oceanography.
In the 1970s, the emergence of satellite altimetry technology
and the smooth implementation of multiple satellite altimetry
missions greatly facilitated the collection of high-precision
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and high-resolution sea-level data from oceans around the
globe [1].

Altogether, 18 major altimetry satellites have been
launched by various countries over the past 40 years,
including Geosat launched by the United States Navy,
TOPEX/Poseidon (T/P), Jason-1 [2], [3], Jason-2 [4]–[6],
and Jason-3 launched by the National Aeronautics and Space
Administration and French Centre National d’Etudes Spa-
tiales, the European Remote-Sensing Satellites (ERS series)
launched by the European Space Agency, and Haiyang-2A
(HY-2A) launched by China [7], [8]. There are early
altimetry satellites (Skylab, GEOS-3, and Seasat), military
altimetry satellites (Geosat and Geosat Follow-On), marine
integrated environmental monitoring satellites (ERS-1,
ERS-2, and Envisat), marine terrain observation satellites
(T/P, Jason-1, Jason-2, and Jason-3), and polar observation
satellites (ICESat, Sentinel-3A, and CryoSat-2).
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The main aims of the Geosat series were to measure the
ocean geoid accurately and to provide wind speed and ocean
observation data. The data are widely used in studies of the
geoid, ocean gravity anomalies, and ocean numerical models.
They have a high accuracy of 5–10 cm.

The main goals of the T/P series were to study global
sea level changes and ocean circulation. The data are used
to study ocean phenomena and global climate change. They
have a high accuracy of 2–3 cm.

The ERS series mainly observed the polar ice caps, ocean
circulation, and sea surface height. They made high-precision
measurements of the sea surface topography, and ocean and
land surface temperatures. Finally, HY-2A was mainly used
to record the dynamic marine environment.

Satellite altimetry data cover all the oceans from 85◦S to
85◦N on a 2’× 2’ grid across the globe and have an accuracy
of 1–2 cm [9]. Moreover, the accuracy of the inversion of
a gravity anomaly from satellite altimetry data has reached
4 × 10−6 to 10 × 10−6 m/s2.
Researchers from several institutions have performed

a considerable amount of research on satellite altimetry.
Li et al. [10] from Wuhan University used the Laplace
equation to invert gravity anomalies of the global sea. The
accuracy of the 1’ × 1’ gravity field model of the global
sea and ship survey data from the National Geophysical Data
Center was 4× 10−6 to 8× 10−6 m/s2. Huang et al. [11], [12]
from the Naval Research Institute of the People’s Liberation
Army developed and studied three methods (analytical and
numerical inversion of the Stokes formula, and the inverse
Vening Meinesz formula) for identifying gravity anomalies
from altimeter data. Hsu et al. [13] from the Chinese
Academy of Sciences used the inverse Stokes formula
to invert gravity anomalies in the China Sea, achieving
an accuracy of 3.5×10−63.5 × 10−6 m/s2. In addition,
Sandwell et al. [14], [15] from the Scripps Institution of
Oceanography, Andersen et al. [16], [17] from the Technical
University of Denmark, and Hwang et al. [18] from National
Chiao Tung University used Geosat and ERS-1 altimetry
data to identify global ocean gravity anomalies. These
researchers have made many contributions in the fusion and
fine processing of satellite altimetry data.

Usually, the input to the inverse VeningMeinesz formula is
deflections of the vertical, which are obtained from the first-
order difference of altimetry observations. This approach
eliminates the radial orbit errors due to changes in the
geographical position and long waves on the sea surface,
as well as other similar systemic errors. The deflections
of the vertical have rich high-frequency components of the
gravity field, which are useful in calculating a high-resolution
ocean gravity field. With the advent of satellite altimetry,
deflections of the vertical have become available for the
oceans and the inverse Vening Meinesz formula can be
useful in computing marine gravity from satellite altimetry.
Therefore, the inverseVeningMeinesz formula is widely used
for altimetry gravity inversion. Moreover, Gopalapillai [19]
transformed satellite altimetry data into gravity anomalies

using the Stokes formula. Sandwell and Smith [20] proposed
a method for inverting gravity anomalies based on deflections
of the vertical and systematically provided expressions for
the relations among the deflections of the vertical, disturbing
gravity, and a gravity anomaly.

However, in the actual evaluation of a gravity anomaly
at the target point and nearby areas, the integration area
contains the target point. In this case, the inverse Stokes
formula and the inverse VeningMeinesz formula use singular
integration. The integration area is called the innermost
zone [21], [22]. In the literature, the calculation point of the
integral kernel function is usually set to zero. This, however,
ignores the influence of the innermost zone on the gravity
anomaly. Given that a fast Fourier transformation requires the
input to be the geoid height for the regular grid, the smallest
area in the innermost zone is one grid element. Considering
the resolution of satellite altimetry data, the innermost zone
of the inverse Vening Meinesz formula is likely to be an area
ranging from several thousand to tens of thousands of square
kilometers. Whether the influence of this area on the gravity
anomaly can be neglected still needs further study.

Bian [23] proposed a set of non-singular transformations
that systematically solved the innermost zone calculation
problems for the height anomaly, deflections of the vertical,
terrain correction, and gravity anomaly in physical geodesy.
Hwang et al. [24], [25] regarded the innermost zone as a circle
and derived formulas for gravity anomalies in the innermost
zone. However, the gravity anomalies are in rectangular grids
(such as 2’× 2’ ). If approximation series are used, significant
approximation errors may be introduced. Chang et al. [9]
dealt with the innermost zone as a square domain and derived
a formula for the innermost zone effects. They noted that
these effects for a gravity anomaly depend on the gradients
of the deflection components [26] and the size of the singular
area. The actual data are usually distributed in a grid, and
then the innermost zone can be approximated as a rectangle
due to meridian convergence. Therefore, processing methods
that treat the central area as a circle or a square do not match
the actual distribution of the data. Whether such an error
can be ignored in high-precision gravity inversion requires
further study. Sunkel [27] and Wang [28] expressed gravity
anomalies block by block using an interpolation polynomial
and derived analytic values for the integrals. However,
the integrals of these rational functions are highly complex,
especially when the related interpolation polynomials have
many terms. Only the analytic values of the corresponding
linear approximation can be obtained.

To assess the computational accuracy of the inversion of
satellite altimetry data for a gravity anomaly, we compare the
results from using and not using the non-singular transforma-
tion. In Section II, we derive a formula for a gravity anomaly
by treating the innermost zone as a rectangle and use the
non-singular integration transformations proposed by [29].
Then, in Section III, the theoretical model and the actual
data are used to analyze the contribution of the innermost
zone. Finally, numerical experiments on the influence
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FIGURE 1. Local rectangular coordinates of the integral zone.

of the innermost zone effect on gravity anomalies are
described.

II. THEORETICAL MODEL
A. NON-SINGULAR TRANSFORMATION METHOD
There is a class of singular integrals related to the reciprocal
distance in the evaluation of the Earth’s gravity field. For
example, when the height anomalies, deflections of the
vertical, and gravity gradients use planar approximations,
they can be expressed as the convolution.

ζ =
1

2πγ

∫∫
1g(x, y)

r
dxdy,

ξ = −
1

2πγ

∫∫
1g(x, y)x

r3
dxdy,

η = −
1

2πγ

∫∫
1g(x, y)y

r3
dxdy,

∂1g
∂h
=

1
2π

∫∫
1g(x, y)−1gP

r3
dxdy,

(1)

where x is the longitudinal coordinate, y is the horizontal
coordinate, ζ is the height anomaly, ξ and η are the
deflections of the vertical, ∂1g/∂h is the gravity gradient,
and 1g is the gravity anomaly. When r → 0, the above
integrals are all singular. A numerical evaluation of the
gravity field on or near the singular points is usually difficult,
and the accuracy of the gravity field is limited. This paper
introduces a set of non-singular transformation that make the
singular integrals non-singular so that it is possible to directly
implement numerical integration in the innermost area.

The singular integrals depend on the selection of the
variable. The general treatment in mathematical analysis is
to replace the variable to transform the singular integrals into
non-singular integrals.

Fig. 1 shows the local rectangular coordinates of the
integral zone. O is the origin of the rectangular coordinate
system, the x is the x-axis, the y is the y-axis. The

integral area is a rectangle. It is divided into four areas
(σ1, σ2, σ3, and σ4) by connecting the point O to the four
vertices. k1, k2, k3, and k4 are the slopes of each line
connecting point O to a vertex. The perpendicular distances
from point O to each side are a1, a2, a3, and a4. The
scopes of the areas σ1, σ2, σ3, and σ4 can be expressed
as follows: σ1 ∈ [ (x, y)| 0 < x < a1, k1x < y < k2x],
σ2 ∈ [ (x, y)| y/k3 < x < y/k2, 0 < y < a2], σ3 ∈ [ (x, y)|
a3 < x < 0, k4x < y < k3x], and σ4 ∈ [ (x, y)|
y/k1 < x < y/k4, a4 < y < 0]. For example, the integral
is A =

∫∫
1/r dσ =

∫∫
1/r dxdy. When r → 0, this integral

is singular.
First, the non-singular transformation is introduced using

σ1 as an example: {
x = x,
y = x · z.

(2)

Then, the determinant of the corresponding Jacobi matrix
can be obtained:

det(J) =
∣∣∣∣∂(x, y)∂(x, z)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
∂x
∂x

∂x
∂z

∂y
∂x

∂y
∂z

∣∣∣∣∣∣∣∣ =
∣∣∣∣ 1 0
z x

∣∣∣∣ = x. (3)

Finally, the singular integral can be transformed into a
non-singular integral through the above steps. σ1 is replaced
by σ ′1 ∈ [ (x, z)| 0 < x < a1, k1 < z < k2]:

A =
∫∫

dσ
r
=

∫∫
dxdy√
x2 + y2

=

∫∫
|J| dxdz
√
x2 + x2z2

=

∫∫
dxdz
√
1+ z2

, (4)

where dσ = dx · dy, r =
√
x2 + y2.

B. PLANE APPROXIMATION OF THE INVERSE VENING
MEINESZ FORMULA
From Hwang [24], the inverse Vening Meinesz formula is:

1gP =
γ0

4π

∫∫
σ

H ′(ψPQ)
(
ξQ cosαQP + ηQ sinαQP

)
dσ (5)

where 1gP is a gravity anomaly at the computation point
P, γ0 = 979.8 × 10−3 m/s2 is the average value of Earth’s
gravity,Q is a random point, αQP is the azimuth from pointQ
to point P, ψPQ is the spherical angular distance from point
P to point Q, ξQ is the component of the deflections of the
vertical in the north–south direction at point Q, and ηQ is the
component of the deflections of the vertical in the east–west
direction at the point Q. Here, H ′(ψPQ) is the integral kernel
function [30]:

H ′(ψPQ) = −
cos(ψPQ/2)

2 sin2(ψPQ/2)

+
cos(ψPQ/2)

(
3+ 2 sin(ψPQ/2)

)
2 sin(ψPQ/2)

(
1+ sin(ψPQ/2)

) . (6)
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FIGURE 2. The local rectangular coordinate frame.

To evaluate the gravity anomaly in the innermost zone,
we construct the Cartesian coordinate frame at the local
tangent plane where the point P is the origin.
In the local rectangular coordinate frame shown in Fig. 2,

the x-axis points to the north, the y-axis points to the east,
the xy-plane is tangent to the surface of the Earth at the point
P, Q(x, y) is the dynamic integration points in the innermost
zone, and l is the distance between points P andQ. Moreover,
it can be seen from Fig. 2 that:

cosαQP = −
x
l
,

sinαQP = −
y
l
,

(7)

where l =
√
x2 + y2. When the integration area is

small, the spherical distance ψPQ can be approximated as
ψPQ ≈ l/R. Where R is mean radius of the earth. As a result,
the integral kernel function in (5) can be approximated as:

H ′(ψPQ)

= −
cos(ψPQ/2)

2 sin2(ψPQ/2)
+

cos(ψPQ/2)
(
3+ 2 sin(ψPQ/2)

)
2 sin(ψPQ/2)

(
1+ sin(ψPQ/2)

)
≈ −

cos(ψPQ/2)

2 sin2(ψPQ/2)
+

3 cos(ψPQ/2)
2 sin(ψPQ/2)

≈
1

2(ψPQ/2)2
=

2

ψ2
PQ

= −
2R2

l2
. (8)

Substituting, equations (7) and (8) into equation (5), and
because R2dσ = dxdy, the gravity anomaly in the innermost
zone can be simplified as:

1gP

=
γ

4π

∫∫
σ

(−
2R2

l2
) ·
(
(−

x
l
) · ξQ + (−

y
l
) · ηQ

)
·
1
R2

dxdy

=
γ

2π

∫∫
σ

ξQ · x + ηQ · y
(x2 + y2)3/2

dxdy. (9)

When l → 0, the above integrals become singular.
To solve this problem, Hwang regarded the innermost zone

as a circular area and expanded ξQ and ηQ into Taylor series
forms: 

ξ (x, y) = ξP + ξxx + ξyy+
1
2!
(ξxxx2

+2ξxyxy+ ξyyy2)+ · · ·

η(x, y) = ηP + ηxx + ηyy+
1
2!
(ηxxx2

+2ηxyxy+ ηyyy2)+ · · ·

(10)

Retaining only the linear terms in equation (10) and
assuming that the innermost zone is circular, the gravity
anomaly of the innermost zone can be written as:

1g1 =
γ0

2
·

√
1x ·1y
π

· (ξx + ηy) (11)

where 1x is the grid spacing in the x direction and 1y is the
grid spacing in the y direction.

Chang et al. [9] regarded the innermost zone as a square
domain and expanded ξQ and ηQ into Taylor series forms
(equations (10)). Then, the gravity anomaly of the innermost
zone can be written as:

1g2 =
2 · ln

(
1+
√
2
)

π
· s · γ0 · (ξx + ηy), (12)

where s is the half the length of the square domain.

C. THE ACCURATE FORMULA FOR SATELLITE ALTIMETRY
IN THE INNERMOST ZONE
The deflections of the vertical can be expressed using bicubic
interpolation by treating the innermost zone as a rectangle.
In mathematics, bicubic interpolation is an extension of
cubic interpolation for data points on a two-dimensional
regular grid. The interpolated surface is smoother than the
corresponding surfaces obtained by bilinear interpolation or
nearest-neighbor interpolation. Bicubic interpolation can be
accomplished using Lagrange polynomials, cubic splines,
or cubic convolution. Next, we derive formulas for evaluating
the gravity anomaly of this area using the non-singular
transformation [31].

1) DEFLECTIONS OF THE VERTICAL EXPRESSED BY BICUBIC
INTERPOLATION IN THE INNERMOST ZONE
As shown in Fig. 3, σ is the supposed integration area of the
innermost zone: σ ∈ [(x, y)|−3a/2 < x < 3a/2, −3b/2 <
y < 3b/2], (a > 0, b > 0). ξQ and ηQ can be expressed using
bicubic interpolation as follows:

ξ (x, y) =
3∑
i=0

(x
a

)i 3∑
j=0

αij

( y
b

)j
(13)

η(x, y) =
3∑
i=0

(x
a

)i 3∑
j=0

βij

( y
b

)j
. (14)
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FIGURE 3. Integral domains in the rectangular area.

FIGURE 4. Innermost zone after variable transformations.

To simplify the integration, two new coordinate variables
are introduced: 

u =
x
a
,

v =
y
b
.

(15)

Hence, equations (13) and (14) become
ξ (x, y) =

3∑
i=0

ui
3∑
j=0

αijvj,

η(x, y) =
3∑
i=0

ui
3∑
j=0

βijvj.

(16)

The integration area of the innermost zone can be described
by: σ ′ ∈ [(u, v)| − 3/2 < u < 3/2,−3/2 < v < 3/2].
In Fig. 4, ξij = ξ (i+ 1/2, j+ 1/2) and ηij = η(i+ 1/2, j+

1/2) on grid nodes can be considered as the interpolation
conditions in equation (16). Thus, equation (16) can be

simplified as:

A(α)AT = (ξ ), (17)

A(β)AT = (η), (18)

where

(α) = A−1(ξ )(A−1)T , (19)

(β) = A−1(η)(A−1)T . (20)

Therefore, the undetermined coefficients α and β are
(21) and (22), as shown at the bottom of the next page.

2) FORMULAS TO EVALUATE A GRAVITY ANOMALY IN THE
INNERMOST ZONE
Substituting equations (15) and (16) into equation (5),
considering the integral nature of odd and even functions,
and exploiting the symmetry of the integration area, then the
gravity anomaly of the innermost zone is

1gP

=
4γ a2b
2π

×

∫ 3/2

0

∫ 3/2

0

(α10 + α12v2 + α30u2 + α32u2v2)u2

(a2u2 + b2v2)3/2
du dv

+
4γ ab2

2π

∫ 3/2

0

×

∫ 3/2

0

(β01 + β21u2 + β03v2 + β23u2v2)v2

(a2u2 + b2v2)3/2
du dv, (23)

where σ1 ∈ [0 < u < 3/2, 0 < v < u] and σ2 ∈
[0 < u < v, 0 < v < 3/2]. To simplify (23), we introduce

1gξ

=
4γ a2b
2π

×

∫ 3/2

0

∫ 3/2

0

(α10 + α12v2 + α30u2 + α32u2v2)u2

(a2u2 + b2v2)3/2
du dv,

(24)

1gη

=
4γ a2b
2π

×

∫ 3/2

0

∫ 3/2

0

(β10 + β12v2 + β30u2 + β32u2v2)u2

(a2u2 + b2v2)3/2
du dv

(25)

with 1gP = 1gξ + 1gη. The integrals in equation (23) are
singular. Thus, the non-singular transformation is introduced.
The following non-singular integration transformation is
introduced for the integrals in σ1:{

u = u,

k =
v
u
.

(26)
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Likewise, the following non-singular integration transfor-
mation is introduced for the integrals in σ2:{

v = v,

λ =
u
v
.

(27)

Hence, σ1 ∈ [0 < u < 1, 0 < k < 1] and σ2 ∈ [0 <
λ < 1, 0 < v < 1]. Inserting equations (26) and (27) into
equations (24) and (25), respectively, we arrive at

1gξ =
4γ a2b
2π

∫ 1

0
(
3
2
α10 +

9
8
α12k2 +

9
8
α30

+
243
160

α32k2)
dk

(a2 + b2k2)3/2

+
4γ a2b
2π

∫ 1

0
(
3
2
α10 +

9
8
α12 +

9
8
α30λ

2

+
243
160

α32λ
2)

λ2dλ
(b2 + a2λ2)3/2

, (28)

1gη =
4ab2

2πγ

∫ 1

0
(
3
2
β01 +

9
8
β21 +

9
8
β03k2

+
243
160

β23k2)
k2dk

(a2 + b2k2)3/2

+
4γ ab2

2π

∫ 1

0
(
3
2
β01 +

9
8
β21λ

2
+

9
8
β03

+
243
160

β23λ
2)

dλ
(b2 + a2λ2)3/2

. (29)

Nowwe can see that the denominators are greater than zero
in transformed equations (28) and (29), and the singularities
have been eliminated. This basically changes the double
integrals to single variable integrals, and the equation (23)
can be evaluated [32], [33]: (30), as shown at the bottom of
the next page, where m = a/b. The integration area of the
innermost zone is σ1 ∈ [(u, v)| − 3/2 < u < 3/2,−3/2 <
v < 3/2]. The gravity anomaly in the 1 × 1 grid can be
obtained in the same way as we obtained (30) in (31), as
shown at the bottom of the next page.


α00 α01 α02 α03
α10 α11 α12 α13
α20 α21 α22 α23
α30 α31 α32 α33

 =



−
1
16

9
16

9
16

−
1
16

1
24

−
9
8

9
8

−
1
24

1
4

−
1
4
−
1
4

1
4

−
1
6

1
2

−
1
2

1
6




ξ−2−2 ξ−2−1 ξ−20 ξ−21

ξ−1−2 ξ−1−1 ξ−10 ξ−11

ξ0−2 ξ0−1 ξ00 ξ01

ξ1−2 ξ1−1 ξ10 ξ11



×



−
1
16

1
24

1
4

−
1
6

9
16

−
9
8

−
1
4

1
2

9
16

9
8

−
1
4
−
1
2

−
1
16

−
1
24

1
4

1
6


(21)


β00 β01 β02 β03
β10 β11 β12 β13
β20 β21 β22 β23
β30 β31 β32 β33

 =



−
1
16

9
16

9
16

−
1
16

1
24

−
9
8

9
8

−
1
24

1
4

−
1
4
−
1
4

1
4

−
1
6

1
2

−
1
2

1
6




η−2−2 η−2−1 η−20 η−21
η−1−2 η−1−1 η−10 η−11
η0−2 η0−1 η00 η01
η1−2 η1−1 η10 η11



×



−
1
16

1
24

1
4

−
1
6

9
16

−
9
8

−
1
4

1
2

9
16

9
8

−
1
4
−
1
2

−
1
16

−
1
24

1
4

1
6


(22)
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For a square grid with unit length, equation (30) can be
simplified as:

1gP = 1gξ +1gη

=
1

160
√
2π

(360γ (−2α12 + 3α30)+ 486γα32

+
√
2(480γ arcsin h[1]α10

+720γ arcsin h[1]α12 + 27γ (18 arcsin h[1]α32
− arcsin h[1](20α30 + 9α32)))

+6γ (80
√
2 arcsin h[1]β01 + 90(2

−
√
2 arcsin h[1])β03

−3(2− 2
√
2 arcsin h[1])(20β21 + 27β23)). (32)

III. NUMERICAL EXPERIMENT AND DISCUSSION
In this paper, a non-singular transformation is introduced
to transform a singular integral into non-singular form so
that we can invert a gravity anomaly from satellite altimetry
data. This method has great practical significance as it
may improve the accuracy of gravity anomaly inversion.
In this section, we compare the numerical integration
using (equation (38)) and without using (equation (37)) the
non-singular transformation. The geoid height is given by
the theoretical model and is used to evaluate the accuracy of
the formula after the non-singular transformation.

A. TESTING WITH A THEORETICAL MODEL
To simplify the computation and intuit the analysis, we denote
the singular integral in the inverse Vening Meinesz formula
method as IV:

IV =
∫∫
σ

ξQ · x + ηQ · y
(x2 + y2)3/2

dxdy. (33)

The geoidal height can be written as:

NQ =
√
x2 + y2 + δ2, (δ > 0) (34)

where δ is the initial geoidal height.
Fig. 5 shows the geoidal height for δ = 1, 5, 10 and 100 m.

When δ = 1m, the geoidal height is in the range 1–1.732 m,
spanning 0.732 m. When δ = 5m, the geoidal height is in
the range 5–5.196 m, with an interval of 0.196 m. When
δ = 10m, the geoidal height is in the range 10–10.0995 m,
with an interval of 0.0995 m. Finally, when δ = 100 m,
the geoidal height is in the range 100–100.0099 m, with an
interval of 0.0099 m. It can be seen that the geoidal height
becomes smooth with an increase of δ.

The deflections of the vertical ξQ and ηQ can be expressed
as:

ξQ = −
∂N
∂x
= −

x√
x2 + y2 + δ2

, (35)

ηQ = −
∂N
∂y
= −

y√
x2 + y2 + δ2

. (36)

In this section, to simplify the computation, the innermost
zone wasmodelled as a unit square domain where σ ∈ [−1 <
x < 1,−1 < y < 1]. The integral IV without the non-
singular transformation becomes

IV1 =
∫∫
σ

ξQ · x + ηQ · y
(x2 + y2)3/2

dxdy

= −

∫∫
σ

1√
x2 + y2

√
x2 + y2 + δ2

dxdy

= −4
∫ 1

0

∫ 1

0

1√
x2 + y2

√
x2 + y2 + δ2

dxdy. (37)

1gP = 1gξ +1gη

=
1

160m2
√
1+ m2π

(m(180(m+ m3)γ (−2α12 + 3m2α30)+ 243m(−2+ m2
+ 3m4)γα32

+

√
1+ m2(−480m3γ log[

m

1+
√
1+ m2

]α10 + 360γ (arcsin h[m]+ m3(− log[m]+ log [1]+
√
1+ m2]))α12

+27γ (arcsin h[m]+ m3(18 arcsin h[m]α32 + m5(log[m]− log[1+
√
1+ m2])(20α30 + 27α32)))

+6γ (80m2
√
1+ m2 arcsin h[m]β01 + 90(m+ m3

−

√
1+ m2 arcsin h[m])β03

−3m2(m+ m3
+

√
1+ m2(− arcsin h[m]+ m3(log[m]− log[1+

√
1+ m2])))(20β21 + 27β23))) (30)

1g1×1

=
1

480m2 (480m
3 log(

1+
√
1+ m2

m
)α1,0 − 40m

√
1+ m2α1,2 + 60m3

√
1+ m2α3,0 − 6m

√
1+ m2α3,2

+9m3
√
1+ m2α3,2 − 40m

√
1+ m2β1,2 − 40m3(−12 log(

1+
√
1+ m2

m
)β1,0 + log(

m

1+
√
1+ m2

)(α1,2 + β1,2))

+60m3
√
1+ m2β3,0 − 6m

√
1+ m2β3,2 + 9m3

√
1+ m2β3,2 + 2 log(m+

√
1+ m2)(20α1,2 + 3α1,2 + 20β1,2 + 3β3,2)

+3m5 log(
m

1+
√
1+ m2

)(20α3,0 + 3α3,2 + 20β3,0 + 3β3,2)). (31)
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FIGURE 5. Geoidal height with (a) δ = 1 m, (b) δ = 5 m, (c) δ = 10 m, and (d) δ = 100 m.

TABLE 1. Results of singular integrals IV 1 and IV 2 (in 10−6 m/s2).

Substituting equations (26) and (27) into equation (37),
the integral using the non-singular transformation is IV 2. The
results for the singular integral with and without using the
non-singular transformation are shown in Table 1.

IV2 = −4
∫ 1

0

∫ 1

0

1√
x2 + y2

√
x2 + y2 + δ2

dxdy

= −4
∫ 1

0

∫ 1

0

1
√
1+ k2

√
x2 + k2x2 + δ2

dxdk

−4
∫ 1

0

∫ 1

0

1
√
1+ λ2

√
λ2y2 + y2 + δ2

dλdy

= −8
∫ 1

0

∫ 1

0

1
√
1+ k2

√
x2 + k2x2 + δ2

dxdk. (38)

As illustrated in Table 1, the accuracy of IV 2 for
10 × 10 is roughly the same as the accuracy of IV 1 for
200 × 200. Therefore, the efficiency of equation (38), which
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FIGURE 6. Results for the singular integral with and without the non-singular transformation for (a) δ = 1 m, (b) δ = 5 m, (c) δ = 10 m,
and (d) δ = 100 m.

TABLE 2. Comparisons between the results of the singular integral IV using the non-singular transformation and exact values.

uses a non-singular transformation, is improved compared
with (37), which does not use the transformation.

Fig. 6 shows the results of numerical integration with and
without the non-singular transformation for δ = 1, 5, 10, and
100 m, for different partitions from 4 × 4 to 1000 × 1000.
As illustrated in Fig. 6, the efficiency of equation (37)
without the non-singular transformation is lower than the effi-
ciency of equation (38) with the transformation. Moreover,
the convergence speed is slow in the lower partitions from
4 × 4 to 400 × 400. The convergence speed of equation (38)
using the transformation is fast and the result is close to
the true value. From Fig. 6 and Table 1, it can be seen
that equation (38) using the non-singular transformation is
more efficient, converges faster, and is more accurate for
evaluating the gravity anomaly. Therefore, the non-singular
transformation is useful for the singular integration of the
Earth’s gravity field.

According to equation (31), when the deflections of the
vertical are expressed using bicubic interpolation, the com-
putation for singular integral is

IV =
1
80

[480 ln(1+
√
2)(α10 + β01)

−360(
√
2− 2 ln(1+

√
2))(α12 + β21)

+540(
√
2− ln(1+

√
2))(α30 + β03)

+243(
√
2− ln(1+

√
2))α32

−486(
√
2− 2 ln(1+

√
2))β23], (39)

where α10, α12, α30, α32, β01, β21, β03, and β23 are given by
equations (21) and (22).

The error for IV is compared in Table 2 with the result for
IV 2 at 1000× 1000, which is considered to be the exact value.

Table 2 shows the absolute and relative errors between the
singular integral using the non-singular transformation and
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FIGURE 7. (a) Computational zone for the vertical data. (b) The innermost zone of the vertical data.

FIGURE 8. Gravity anomaly in the innermost zone for a grid of 6’ × 6’ by (a) this paper 1g1, (b) Hwang’s method 1gH3×3, (c) Chang’s method 1gC3×3.

the exact values. The absolute and relative errors are 0.0762×
10−6 m/s2 and 1.26% for δ = 1 m, 0.0086 × 10−6 m/s2

and 0.62% for δ = 5m, 0.0029 × 10−6 m/s2 and 0.41%
for δ = 10m, and 0 for δ = 100m. The errors decrease
with an increase of δ, which indicates that they depend on the
undulations of the geoid. The absolute and relative errors are
smaller in a smoother area. In general, the relative error of the
numerical integration with the non-singular transformation is
less than 1.5%, which is significantly higher than that without
the non-singular transformation. Thus, the results of the
numerical integration using the non-singular transformation
are satisfactory for a practical application.

B. TESTING WITH ACTUAL DATA
To further investigate the effects of the innermost zone on
the inversion of a gravity anomaly, this paper used satellite
altimeter data. The test area for this application of the
inverse Vening Meinesz formula was the South China Sea
and its vicinity (12◦N–18◦N, 112◦E–118◦E). The practical
computation is based on deflections of the vertical with

a resolution of 2’ × 2’ in the low latitude area. The
computational and innermost zones of the vertical data are
illustrated in Fig. 7.

There are 180 × 180 grid elements in the test area. In this
work, we consider the innermost zone as a grid of 6’ × 6’
(giving a grid of 3 × 3), as shown in Fig. 7(b). We applied
equations (11) of Hwang’s [24], (12) of Chang et al. [9]
and (30) to evaluate the contribution of the innermost zone
to the gravity anomaly in the 178 × 178 grid [Fig. 7(a)].
The results are 1gH3×3, 1gC3×3 and 1g1, respectively.
Moreover, we consider the innermost zone as a grid
of 2’ × 2’ (giving a grid of 1 × 1) and apply equations (11),
(12) and (31) to evaluate the contribution of the innermost
zone to the gravity anomaly in the 178 × 178 grid. The
results are 1gH1×1, 1gC1×1 and 1g2, respectively. The
gravity anomalies1gC3×3,1gH3×3,1g1,1gC1×1,1gH1×1
and 1g2 in the innermost zone are shown in Figs. 8 and 9,
respectively.

Fig. 8 indicates that with a grid of 6’× 6’, the range for the
gravity anomalies in the innermost zone in the South China
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FIGURE 9. Gravity anomaly in the innermost zone for a grid of 2’ × 2’ by(a)this paper 1g2, (b) Hwang’s method 1gH1×1, (c)Chang’s method 1gC1×1.

TABLE 3. Statistics of the gravity anomalies in the innermost zone
(in 10−6 m/s2).

Sea can reach more than ±30× 10−6 m/s2, which has effect
to the gravity anomalies in the test zone. Moreover, the trends
of gravity anomalies in the three figures are consistent.
The gravity anomalies are clearly visible. Compared with
the results of Fig. 8(b) and 8(c), the changes of gravity
anomalies in Fig. 8(a) are more detailed. It illustrates that
the method which expressed the deflections of the vertical in
the form of double cubic polynomials is more accurately to
calculated the gravity anomalies at the dynamic integration
points in the innermost zone, that is because this method
used 16 points around the dynamic integration point for
interpolation calculation, rather than the average of 4 points
around the dynamic integration point.

In Fig. 9, for a grid of 2’ × 2’, the range for the gravity
anomalies can reach more than±10×10−6 m/s2. The gravity
map in Fig. 9 changes relatively smoothly compared to Fig. 8,
but the trend of gravity anomalies is consistent. Thus, the size
of the gravity anomalies in the innermost zone depends on the
grid dimensions in that zone. According to the experimental
result, even if the integral range is given as a grid of 1 × 1,
the maximum and minimum gravity anomaly of the dynamic
integral point in the innermost zone can reach more than
±10× 10−6 m/s2, therefore, the effect of the innermost zone
on the gravity anomalies cannot be ignored.

The standard deviation (SD), maximum (max), minimum
(min), and mean of 1gC3×3, 1gH3×3, 1g1, 1gC1×1,
1gH1×1 and 1g2 are shown in Table 3. The SD, maximum,

minimum, and mean of 1g1 are 4.928 × 10−6 m/s2,
32.563 × 10−6 m/s2, −36.023 × 10−6 m/s2, and 0.086 ×
10−6 m/s2, respectively. The SD, maximum, minimum,
and mean of 1gH3×3 are 5.945 × 10−6 m/s2, 35.761 ×
10−6 m/s2, −38.228 × 10−6 m/s2, and 0.129 × 10−6 m/s2,
respectively. The SD, maximum, minimum, and mean of
1gC3×3 are 5.912 × 10−6 m/s2, 35.761 × 10−6 m/s2,
−38.018× 10−6 m/s2, and 0.128× 10−6 m/s2, respectively.
The SD, maximum, minimum, and mean of1g2 are 1.744×
10−6 m/s2, 13.660 × 10−6 m/s2, −12.501 × 10−6 m/s2,
and 0.015 × 10−6 m/s2, respectively. The SD, maximum,
minimum, and mean of 1gH1×1 are 1.982 × 10−6 m/s2,
13.92 × 10−6 m/s2, −12.743 × 10−6 m/s2, and 0.043 ×
10−6 m/s2, respectively. The SD, maximum, minimum,
and mean of 1gC1×1 are 1.971 × 10−6 m/s2, 13.855 ×
10−6 m/s2, −12.673 × 10−6 m/s2, and 0.043 × 10−6 m/s2,
respectively. The SD of 1gH3×3 and 1gH1×1 by using
Hwang’s method [24] and 1gC3×3 and 1gC1×1 by using
Chang’s method [9] are not as small as that of this paper,
whether the integral range is given a grid of 1 × 1 or
3 × 3. Moreover, the absolute values of the maximum and
minimum are Hwang’s method Chang’s method are larger
than those of this paper. Therefore, the discreteness of the
computed results in this paper of the gravity anomalies in
the innermost zone are small. This is related to the selection
of interpolation points in interpolation calculation. A certain
number of interpolation points and the uniform distribution
of interpolation points can make the calculation result more
accurate.

Compared the range for the gravity anomalies for a grid
of 6’ × 6’ with a grid of 2’ × 2’. The SD of 1g2 is not
as large as that of 1g1. The maximum of 1g2 is less than
that of 1g1. Even so, the absolute values of the maximum
and minimum are still more than 10 × 10−6 m/s2. These
results indicate that the grid in the innermost zone makes an
important contribution to the inversion of gravity anomalies.
Thus, setting the integral kernel function to zero in the
innermost zone, as done by the traditional algorithms, affects
the accuracy of gravity inversion, and the innermost zone
must be considered. Equation (31) can be used to compute
the contribution of the 1× 1 grid in which the computational
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point is a gravity anomaly, which can improve the accuracy of
gravity inversion. Moreover, it should be noted that the region
around the dynamic integral point has practical significance
for its calculation.

IV. CONCLUSION
We improved the accuracy of the inversion of gravity
anomalies in the innermost zone using the inverse Vening
Meinesz formula. We introduced the non-singular transfor-
mation and expressed the deflections of the vertical using
bicubic interpolation by treating the innermost zone as a
rectangle. A precise formula for the innermost zone of
the rectangular domain, which is more consistent with the
actual data distribution, was then derived. The efficiency,
convergence, and accuracy of this algorithm and the influence
of the central area were assessed with a theoretical model and
with actual data.

1.Using the non-singular transformation, the singular
integral in the inverse Vening Meinesz formula can be
transformed into a non-singular integral, which can be
integrated numerically. The problem is solved that the
dynamic integral points in the innermost zone cannot be
integrated. The results show that the accuracy of the formula
using the non-singular transformation is better than 1.5%,
and is significantly higher than without the non-singular
transformation. The non-singular transformation may also be
useful for other situations with singular integrals relating to
the Earth’s gravity field.

2. Deflections of the vertical are expressed using a bicubic
interpolation. The innermost zone is treated as a rectangle.
Formulas for computing the gravity anomalies of this area
were derived using the non-singular transformation. The
numerical tests with the theoretical model show that the
formula has high accuracy and can achieve satisfactory results
in a practical application.

3. A practical computation based on deflections of the ver-
tical for data with a resolution of 2’× 2’ from the South China
Sea and its vicinity show that the integral kernel function
is not zero in the innermost zone. The discreteness of the
computed results in this paper of the gravity anomalies in the
innermost zone are small. The non-singular transformation
has a non-negligible contribution in the computation of a
gravity anomaly in the innermost zone. The region around
the dynamic integral point has practical significance for its
calculation.
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