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ABSTRACT This paper addresses the standard generalized likelihood ratio test (GLRT) detection problem
of weak signals in background noise. In so doing, we consider a non-fluctuating target embedded in
complex white Gaussian noise (CWGN), in which the amplitude of the target echo and the noise power
are assumed to be unknown. Important works have analyzed the performance for the referred scenario and
proposed GLRT-based detectors. Such detectors are projected at an early stage (i.e., prior to the formation
of a post-beamforming scalar waveform), thereby imposing high demands on hardware, processing, and
data storage. From a hardware perspective, most radar systems fail to meet these strong requirements.
In fact, due to hardware and computational constraints, most radars use a combination of analog and digital
beamformers (sums) before any estimation or further pre-processing. The rationale behind this study is
to derive a GLRT detector that meets the hardware and system requirements. In this work, we design
and analyze a more practical and easy-to-implement GLRT detector, which is projected after the analog
beamforming. The performance of the proposed detector is analyzed and the probabilities of detection (PD)
and false alarm (PFA) are derived in closed form. An alternative fast convergent series for the PD is also
derived. This series proves to be very efficient and computationally tractable, saving both computation
time and computational load. Moreover, we show that in the low signal-to-noise ratio (SNR) regime,
the post-beamforming GLRT detector performs better than both the classic pre-beamforming GLRT detector
and the square-law detector. This finding suggests that if the signals are weak, instead of processing the
signals separately, we first must reinforce the overall signal and then assembling the system’s detection
statistic. We also showed that the PFA of the post-beamforming GLRT detector is independent of the
number of antennas. This property allows us to improve the PD (by increasing the number of antennas)
while maintaining a fixed PFA. At last, the SNR losses are quantified, in which the superiority of the
post-beamforming GLRT detector was evidenced as the number of antennas and samples increase.

INDEX TERMS Generalized likelihood ratio test, non-fluctuating targets, complex white Gaussian noise,
phased array radar, probability of detection.

I. INTRODUCTION
Before performing any task (i.e., searching, tracking or imag-
ing), the radar must decide whether the target of interest is
present or absent in a certain range, angle or Doppler bin [1].
Unfortunately, the presence of unwanted signals such as ther-
mal noise, clutter, and jamming, ubiquitous in practice, often
render this decision very complicated. The optimal decision
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approving it for publication was Guolong Cui .

is achieved by applying the likelihood ratio test (LRT) [2].
This decision is based on the Neyman-Pearson (NP) criterion,
whichmaximizes the probability of detection (PD) for a given
probability of false alarm (PFA) [3]. The LRT provides an
optimal decision if the probability density functions (PDFs)
of the received samples are fully known. Of course, this
requirement does not fit most practical problems. In view of
this, a more general decision rule arose to deal with these
types of scenarios, the so-called generalized likelihood ratio
test (GLRT) [4]. In the GLRT, all unknown PDF parameters

95622 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-3747-1511
https://orcid.org/0000-0002-0106-1548
https://orcid.org/0000-0001-5707-6311


F. D. A. García et al.: New Findings on GLRT Radar Detection of Non-Fluctuating Targets

are replaced by their maximum likelihood estimates (MLEs).
This structure allows the GLRT to work over a wide range
of scenarios. Although, there is no optimality associated with
the GLRT, in practice, it appears to work quite well.

Important GLRT-based detectors were derived considering
phased array radars, non-fluctuating targets and, complex
white Gaussian noise (CWGN) have been rigorously ana-
lyzed in the literature (cf. [5]–[9] for more discussion on
this). These works assumed a partial or a complete lack of
knowledge about the target and noise statistics. More com-
plex detectors that rely on the use of secondary data can
be found in [9]–[16]. In these works, secondary data was
assumed to be signal-free from the target components. That is,
only noise is present. In particular, the so-calledKelly’s detec-
tor was derived in [10], which considered that the primary
and secondary data vectors share the same unknown noise
covariance matrix. In [13], the authors extended the analysis
by considering that the target amplitude follows a Gaussian
distribution.

All referred works formulate the detection problem
at an early stage (i.e., prior to the formation of a
post-beamforming scalar waveform), thereby imposing high
demands on hardware, processing and data storage. In fact,
due to hardware and computational constraints, most radars
and mobile applications use a combination of analog
and digital beamformers (sums) before any estimation or
further pre-processing [17]–[20]. Furthermore, since the
use of GLRT involves a high degree of mathematical
complexity, theoretical performance analysis can be ham-
pered in most situations. Indeed, this was the case for
the aforementioned studies in which their performance
metrics – probability of detection (PD) and probability of
false alarm (PFA) – were computed through numerical inte-
gration, estimated via Monte-Carlo simulations, expressed in
integral-form, or require iterative solutions. In this context,
we also dedicate our efforts to easy the computation of the
performance metrics.

Scanning the technical literature, we realize that no study
has been devoted to the development of GLRT radar detectors
using a post-beamforming approach. In this paper, we design
and evaluate a new GLRT-based detector which is projected
after the analog beamforming operation. Moreover, we pro-
vide the analytical tools to properly determine the perfor-
mance of this detector. Specifically, we derive the PD and
PFA in closed form. An alternative fast convergent series
for the PD is also derived. For the analysis, we consider
a non-fluctuating target embedded in CWGN, in which the
amplitude of the target echo and the noise power are assumed
to be unknown. The use of secondary data is not consid-
ered. From a mathematical point of view, one could envisage
that our detector will somehow provide poorer performance
since we are reducing the detection problem dimensionality
by means of a sum operation (beamformer). In this paper,
we claim that this is not always the case if the signals
are weak. In fact, we show that in the low-SNR regime,
the post-beamforming GLRT detector performs better than

the classic GLRT detector (called here as pre-beamforming
GLRT detector 1) [7, Eq. (6.20)] and then the square-law
detector [21, Eq. (15.57)], widely used in non-coherent
radars [22]–[24]. This assertion suggest that, instead of pro-
cessing the signals separately, it is better to adding them up
before building the system’s detection statistic. Other attrac-
tive features about our detector will be discussed throughout
this work. With this paper, we aim to take another step
towards a better understanding and study of GLRT detectors.

The key contributions of this work may now be summa-
rized as follows:

1) Firstly, we design and evaluate a new GLRT detec-
tor projected after the analog beamforming operation.
From the practical point of view, this detector meets
the hardware and systems requirements of most radar
systems.

2) Secondly, we obtain closed-form expressions for the
corresponding PD and PFA. In particular, the PD
is given in terms of the bivariate Fox’s H -function,
for which we also provide a portable and efficient
MATHEMATICA routine.

3) Thirdly, we derive an alternative series representation
for the PD, obtained by exploring the orthogonal selec-
tion of poles in the Cauchy’s residue theorem. This
series enjoys a low computational burden and can be
quickly executed in any ordinary desktop computer.2

4) Finally, we provide some insightful and concluding
remarks on the GLRT-based detection for non-
fluctuating targets. To do so, we compare the
performance of our derived detector with the pre-
beamforming GLRT detector.

The remainder of this paper is organized as follows.
Section II describes the operation mode of our phased array
radar. Section III describes the operation mode of the phased
array radar. Section IV characterizes the detection statis-
tics and analyzes the corresponding performance metrics.
Section V introduces the multivariate Fox’s H -function and
derives both a closed-form solution and a series representa-
tion for the PD. SectionVI discusses representative numerical
results. Finally, Section VII draws the main conclusions.

In what follows, f(·)(·) denotes PDF; (·)T , transposition; |·|,
modulus; Re [·], real argument; Im [·], imaginary argument;
‖·‖, Euclidean norm; E [·], expectation;COV [·], covariance;
rank(·), rank of a matrix; and (·)−1, matrix inversion.

II. RECEIVER’S FRONT–END: PHASED ARRAY
In this work, we consider a linear phased array radar
composed of N antennas equally separated in the azimuth
direction, as shown in Fig. 1. The transmission and recep-
tion processes are carried out as follows. A single antenna
transmits a linear frequency-modulated pulse, whereas all

1We refer to the detector in [7, Eq. (6.20)] as pre-beamforming GLRT
detector since it was conceived and projected over the raw data (i.e., without
any pre-processing).

2Section VI illustrates the efficiency of this series and compares it with
MATHEMATICA’s built-in numerical integration.
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FIGURE 1. Top view of the phased array radar.

antennas receive the echo signals. Furthermore, an amplifica-
tion block and a phased shifter are installed after each antenna
element, and all outputs are added together (i.e., the analog
beamforming operation is applied).

Thus, the in-phase and quadrature signals can be written in
matrix form, respectively, as

X ,


X1,1 X2,1 · · · XN ,1
X1,2 X2,2 · · · XN ,2
...

...
. . .

...

X1,M X2,M · · · XN ,M

 (1)

Y ,


Y1,1 Y2,1 · · · YN ,1
Y1,2 Y2,2 · · · YN ,2
...

...
. . .

...

Y1,M Y2,M · · · YN ,M

 , (2)

where Xn,m and Yn,m represent the in-phase and quadrature
received signals, respectively. In addition, m ∈ {1, 2, . . . ,M}
is a discrete-time index, and n ∈ {1, 2, . . . ,N } is a spacial
index that denotes the association to the n-th antenna.
For simplicity and without loss of generality, we assume

a unity gain and a null phase shift for all antenna elements.
In addition, we consider a collection ofM signal samples for
each of the N antennas. Then, the overall received signal can
be written, in vector form, as

R = [R1,R2, · · · ,RM ]T , (3)

where

Rm =
N∑
n=1

(
Xn,m + jYn,m

)
. (4)

Note that R is a complex-valued random vector, in which
each component is formed by the sum of the received signals
coming from all the antennas at a certain time.

As will be shown in Section III, the fact of adding the
target echoes will drastically change the hardware design,
detection statistic, and performance of the post-beamforming
GLRT detector compared to previous detectors (cf. [7],
[9], [10], [12], [13]). Since our detector is projected after
the analog beamforming operation, one could argue that
its performance would be somehow suboptimum, as com-
pared to the pre-beamforming GLRT detector. In this work,
we show that this conclusion not always holds. Indeed, for
some cases the post-beamforming GLRT detector overcomes
the pre-beamforming GLRT detector. This assertion heavily
relies on the SNR of the incoming signals.

III. DETECTION DESIGN VIA POST–BEAMFORMING GLRT
In this section, we present the detection scheme for the
post-beamforming GLRT detector.

Herein, the presence or absence of the target is posed over
the following binary hypothesis test.3

A. HYPOTHESIS TEST
• Hypothesis H0: target is absent. In this case, from the
radar model described in the previous section, each Xn,m
and Yn,m are formed by mutually independent Gaussian
components with zero mean and unknown variance σ 2.
(Due to the presence of CWGN alone.) Note that σ 2

is the variance for the real (Xn,m) and imaginary (Yn,m)
parts individually.

• HypothesisH1: target is present. In this case, each Xn,m
and Yn,m are formed by mutually independent Gaus-
sian components with unknown non-zero means and
unknown variance σ 2. (Due to the non-fluctuating target
and noise.)

According to the stochastic model described in Section II,
the PDF of R underH0 is given by

fR
(
r|σ 2
;H0

)
=

1(
2πσ 2N

)M exp

[
−

∑M
m=1 |rm|

2

2σ 2N

]
, (5)

whereas the PDF of R under H1 is given by (6), displayed
at the bottom of the next page, where µX =

∑N
n=1 µX ,n and

µY =
∑N

n=1 µY ,n represent the total sum of target echoes for
the in-phase and quadrature components, respectively. Note
that after the analog beamforming operation, we no longer
have access to the specific value of target echo received by a
particular antenna, which is what actually occurs in practice.

B. DETECTION RULE
The system’s detection statistic can be defined through GLRT
as [7]

fR
(
r|σ̂ 2

1 ; µ̂X ; µ̂Y ;H1
)

fR
(
r|σ̂ 2

0 ;H0
) H1

≷
H0

T , (7)

3A binary hypothesis test refers to the choice that a radar makes between
two hypotheses: signal plus interference or only interference. This choice is
made throughout all resolution cells [25].
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where T is an arbitrary threshold and the ratio on the left-hand
side of (7) is called the generalized likelihood ratio. In addi-
tion, σ̂ 2

0 is the MLE for σ 2, to be obtained from (5), and
σ̂ 2
1 , µ̂X and µ̂Y are the MLEs for σ 2, µX and µY , respec-

tively, to be obtained from (6). Eq.(7) implies that the system
will decide for H1 whenever the generalized likelihood ratio
exceeds the threshold T , and will decide for H0 otherwise.
Since the logarithmic function is a monotonically increasing
function, we can rewrite the GLRT as

ln

[
fR
(
r|σ̂ 2

1 ; µ̂X ; µ̂Y ;H1
)

fR
(
r|σ̂ 2

0 ;H0
) ] H1

≷
H0

ln [T ] . (8)

Note in (5) and (6) that all unknown parameters(
σ 2, µX and µY

)
are scalars quantities. Hence, the corre-

sponding MLEs can be obtained easily. For example, σ̂ 2
0 can

be found by taking the natural logarithm of (5), and then
taking the derivative with respect to σ 2, i.e.,

∂ ln
[
fR
(
r|σ 2
;H0

)]
∂σ 2 = −

M
σ 2 +

1
2Nσ 4

M∑
m=1

|rm|2 . (9)

Then, we set (9) equal to zero and solve the equation for
σ 2, which yields to

σ̂0
2
=

1
2MN

M∑
m=1

|rm|2 . (10)

Using (6) and following the same approach as in (10),
the MLEs for µX and µY can be calculated, respectively, as

µ̂X =
1
M

M∑
m=1

Re [rm] (11)

µ̂Y =
1
M

M∑
m=1

Im [rm] , (12)

whereas the MLE for σ 2 can be computed as follows:

σ̂1
2
=

1
2 NM

M∑
m=1

{(
Re [rm]− µ̂X

)2
+
(
Im [rm]− µ̂Y

)2}
.

(13)

(For brevity, we have omitted the derivation steps.)
Substituting (10)–(13) in (8) and after simple simplifica-

tions, we have

M ln

[(
σ̂0

2

σ̂1
2

)] H1
≷
H0

ln [T ] . (14)

Expanding (13) and after performing some minor manipu-
lations, we can rewrite σ̂1

2 as

σ̂1
2
=

1
2 MN

M∑
m=1

{
µ̂2
X + µ̂

2
Y

}
+

1
2 MN

M∑
m=1

{
(Re [rm])2 + (Im [rm])2

}
︸ ︷︷ ︸

σ̂0
2

+

(
µ̂X

N

)
1
M

M∑
m=1

Re [rm]︸ ︷︷ ︸
µ̂X

+

(
µ̂Y

N

)
1
M

M∑
m=1

Im [rm]︸ ︷︷ ︸
µ̂Y

(a)
= σ̂0

2
−

1
2N

(
µ̂2
X + µ̂

2
Y

)
, (15)

where in step (a) we have used (10), (11), and (12), along with
some simplifications.

Isolating σ̂ 2
0 from (15), we obtain

σ̂ 2
0 = σ̂

2
1 +

1
2N

(
µ̂2
X + µ̂

2
Y

)
. (16)

Replacing (16) in (14), yields

M ln

[
1+

(
µ̂2
X + µ̂

2
Y

)
2 N σ̂12

] H1
≷
H0

ln [T ] . (17)

Now, since M and N are a positive numbers, we obtain
the same decision as in (17) by simply comparing(
µ̂2
X + µ̂

2
Y

)
/σ̂ 2

1 with a modified threshold, γ ′, that is,

µ̂2
X + µ̂

2
Y

σ̂1
2

H1
≷
H0

γ ′. (18)

For convenience and without loss of generality, we define
an equivalent decision rule as4

Z , 9
µ̂2
X + µ̂

2
Y

σ̂1
2

H1
≷
H0

γ, 6 (19)

where Z is the system’s detection statistic,9 = (M−1)/2 N
is a positive constant, and γ is a new modified threshold.

Fig. 2 illustrates how the pre-beamforming GLRT,
the post-beamforming GLRT, and the square-law detectors
are constructed. In this figure,M (·)2 denotes thatM is multi-
plied by the square of the block input. In particular, Fig. 2-(a)
depicts the pre-beamforming GLRT detector architecture.
In this case, all received signals are processed separately

4The constant 9 was introduced in the decision rule because it allow us
to model Z as a random variable with known PDF, as will become apparent
soon.

fR
(
r|σ 2
;µX ;µY ;H1

)
=

1(
2πσ 2 N

)M exp

[
−

∑M
m=1

{
(Re [rm]− µX )2 + (Im [rm]− µY )2

}
2σ 2N

]
(6)
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FIGURE 2. Detection schemes.

to form the system’s detection statistic [7]. This means that
the pre-beamforming GLRT detector requires a dedicated
signal-processing chain for each antenna in order to pro-
vide the system’s detection statistic. That is, the greater the
number of antennas, the higher the cost of implementation.
Certainly, this type of processing is more difficult to imple-

ment due to hardware constraints. Also, a high mathematical
complexity of the pre-beamforming GLRT detector arises
because all unknown parameters are estimated (via MLE)
from a high-dimensional multi-antenna PDF. Fig. 2-(b) illus-
trates the post-beamforming GLRT detector architecture.
Observe that the post-beamforming detector provides a less
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restrictive hardware implementation. This is because the
beamforming (sum over antennas) operation allows for a sin-
gle signal-processing chain, while reducing the PDF dimen-
sionality. Finally, Fig. 2-(c) illustrates the square-law detector
architecture. Here, after the analog beamforming, the square
magnitude of the signal samples is taken and then they are
added up together. It is important to emphasize that in order to
analytically calculate the performance metrics of the square
law detector, we do need the information about the noise
power. That is, for a given PFA, the detection threshold is
given as a function of the noise power [21].

IV. DETECTION PERFORMANCE
In this section, we characterize and analyze the performance
of the post-beamforming GLRT detector. To do so, we start
finding the PDFs of Z underH0 andH1.

A. DETECTION STATISTICS
First, we rewrite (19) as follows:

Z =
(M − 1)

(
µ̂2
X + µ̂

2
Y

)
2 N σ̂1

2

(a)
= (M − 1)

, I1︷ ︸︸ ︷(
µ̂2
X + µ̂

2
Y

)
M/Nσ 2

2σ̂1
2 M/σ 2︸ ︷︷ ︸
, I2

, (20)

where in step (a), without affecting the detection per-
formance, we have multiplied the left-hand side of Z
by Mσ 2/Mσ 2.
Note that, to fully characterize Z , it is imperative to find

the PDFs of I1 and I2 underH0 andH1.
Substituting (11) and (12) in I1, yields to

I1 =
(

1
√
MNσ

M∑
k=1

Re [rk ]

)2

︸ ︷︷ ︸
, U

+

(
1

√
MNσ

M∑
k=1

Im [rk ]

)2

︸ ︷︷ ︸
, V

. (21)

Observe that U is the square of a Gaussian random vari-
able (RV) with mean

√
ME

[
Xl,k

]
/σ
√
N and unit variance.

In a similar way, V is the square of a Gaussian RV with mean
√
ME

[
Yl,k

]
/σ
√
N and unit variance. Therefore, depend-

ing on the hypothesis, I1 can match one of the following
conditions:

1) GivenH0: I1 follows a central chi-squared (CCS) dis-
tribution [26] with ν1 = 2 degrees of freedom.

2) GivenH1: I1 follows a noncentral chi-squared (NCCS)
distribution [27] with noncentral parameter λ1 =
M
(
µ2
X + µ

2
Y

)
/Nσ 2 and α1 = 2 degrees of freedom.

Inserting (13) in I2, we obtain

I2=
1

Nσ 2

M∑
m=1

{(
Re [rm]−µ̂X

)2
+
(
Im [rm]−µ̂Y

)2} (22)

Here, the analysis is a bit more cumbersome; therefore,
we establish the following two lemmas:
Lemma 1: I2 matches the following conditions:
1) Given H0: I2 follows a CCS distribution with ν2 =

2(M − 1) degrees of freedom.
2) Given H1: I2 also follows a CCS distribution with

2(M − 1) degrees of freedom. In this case, for con-
venience, we model I2 by a NCCS distribution with
noncentral parameter λ2 = 0 and α2 = 2(M − 1)
degrees of freedom.
Proof: See Appendix A. �

Lemma 2: I1 and I2 are mutually independent RVs.
Proof: See Appendix B. �

Then, using Lemmas 1 and 2, we can define I1/I2 as the
ratio of either two independent CCS RVs or two independent
NCCS RVs, depending on the hypothesis. The factor (M−1)
in (20) allows us to model Z by a RV with known PDF.

Given H0, it can be shown that Z follows a central
F-distribution [28] with PDF given by

fZ (z|H0) =
(M − 1)M−1(M + z− 1)−M

B(1,M − 1)
, (23)

whereB(·, ·) is the Beta function [29, Eq. (5.12.3)]. Using [29,
Eq. (5.12.1)], we can rewrite (23) in compact form as

fZ (z|H0) =

(
M − 1

M + z− 1

)M
. (24)

For the case ofH1, Z can be modeled by a doubly noncen-
tral F-distribution [30], with PDF given by

fZ (z|H1) = exp [−ϒ M ]
(

M − 1
M + z− 1

)M
× 1F1

(
M; 1;

ϒ z M
M + z− 1

)
, (25)

whereϒ = (µ2
X+µ

2
Y )/2Nσ

2, and 1F1 (·; ·; ·) is the Kummer
confluent hypergeometric function [29, Eq. (13.1.2)]. The
equality ϒ = N SNRn holds if SNRn = SNRp ∀ (n, p), with

SNRn =
(
µ2
X ,n + µ

2
Y ,n

)
/2σ 2 being the signal-to-noise ratio

present at the n-th antenna. The derivation of (25) is shown in
Appendix C.

B. FALSE ALARM AND DETECTION PROBABILITIES
It is well known that the performance of any radar system
is governed by the PFA and PD. These probabilities can be
computed, respectively, as [25]

PFA ,
∫
∞

γ

fZ (z|H0) dz (26)

PD ,
∫
∞

γ

fZ (z|H1) dz. (27)
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Replacing (24) in (26), yields

PFA =
(

M − 1
γ +M − 1

)M−1
. (28)

Now, isolating γ from (28) we can find a threshold so as to
meet a desired PFA, i.e.,

γ = 1−M + (M − 1)PFA1/(1−M ). (29)

It can be noticed in (29) that we do not need the knowledge
of the noise power nor the number of antennas to set the
detection threshold. That is, the detection threshold γ is
independent of both σ 2 and N . This important feature will
allow us to maintain a certain PFA for an arbitrary number
of antennas. More precisely, with objective of increasing the
PD, we can increase N without worrying about the increase
in the PFA.

On the other hand, after substituting (25) in (27), the PD
can be obtained in single-integral form as

PD = exp [−ϒ M ]
∫
∞

γ

(
M − 1

M + z− 1

)M
× 1F1

(
M; 1;

ϒ z M
M + z− 1

)
dz. (30)

Certainly, (30) can be evaluated by means of numerical
integration. Nonetheless, to further facilitate the computation
of the PD, we provide alternative, faster, and more tractable
solutions. This is attained in the next section.

V. ALTERNATIVE EXPRESSIONS FOR THE
PROBABILITY OF DETECTION
In this section, we provide both a closed-form solution and a
fast convergent series for the PD. To this end, we make use of
complex analysis and a thorough calculus of residues.

A. THE MULTIVARIATE FOX’s H-FUNCTION
We first begin introducing the Fox’s H -function, as it will be
used throughout this section.

The Fox’s H -function has been used in a wide variety of
recent applications, including mobile communications and
radar systems (cf. [31]–[35] for more discussion on this).
In [36], the authors considered the most general case of the
Fox’s H -function for several variables, defined as

H [x; (δ,D) ; (β,B) ;Ls] ,
(

1
2π j

)L ∮
Ls

2(s) x−sds, (31)

in which j =
√
−1 is the imaginary unit, s , [s1, · · · , sL],

x , [x1, · · · , xL], β , [β1, · · · , βL], and δ , [δ1, · · · , δL]
denote vectors of complex numbers, and B ,

(
bi,j
)
n×L and

D ,
(
di,j
)
m×L are matrices of real numbers. Also, x−s ,∏L

i=1 x
−si
i , ds ,

∏L
i=1 dsi, Ls , Ls,1× · · · ×Ls,L , Ls,k is an

appropriate contour on the complex plane sk , and

2(s) ,

∏m
i=1 0

(
δi +

∑L
k=1 di,ksk

)
∏n

i=1 0
(
βi +

∑L
k=1 bi,ksk

) , (32)

in which 0(·) is the gamma function [37, Eq. (6.1.1)].

B. FOX’s H-FUNCTION-BASED REPRESENTATION
Here, we obtain an alternative closed-form solution for (30),
expressed in terms of the Fox’s H -function.

To do so, we first perform some mathematical manipula-
tions in (30), resulting in

PD =
exp [−ϒ M ] (M − 1)M

0(M )

∫
∞

γ

(
1

M + z− 1

)M
×G1,1

1,2

[
1−M
0, 0

∣∣∣∣− ϒ z M
M + z− 1

]
dz, (33)

where Gp,qm,n [·] is the Meijer’s G-function [38, Eq. (8.2.1.1)].
Now, using the contour integral representation of the

Meijer’s G-function, we can express (33) as follows:

PD =
exp [−ϒ M ] (M − 1)M

0(M )

∫
∞

γ

(
1

M + z− 1

)M
×

(
1
2π j

)∮
L∗∗s,1

0(s1)0(M − s1)
0(1− s1)

×

(
−

ϒ z M
M + z− 1

)−s1
ds1 dz, (34)

in which L∗∗s,1 is a closed complex contour that separates the
poles of the gamma function 0(s1) from the poles of 0(M −
s1). Since

∫
∞

γ
|fZ (z|H1)| dz < ∞, we can interchange the

order of integration [39], i.e.,

PD =
exp [−ϒ M ] (M − 1)M

0(M )

(
1
2π j

)
×

∮
L∗∗s,1

0(s1)0(M − s1) (−ϒ M)−s1

0(1− s1)

×

∫
∞

γ

(
1

M + z− 1

)M( z
M + z− 1

)−s1
dz ds1. (35)

Developing the inner real integral, we obtain

PD =
exp [−ϒ M ] (M − 1)M0(M − 1)

0(M ) γM−1

(
1
2π j

)
×

∮
L∗s,1

0(s1)0(M − s1) (−ϒ M)−s1

0(1− s1)

× 2F̃1

(
M − 1,M − s1;M;

1−M
γ

)
ds1, (36)

where 2F̃1(a, b; c; x) = 2F1(a, b; c; x)/0(c) is the regu-
larized Gauss hypergeometric function, and 2F1(·, ·; ·; ·) is
the Gauss hypergeometric function [29, Eq. (15.1.1)]. Note
that we have used a new complex contour, L∗s,1. This is
because the inner integration changed the integration path
in the complex plane. Here, L∗s,1 is a closed contour that
separates the poles of 0(s1) from those of 0(M − s1).

Finally, replacing (29) in (36) and after using the complex
integral representation of the regularized Gauss hypergeo-
metric function [40, Eq. (07.24.26.0004.01)], we can express
PD in closed form as in (39), shown at the bottom of the next
page, where Ls = Ls1 × Ls2 , and

8 =
�M−1 exp [−ϒ M ]

0(M − 1)
(37)
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FIGURE 3. Integration path for Ls,1.

FIGURE 4. Integration path for Ls,2.

� =
M − 1

1−M + (M − 1)PFA1/(1−M ) . (38)

Observe that (39) has two new closed contours, Ls,1 and
Ls,2. Ls,1 is an adjusted contour that appears due to the pres-
ence of the new gamma functions, whereasLs,2 is the contour
corresponding to the complex representation of the regular-
ized Gauss hypergeometric function. The integration paths
for Ls,1 and Ls,2 are described in Section VI.

A general implementation for the multivariate Fox’s
H -function is not yet available in mathematical packages
such as MATHEMATICA, MATLAB, or MAPLE. Some
works have been done to alleviate this problem [41]–[43].
Specifically in [41], the Fox’s H -function was implemented
from one up to four variables. In this work, we provide an
accurate and portable implementation in MATHEMATICA
for the bivariate Fox’s H -function. The code used to
compute (39) is presented in Appendix D. It is important to

mention that such implementation is specific for our system
model. Moreover, an equivalent series representation for (39)
is also provided to facilitate the use of our results. This series
representation is presented in the subsequent subsection.

C. INFINITE-SERIES REPRESENTATION
Here, we provide a series representation for (39). To achieve
this, we exploit the orthogonal selection of poles in Cauchy’s
residue theorem.

First, let us consider the following suitable closed contours
for (39): (i) Ls,1 = L0,1 + L−∞,1, and (ii) Ls,2 = L0,2 +

L−∞,2. Both contours are shown in Figs. 3 and 4, where ξ1 ∈
R+ must be chosen so that all the poles of 0(s1) are separated
from those of 0(M−1−s1) and 0(M−s1−s2), and ξ2 ∈ R+
must be chosen so that all the poles of 0(s2) are separated
from those of 0(M − s1− s2). Additionally, ρ1 and ρ2 are the
radius of the arcs L−∞,1 and L−∞,2, respectively.

It is easy to prove that any complex integration along the
paths L−∞,1 and L−∞,2 will be zero as ρ1 and ρ2 go to
infinity, respectively. (ρ1 and ρ2 tend to infinity since the
gamma functions 0(s1) and 0(s2) generate simple poles at all
non-positive integers [29, Eq. (5.2.1)].) Therefore, the final
integration path for Ls,1 starts at ξ1−j∞ and goes to ξ1+ j∞,
whereas the final integration path forLs,2 starts at ξ2−j∞ and
goes to ξ2 + j∞.
Now, we can rewrite (39) through the sum of residues

as [44]

PD = 8
∞∑
k=0

∞∑
l=0

Res [4(s1, s2) ; s1 = −k, s2 = −l] , (40)

where Res [4(s1, s2) ; s1− k, s2 = −l] represents the residue
of 4(s1, s2) at the poles s1 = −k , s2 = −l, and

4(s1, s2) =
0(s1)0(s2)0(M − s1 − 1)0(−s1 +M − s2)

0(1− s2)0(−(s1 −M ))
×�−s1 (−ϒ M)−s2 . (41)

is the integration kernel of (39).
Accordingly, after applying the residue operation [44,

Eq. (16.3.5)], (40) reduces to

PD = 8
∞∑
k=0

∞∑
l=0

{
0(k +M − 1)0(k + l +M ) (−�)k

k!0(l + 1)20(k +M )

× (ϒ M)l
}
. (42)

Finally, with the aid of [29, Eq. (15.2.1)] and after some
mathematical manipulations, we obtain

PD = exp [−ϒ M ]�M−1
∞∑
k=0

{
0(k +M ) (ϒ M)k

0(k + 1)2

× 2F̃1 (M − 1, k +M;M;−�)
}
. (43)

PD = 8 H

[
[�,−ϒ M ] ;

(
[0, 0,M − 1,M ] ,

(
1 0 −1 −1
0 1 0 −1

)T)
;

(
[M , 1] ,

(
−1 0
0 −1

))
;Ls

]
(39)
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It is worth mentioning that (43) is also an original contri-
bution of this work, proving to be very efficient and compu-
tationally tractable, as will be shown in the next section.

Generally, when radar designers need to compute the PD
over a certain volume (i.e., range, azimuth and elevation),
the calculation of the PD has to be performed for all the point
scatterers within the entire coverage volume, thus increasing
the computational load and simulation time. Eq. (43) can be
executed quickly on an ordinary desktop computer, serving
as a useful tool for radar designers.

Moreover, if T0 − 1 terms are used in (43), we can define
the truncation error as

T =
1

0(M )

∞∑
k=T0

�M−1 exp [−Mϒ] (Mϒ)k

0(k + 1)2

×0(k +M ) 2F1(M − 1, k +M;M;�). (44)

Since the Gauss hypergeometric function in (19) is mono-
tonically decreasing with respect to k , T can be bounded as

T ≤ 2F1 (M − 1,M + T0;M;�)

×

∞∑
k=T0

�M−1 exp [−Mϒ] (Mϒ)k0(k +M )
0(k + 1)20(M )

. (45)

Since we add up strictly positive terms, we have
∞∑

k=T0

�M−1 exp [−Mϒ] (Mϒ)k0(k +M )
0(k + 1)20(M )

≤

∞∑
k=0

�M−1 exp [−Mϒ] (Mϒ)k0(k +M )
0(k + 1)20(M )

(a)
= �M−1LM−1(−Mϒ), (46)

where in step (a), we have used [40, Eq. (05.02.02.0001.01)]
and some minor simplifications. Then, from (45) and (46),
(44) can be bounded as

T ≤
LM−1(−Mϒ) 2F1 (M − 1,M + T0;M;−�)

�1−M , (47)

where L(·)(·) is the Laguerre polynomial
[40, Eq. (05.02.02.0001.01)].

VI. NUMERICAL RESULTS AND DISCUSSIONS
In this section, we validate our derived expressions and
discuss the representative results. To do so, we make
use of the receiver operating characteristic (ROC) curves
and Monte-Carlo simulations.5 For comparison purposes,
besides the pre-beamforming GLRT and square-law detec-
tors, we also include the (optimum) LRT detector [7] so as to
quantify the SNR losses.6

Figs. 5 and 6 show the PDF of Z (analytical and simu-
lated) given the hypotheses H0 and H1, respectively. The
distribution parameters have been selected to show the broad

5The number of realizations was set to 1× 107.
6Herein, the SNR loss is defined as extra SNR required to achieved the

same performance as the LRT detector [7, Eq. (4.3)], for a given PD.

FIGURE 5. PDF of Z under H0 for different values of M.

FIGURE 6. PDF of Z under H1 for different values of M and N .

FIGURE 7. PD vs PFA with M = 22, N = 3, and different values of SNRn.

range of shapes that the PDFs can exhibit. Observe the perfect
match between Monte-Carlo simulations and our derived
expressions [refer to (24) and (25)].

Fig. 7 shows PD as a function of PFA (analytical and
simulated) for different values of SNRn. Observe that for
low SNRn, the post-beamforming GLRT detector is supe-
rior to both the pre-beamforming GLRT detector and the
square-law detector. That is, the weaker the signals, the bet-
ter the performance of our proposed detector. For example,
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FIGURE 8. PD vs SNRn with M = 15, PFA = 10−6 and different values of N .

given PFA = 10−4, the post-beamforming GLRT detector,
the pre-beamforming GLRT detector, and the square-law
detector provide, respectively, the following probabilities of
detection: 0.53, 0.38 and 0.47 for SNRn = −7.9 dB; 0.78,
0.66 and 0.75 for SNRn = −6.5 dB; and finally, 0.94, 0.90
and 0.95 for SNRn = −5.1 dB. The following figures illus-
trate the impact on the PD as the SNR is reduced.

Fig. 8 shows PD as a function of SNRn (analytical
and simulated) for different values of N . Note that all
detectors improve as the number of antennas increases,
requiring a lower SNR for a certain PD. Also, note
how the post-beamforming GLRT detector overcomes the
pre-beamforming GLRT detector and the square-law detector
as the SNR decreases. For example, given SNRn = −8 dB,
the post-beamforming GLRT detector, the pre-beamforming
GLRT detector, and the square-law detector provide, respec-
tively, the following probabilities of detection: 0.55, 0.40 and
0.54 for N = 10; 0.79, 0.64 and 0.75 for N = 14; and finally,
0.94, 0.80 and 0.86 for N = 18. Additionally, observe how
the SNR loss is reduced as N increases. In particular, for a
fixed PD = 0.8, the post-beamforming GLRT detector is
superior to both the pre-beamforming GLRT detector and the
square-law detector deliver, respectively, the following SNR
losses: 3.8 dB, 4.2 dB and 2.8 dB for N = 10; 2.9 dB, 3.6 dB
and 3.1 dB forN = 14; and finally, 2.8 dB, 3.9 dB and 3.5 dB
for N = 18.
Fig. 9 shows PD as a function of SNRn (analytical and

simulated) for different values of M . Observe that all detec-
tors improve as the number of samples increases. This occurs
because we ‘‘average down’’ the noise power by increas-
ing M . Once again, the post-beamforming GLRT detector
performs better than the pre-beamforming GLRT detector
and the square-law detector in the low-SNR regime. More
specifically, given SNRn = −8 dB, the post-beamforming
GLRT detector, the pre-beamforming GLRT detector and
the square-law detector provide, respectively, the following
probabilities of detection: 0.30, 0.21 and 0.35 for M = 10;
0.53, 0.40 and 0.53 for M = 14; and finally, 0.87, 0.73 and
0.82 for M = 18. Moreover, observe how the SNR loss is
reduced as N increases. In particular, for a fixed PD = 0.8,

FIGURE 9. PD vs SNRn with N = 11, PFA = 10−6 and different values of M.

FIGURE 10. PD vs SNRn with M = 10, N = 15 and different values of PFA.

the post-beamforming GLRT detector, the pre-beamforming
GLRT detector and the square-law detector deliver, respec-
tively, the following SNR losses: 3.6 dB, 3.4 dB and 3.2 dB
for M = 10; 3.4 dB, 3.5 dB and 3.1 dB for M = 14; and
finally, 2.8 dB, 3.6 dB and 3.1 dB forM = 18.
Fig. 10 shows PD as a function of SNRn (analytical and

simulated) for different values of PFA. Note that all detec-
tors improve as PFA is increased. This fundamental trade-off
means that if the PFA is reduced, the PD decreases as well.
Observe that for low SNR, the superiority of our detec-
tor still remains. For example, given SNRn = −8 dB,
the post-beamforming GLRT detector, the pre-beamforming
GLRT detector and the square-law detector provide, respec-
tively, the following probabilities of detection: 0.93, 0.76 and
0.84 for PFA = 10−4; 0.80, 0.57 and 0.70 for PFA = 10−5;
and finally, 0.55, 0.40 and 0.54 for PFA = 10−6. Addition-
ally, observe how the SNR loss is reduced as N increases.
In particular, for a fixed PD = 0.8, the post-beamforming
GLRT detector, the pre-beamforming GLRT detector and the
square-law detector deliver, respectively, the following SNR
losses: 2.4 dB, 3.6 dB and 3.2 dB for PFA = 10−4; 2.6 dB,
3.4 dB and 3.0 dB forPFA = 10−5; and finally, 2.9 dB, 3.2 dB
and 2.8 dB for PFA = 10−6.
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TABLE 1. Efficiency of (43) as compared to (30).

Table 1 illustrates the efficiency of (43) by showing the
absolute error, computation time, required number of terms to
guarantee a certain accuracy, and reduction time [compared
to (30)]. The absolute error can be expressed as

ε = |PD − PD|, (48)

where PD is the probability of detection obtained via
MATHEMATICA’s built-in numerical integration.7 Observe
that for 9 different parameter settings, (43) converges rapidly
requiring between 23 and 83 terms to guarantee an accuracy
of 10−10. Moreover, the computation time dropped dramat-
ically, thereby providing reduction times above 88%. This
impressive reduction can lead to major savings in computa-
tional load if one wants to evaluate the detection performance
over an entire area or volume covered by the radar system.

VII. CONCLUSION
This paper proposed and analyzed a new GLRT phased array
detector, which is projected after the analog beamforming
operation. For the analysis, a non-fluctuating target embed-
ded in CWGN was considered. From the practical point
of view, this detector fulfills the hardware and computa-
tional constraints of most radar systems. The performance
metrics – PD and PFA – were derived in closed form assum-
ing a total lack of knowledge about the target echo and noise
statistics. Moreover, a novel fast convergent series for the PD
was also derived. This series representation proved to be very
efficient and computationally tractable, showing an outstand-
ing accuracy and impressive reductions in both computational
load and computation time, compared to MATHEMATICA’s
built-in numerical integration. Numerical results showed that
when the incoming signals are weak, it is best to com-
bine (sum) them before any estimation or further processing.
Indeed, this paper is conclusive in indicating that for low
SNR, the post-beamforming GLRT detector shows superior
to the pre-beamformingGLRTdetector and square-law detec-
tors. Intuitively, this means that if the signal received by each
antenna is defectively estimated (due to low target power
or strong interference), then the system will also deliver a
faulty final estimate. Another interesting feature about the

7Eq. (30) was evaluated by using the fastest MATHEMATICA’s integra-
tion method, ‘‘GlobalAdaptive’’, with an accuracy goal of 10−10.

post-beamforming GLRT detector demonstrates that for a
fixed PFA, the detection threshold is independent of the
number of antennas, which allows us to improve the PD (by
increasingN ) while maintaining a fixed PFA. The SNR losses
were also quantified and they illustrated the superiority of the
post-beamforming GLRT detector as N andM increase.

APPENDIX A
PROOF OF LEMMA 1
Let us define the following RV

I3 ,
1

Nσ 2

M∑
m=1

(Re [rm]− µX )2 , (49)

whereµX is the total sum of the target echoes for the in-phase
components.

Rewriting (49), we have

I3 =
M∑
m=1

(
Re [rm]− µX
√
Nσ

)2

. (50)

It can be noticed that I3 is a sum of the squares ofM stan-
dard Gaussian (zero mean and unit variance) RVs. Therefore,
I3 can be modeled by a CCS RV withM degrees of freedom.

Now, after performing some manipulations, we can
rewrite (50) as

I3 =
M∑
m=1

(
Re [rm]− µ̂X
√
Nσ

+
µ̂X − µX
√
Nσ

)2

(a)
=

M∑
m=1

(
Re [rm]− µ̂X
√
Nσ

)2

+ 2
(
µ̂X − µX
√
Nσ

)

×

(∑M
m=1Re [rm]−Mµ̂X

√
Nσ

)
+

M∑
m=1

(
µ̂X − µX
√
Nσ

)2

(b)
=

M∑
m=1

(
Re [rm]− µ̂X
√
Nσ

)2

︸ ︷︷ ︸
, I4

+

(
µ̂X − µX
√
Nσ/M

)2

︸ ︷︷ ︸
, I5

, (51)

where in step (b) we use the fact thatMµ̂X =
∑M

m=1Re [rm]
and, consequently, the second term in step (a) vanishes.
Observe that I5 represents the square of a standard Gaussian
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variable and, therefore, can be modeled by a CCS distribution
with one degree of freedom.

Employing the additivity property of the CCS distribu-
tion [26] and taking into account the distributions of I3 and
I5, we can now describe I4 by a CCS RV withM−1 degrees
of freedom. Also, observe that I4 is just the first term of (22).

Following the same approach, it can be prove that the sec-
ond term in (22) also follows a CCS distribution withM − 1
degrees of freedom. Since I2 is formed by the sum of two
CCS RVs, then its distribution is governed by a CCS RV with
2(M − 1) degrees of freedom, which completes the proof. It
is worth mentioning that this result remains true regardless of
the hypothesis, because any value of µX or µY will not affect
the distribution of I2.

APPENDIX B
PROOF OF LEMMA 2
Let

P1 = L
(
LTL

)−1
LT =

1
M

L LT (52)

P2 = I− P1 = I−
1
M

L LT (53)

be symmetric and idempotent matrices such that rank (P1) =
L, rank (P2) = M − 1 and P1 + P2 = I, where I ∈ NM×M

represents the identity matrix and L = [1, 1, · · · , 1]T ∈ NM

is the unitary vector. In addition, let

Re
[
r
]
= [Re [r1] ,Re [r2] , · · · ,Re [rM ]]T (54)

be a random vector with E
[
Re
[
r
]]
= µXL and

COV
[
Re
[
r
]]
= Nσ 2I. Then, the Cochran’s Theorem [45]

states that

ω1 =
Re
[
r
]T P1 Re [r]
Nσ 2 (55)

ω2 =
Re
[
r
]T P2 Re [r]
Nσ 2 (56)

are independently distributed.
Now, replacing (52) in (55), we have

ω1 =
1

Nσ 2Re
[
r
]T ( 1

M
L LT

)
Re
[
r
]

=
1

MNσ 2Re
[
r
]T L LTRe

[
r
]

=
1

MNσ 2

(
M∑
k=1

Re [rk ]

)2

. (57)

Similarly, inserting (53) in (56), we have

ω2
(a)
=

1
Nσ 2Re

[
r
]T PT2 P2Re [r]

=
1

Nσ 2

∥∥P2Re [r]∥∥2
(b)
=

1
Nσ 2

∥∥∥∥(I− 1
M

L LT
)
Re
[
r
]∥∥∥∥2

(c)
=

1
Nσ 2

∥∥Re [r]− Lµ̂X
∥∥2

(d)
=

1
Nσ 2

M∑
k=1

(
Re [rk ]− µ̂X

)2
, (58)

where in step (a), we have used the definition of idempotent
and symmetric matrices [46], in step (b), we have used (53),
in step (c), we have employed (11), and in step (d), we have
used (54) and applied the Euclidean norm. Observe that ω1
and ω2 are the first terms of (21) and (22), respectively. The
same approach can also be applied to prove the independence
between the second terms. Finally, since Re [rk ] and Im [rk ]
are also independent statistics (cf. Section III-A), then I1 and
I2 are mutually independent RVs, which completes the proof.

APPENDIX C
DERIVATION OF (25)
To prove (25), we make use of the doubly noncentral
F-distribution, defined as [30]

fZ (z|H1)

=

∞∑
k=0

∞∑
l=0

 z
−1 exp

[
−λ1−λ2

2

] (
α1z

α1z+α2

)
α1
2

k! l! B
(
k + α1

2 , l +
α2
2

)
×

(
α2

α1z+ α2

) α2
2
(

λ1α1z
2 (α1z+ α2)

)k (
λ2α2

2 (α1z+ α2)

)l}
(59)

Rearranging some terms, and after applying [40,
Eq. (07.20.02.0001.01)], (59) simplifies to

fZ (z|H1) = z−1 exp
[
−λ1 − λ2

2

](
α1z

α1z+ α2

) α1
2

×

(
α2

α1z+ α2

) α2
2
∞∑
k=0

{(
λ1α1z

2α1z+ 2α2

)k

×

1F1
(
1
2 (2k + α1 + α2) ;

α2
2 ;

α2λ2
2(zα1+α2)

)
k! B

(
k + α1

2 ,
α2
2

)
 .
(60)

Now, replacing α1 = 2, α2 = 2(M − 1), λ1 = M (µ2
X +

µ2
Y )/Nσ

2, and λ2 = 0 (cf. Section IV-A) in (60), and after
applying [29, Eq. (15.2.1)], and [29, Eq. (5.12.1)], we obtain

fZ (z|H1) =

exp
[
−
M
(
µ2
X+µ

2
Y

)
2Nσ 2

]
0(M )

(
M − 1

M + z− 1

)M

×

∞∑
k=0

0(k +M )
0(k + 1)2

(
Mz

(
µ2
X + µ

2
Y

)
2Nσ 2(M + z− 1)

)k
. (61)

Finally, after using the definition of the Kummer confluent
hypergeometric function [40, Eq. (07.20.02.0001.01)], along
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with minor simplifications, we obtain (25), which completes
the derivation.

APPENDIX D
MATHEMATICA’s IMPLEMENTATION FOR THE BIVARIATE
FOX’s H-FUNCTION
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