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ABSTRACT Nha Trang Coast is located in the South Central Vietnam and the coastal erosion has occurred
rapidly in recent years. Hence it is crucial to accurately monitor the shoreline changes for better coastal
management and reduction of risks for communities. In this paper, we explored a statistical forecasting
model, Seasonal Auto-regressive Integrated Moving Average (SARIMA), and two Machine Learning (ML)
models, Neural Network Auto-Regression (NNAR) and Long Short-Term Memory (LSTM), to predict the
shoreline variations from surveillance camera images. Compared to the Empirical Orthogonal Function
(EOF), the most common method used for predicting shoreline changes from cameras, we demonstrate that
the SARIMA, NNAR and LSTM models outperform the EOF model significantly in terms of prediction
accuracy. The forecasting performance of the SARIMA model, NNAR model and LSTM model is compa-
rable in both long and short-term predictions. The results suggest that these models are highly effective in
detecting shoreline changes from video cameras under extreme weather conditions.

INDEX TERMS Nha Trang coast, shoreline prediction, statistical forecastingmodel, machine learning, EOF,
SARIMA, NNAR, LSTM.

I. INTRODUCTION
Coastal erosion is a natural phenomenon driven by numerous
complex physical processes of wave action, tidal regime and
sediment transportation. Over 70 % of the worldwide shore-
lines experienced erosion [1]. Understanding the physical
processes and the intervention of human activities is crucial
for efficient coastal management. Recently, Nha Trang Coast-
line suffers from accelerated erosion due to strong northeast
monsoon with forceful winds and high waves. The land-
scape of the coast is damaged due to climate change and
sea level rise, and the local economy is threatened by the
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decrease of the number of tourists and the high amount of
reconstruction costs after coastal disasters. Several past stud-
ies worked on the erosion evolution of Nha Trang Coast, e.g.
[2]–[4]. Though these studies documented the insights of sea-
sonal changes and sediment transports of Nha Trang Coast,
the lack of effective prediction models remains a challenge
for coastal management. Therefore, decision makers desire a
good forecasting model to predict shoreline positions so that
they can make master plans in advance to mitigate disasters
and develop coastal economy in the local area.

Coastal design methods are classified into three cate-
gories, physical models, numerical models and field data
analysis [5]. Physical models analyze and predict shoreline
changes through reproducing the miniature of a physical
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system. However, transferring a realistic coastal profile into
a laboratory model is challenging due to the scale effects.
More importantly, data collection and model validation are
laborious and time-consuming, so this method may not valid
for long-term prediction [6]. A numerical model represents
a physical system via mathematical functions. For instance,
a numerical model, GENEeralized SImulating Shoreline
change model (GENESIS), has been developed to simulate
and forecast long-term shoreline variation [7]. The signif-
icant wave height and significant wave period were the
inputs of a GENESIS model, and the simulation outcomes
were used to forecast future shoreline positions. Meanwhile,
Nguyen et al. [3] analyzed shoreline changes through a
numerical one-line theory model incorporating the wave
conditions. Besides, Thanh et al. [4] conducted Empirical
Orthogonal Function (EOF) to explore the dominant variation
process of Nha Trang Coast. Field data analysis has been
examined as a reliable methodology for shoreline forecast-
ing [6], [8]. Different from numerical models, field data
analysis is based on data science and constructs models
according to data characteristics rather than physical theo-
rems. Linear regression methods have been implemented to
analyze the shoreline positions with the GPS data collected
from the field [9]. Non-linear auto-regression neural net-
works have also been applied to predict the shoreline changes
with measurement of shoreline profiles [6]. These models
exhibited remarkable predictive ability, although there were
several underestimates or overestimates during the prediction
periods.

According to the above literature, both numerical mod-
els and field data analysis are desirable options to carry
out shoreline predictions. However, the methodology with
superior predictive ability is still ambiguous for academia.
It is essential to assess the performance of these forecasting
models and identify the one with the best predictive ability.
In this study, we achieve empirical results based on the data
collected fromNha Trang Coast. Our work provides guidance
for academics seeking appreciative forecasting models in
relevant research.

Conventional EOF model, a widely used numerical model,
is developed as the benchmark prediction model in this study.
EOF model was firstly introduced by Lorenz in 1956 [10]
and has been extensively applied to explore the spatial and
temporal changes in oceanography, meteorology and climate
science fields. For instance, EOF method has been applied
to analyze summer precipitation variability [11], predict sub-
seasonal climate changes [12], [13] and estimate wave height
in extreme weather [14]. In our study area, Nha Trang Coast,
Thanh et al. [4] analyzed shoreline variations via EOFmodel.
In line with this research, we apply this conventional EOF
model to extract dominant temporal components and then
predict shoreline variations.

Next, we examine the predictive abilities of three field
data analysis models, including a statistical forecastingmodel
and two non-linear Machine Learning (ML) models. The
statistical model termed as Seasonal Auto-Regressive Inte-

grated Moving Average (SARIMA) model is an extension
of Auto-Regressive Integrated Moving Average (ARIMA)
model [15], but analyzes the time series with additional sea-
sonal components [16]. SARIMA model is an effective tool
for seasonal time series forecasting. For instance, SARIMA
model was used to forecast sea level [17], wind speed [18] and
wave height [19]. Those studies all supported that SARIMA
model yields satisfactory forecasting performance.

Apart from the statistical forecasting model, we further
consider Neural Network Auto-Regression (NNAR) which
has the ability to execute complicated non-linear functions.
Lagged data is used to train the NNAR model and then
the model generates prediction values based on the trained
networks. The major difference between NNAR model
and ARIMA model is that NNAR model does not restrict
the parameters to secure the stationary time series [20].
This model has been extensively used by tourism studies
[21], [22]. In addition, a comparison of forecasting perfor-
mance between ARIMA and NNAR was conducted in [20].
Their results validated that NNAR outperforms ARIMA for
all observed time series in the prediction of Water Treatment
Plant (WTP) influent characteristics.

Lastly, we apply another non-linear ML technique, Long
Short-TermMemory (LSTM)model, which has efficient abil-
ity to remember the information of long periods [23]. LSTM
model has been used to analyze wind speed in the coastal
belts of India peninsula suffering from extreme weather such
as storms [24]; forecast sea level around the Korean Coast,
achieving good performance with R over 0.85 [25]; analyze
wave height, yielding outperformance with a low MAPE at
5.15 % for 1-h prediction, which significantly outperforms
Simulating WAves Nearshore (SWAN) model [26]. Research
of [27] compared the performance of SARIMA, NNAR and
LSTM model for early detection of disease incidents and
found that LSTM model is superior to SARIMA and NNAR.
Similar results were also concluded in [28] that LSTMmodel
outperforms ARIMA model. The remarkable predictive abil-
ity of LSTM indicated by previous research motivates us
to involve this model as one of the candidates to predict
shoreline changes.

Although previous studies proposed that sophisticated ML
models with powerful computational abilities outperform
statistical methods [20], [27], [28], the superiority of ML
models vanishes in some cases. For instance, simple ARIMA
model outperformed NNAR model when predicting monthly
tourist arrivals [21]. A more comprehensive comparison was
conducted in [29]. After assessing the forecasting perfor-
mance of eight statistical methods and ten ML methods in
a sample of 1045 monthly time series, the authors concluded
that statistical methods perform better than ML methods in
both single-step and multi-step predictions. These outcomes
suggest that sophisticated ML models fail to persistently
be superior to simple time-series forecasting models. These
findings motivate us to implement not only sophisticated ML
techniques but also simple methods like SARIMA model for
shoreline prediction.
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FIGURE 1. Nha Trang coast extends from Cai river mouth in the north to the breakwater of the military port in the south;
The camera system was installed between the river mouth and the breakwater. The study area focuses on the north of the
camera system until a beach-side hotel, at a length of around 300m.

Contributions: This paper aims to explore effective models
for predicting shoreline changes of Nha Trang Coast via
surveillance camera images including both statistical and
advancedMLmodels including NNAR and LSTM. The main
contributions are summarized as below:
• Current camera surveillance system to monitor coastal
changes usually suffers from extreme weather condi-
tions, which leads to plenty of noisy and missing data
due to a variety of factors, e.g. signal transmission dis-
ruptions [4]. These missing data causes a severe impact
on methods for predicting shoreline changes. Hence,
we explore four extensively used imputation methods to
impute missing values before feeding data to prediction
models, namely zero imputation, seasonal adjustment
methods including linear interpolation and Last Obser-
vation Carried Forward (LOCF), and K-Nearest Neigh-
bors (KNN) algorithm. We show that seasonal adjusted
linear interpolation is the best method for imputingmiss-
ing coastal data.

• While existing studies for Nha Trang only rely on
EOF for predicting the changes due to its robustness
to missing data, e.g. [4], we aim at exploring more
effective techniques including 1) a statistical forecasting
model, SARIMA model, and 2) ML models, NNAR
model and LSTM model to analyze shoreline varia-
tion of Nha Trang Coast. We show that these meth-
ods acquire significant performance boosts over EOF
when being combined with suitable data imputation
techniques.

• We further demonstrate that the performance of
SARIMA, NNAR and LSTM in long-term coastal
change predictions (up to 50 days ahead). The results
suggest that all these methods can be effectively used
for monitoring coastal changes in long-term.

The remainder of the paper is organized as follow. Study
areas and data are presented in Section II. Section III
reports the forecasting methods. Then, results are summa-
rized in Section IV. Lastly, we conclude our findings in
Section V.

II. STUDY AREAS AND DATA
A. STUDY AREA
Nha Trang Coast, located at Nha Trang Bay, is one of the
most famous coasts around the world. The length of the
coast is around 4.3 km, starting from Cai River mouth in
the north to a breakwater of the military port in the south,
as shown in Fig. 1. Nha Trang Coast experiences heavy
northeast monsoon. The big Hon Tre island and other small
islands in the southeast protect the coast from waves from
the south and southeast direction. Recently, coastal erosion
has been happening seriously in Nha Trang Bay due to the
monsoon and climate changes [30].

FIGURE 2. Two cameras are mounted on the electric pole, (a) faced the
north of the Nha Trang coast and (b) recorded the southern area.

To investigate shoreline variations, it is necessary to mon-
itor the shoreline in long-term first. Different from con-
ventional monitoring techniques such as aerial and satellite
that can only capture a single photo, video monitoring tech-
niques attract more interests due to the capability of providing
continuous images. Therefore, a video camera system was
deployed to analyze the shoreline variation on Nha Trang
Coast as described in Fig. 2. The whole system contained
two cameras monitoring the entire coast. The northern cam-
era (a) is 10.45m above the mean sea level and the southern
camera (b) is 9.67m above the mean sea level. However,
the second camera was damaged by a severe thunderbolt in
July 2014, so we only apply data from the northern area of
the coast to our models.
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FIGURE 3. Some raw images taken from the camera at different times.

B. DATA COLLECTION AND ANALYSIS
Images captured from the coastal video-camera monitoring
system deployed at Nha Trang Coast are considered as raw
data in this research. Such images were taken every sec-
ond from 06:00 am to 05:15 pm every day. Fig. 3 presents
raw images captured from the camera and it is difficult to
delineate the shoreline of the land-water boundary directly
from raw images. Thus, a suitable method for image anal-
ysis should be used to extract shorelines from images
automatically.

FIGURE 4. Image analysis processing.

The image analysis process in [30] is applied to extract
shoreline coordinates from raw image data. As shown
in Fig. 4, the process consists of two steps: 1) image rectifica-
tion with projective transformation and 2) shoreline detection
based on changing color intensity between wet and dry sand
sides.

For the first step, fifteen-minute averaged images gener-
ated from averaged cross-shore positions are transformed to
reduce the impact of the alongshore variation. In addition,
to minimize the influence of sea level changes, the fifteen-
minute averaged images were collected at the time of mean
sea level, and 12 Ground Control Points (GCPs) were cho-
sen along the sea dyke with almost the same elevation.
Based on those GCPs, the original oblique fifteen-minute
averaged images are transformed to horizontal images. Then
the fifteen-minute averaged images are corrected from pixel
coordinates to real world coordinates system following the
research in [31]. In the real world coordinate, the point located
at 303959m East and 1355573m North on World Geodetic

System (WGS84) is chosen as the original point (x, y) =
(0, 0). Positive x-axis denotes the alongshore distance from
the original point towards the south, and positive y-axis
indicates the cross-shore distance towards the sea as shown
in Fig. 5.

In the second step, shoreline coordinates are detected based
on the method presented in the research [32]. Basically,
an effective shoreline is a boundary between wet and dry sand
sides, indicated by changing colors between the two sides.
Therefore, we use the gradient maxima of the images to locate
the shoreline positions.

Since the step to extract shoreline positions from projected
time-averaged images does not consider the elevation of sea
level, they need to be corrected based on the geometric rela-
tionship among the shoreline position, camera position, sea
dyke and sea level. In particular, the shoreline coordinates can
be transformed by using the following equations:

x̄s = xc + (xs − xc)
zs − zc
zd − zc

, (1)

ȳs = yc + (ys − yc)
zs − zc
zd − zc

, (2)

where (xs, ys, zs) indicates the detected shoreline position,
(x̄s, ȳs, z̄s) represents the corrected shoreline position,
(xc, yc, zc) refers to the camera position, zd denotes the eleva-
tion of sea dyke, zs is the sea level and z̄ = zs.

After image processing, we obtain time dynamic cross-
shore distances. Such data, presented in the form of time-
series data, will be used as input for the forecasting models
in Section III.

Next, we verify the extracted results of the image analysis
by using Google Earth images. Fig. 5 shows the comparison
of the extracted shoreline from the video camera and Google
Earth image on 3 March 2014 and our extracted shoreline
matches the captured shoreline in Google Earth image well.
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FIGURE 5. Comparison of shoreline position extracted from camera image and
Google earth image on 3 March 2014.

FIGURE 6. Shoreline positions monitored from 25 May 2013 to 31 December 2015 at five
positions x = 50m, x = 100m, x = 150m, x = 200m and x = 250m.

In this study, we choose five studying points at x = 50m,
100m, 150m, 200m and 250m to represent the shoreline situ-
ations of the entire coast.

C. DATA EXPLORATION
Daily shoreline positions of five above mentioned locations
along the coast from 25 May 2013 to 31 December 2015 are
selected as the data used in this research. The variations
of cross-shore distance at five studying points are plotted
in Fig. 6 and the definition of the coordinate is introduced
in Fig. 5. In Fig. 6, cross-shore distances of the five points
show similar variation trends but different altitudes.

To further investigate seasonal shoreline variations of Nha
Trang Coast, the seasonal analysis at both daily and monthly
level are shown in Fig. 7, where position x = 50m is pre-
sented as an example since all positions exhibit similar sea-
sonal patterns as shown in Fig. 6. Fig. 7 shows that shoreline
advanced from May to September, reaching the peak cross-
shore distance in September due to calmer wave during non-
monsoon period. Then the shoreline retreated sharply from
October to December with the lowest cross-shore distance
and remained low level until April. This phenomenon stems

from the strong northeast monsoon during winter period from
October to April [33].

Fig.8 plots the Auto-Correlation Function (ACF) and
Partial Auto-Correlation Function (PACF) to show the
seasonality and fluctuations of the time series. According to
Fig. 6, the original series is non-stationary, therefore, ACF
and PACF graphs are plotted after seasonal differencing with
lag 30 due to the daily frequency. ACF shows a significant
spike at lag 30 and almost a significant spike at lag 60.
Similarly, PACF also show spikes at lag 30 and lag 60. There-
fore, the desirable seasonal period of our series is chosen
as 30-day.

III. METHODS
In this section, we first introduce the set of training and testing
samples. Then, four performancemetrics are applied to assess
the predictive ability of conducted models. We focus on the
prediction of shoreline changes via different methods includ-
ing SARIMA, NNAR and LSTM. The conventional EOF
model is used as the baseline prediction model. In addition,
two forecasting strategies, including single-step and multi-
step predictions, are applied.
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FIGURE 7. Seasonal analysis with (a) daily data and (b) average monthly data at x = 50m.

FIGURE 8. ACF and PACF plots with seasonal differenced data at x = 50m.

A. DATA PREPROCESSING
The first two-year data (25 May 2013 to 24 May 2015) are
applied as training data to serve the models introduced in
Section III-D, and the remaining data (from 16 June 2015 to
31 December 2015) is used as testing data to examine the
predictive ability of various models.

Some raw images are discarded as the camera fails to
capture high quality images during extreme weather, e.g.,
typhoon and fog. Thus, we have many missing data (around
one third of the data). These missing data must be handled
before we can implement models like SARIMA. There are
two methods to handle missing data: 1) removing the missing
values, and 2) filling the missing values based on appropriate
imputation approaches. Removing missing records will pro-
duce non-continued time series and cause the loss of infor-
mation. Therefore, it is more desirable to apply an appropriate
imputation method to fill the missing observations rather than
removing them. Both statistical [34] andMLmethods [35] are
potential data imputation approaches.

1) ZERO IMPUTATION
A simple and basic filling approach is to impute zero to
missing values.

2) SEASONAL TIME SERIES SPECIFIC METHODS
Previous studies agreed that seasonal time series can be
decomposed into three terms [36], as:

Yt = Tt + St + nt , (3)

where Tt denotes the trend, St represents the seasonality,
and nt refers to the noise. The shoreline variations have
seasonality as discussed in Section II, so the extraction of the
seasonal components and imputation to the de-seasonalized
data are carried out with following methods:

• LOCF: Replacing missing values with previous non-
missing values [37];

• Linear Interpolation: An approach of curve fitting via
linear polynomials with known values to estimate values
of unknown ones [38].

After imputing the non-seasonal term, we then add the
seasonal components back [36].

3) ML METHODS
ML algorithms have been widely used for data imputation,
and KNN is one of them which has been proven as a robust
data imputation method [39]. KNN could estimate a missing
point in terms of the values of its closest K neighbours.

B. PERFORMANCE METRICS
To achieve robustness results, four extensively performance
metrics (R, MAE, RMSE and MAPE) are used to evaluate
prediction accuracy of the models.

R indicates the similarity between actual values and pre-
dicted values. For a given model, a higher R represents
a better forecasting ability. When R equals one, predicted
values are entirely the same as real values. Next, MAE
indicates the average differences between predictions and
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actual values, and RMSE represents the square root of the
average squared errors between predictions and actual values.
MAE simply averages the absolute errors, therefore, each
error contributes to MAE in proportion to the absolute value
of each error. Different from MAE, RMSE assigns higher
weights to large errors since the differences between actual
values and predictions are squared first and then averaged.
Therefore, large errors have greater impacts on RMSE than
MAE. When RMSE is close to MAE, all errors between pre-
dictions and actual values have similar magnitudes. However,
when RMSE is dramatically larger than MAE, there are
greater variances among errors. RMSE and MAE are used
together to evaluate the forecasting performance in terms of
large errors in this study. Lastly, MAPE, a statistical metric
to measure the forecasting accuracy reported as a percentage,
is also used. The formulas of four performance metrics are
shown as:

R =

[
n

n∑
i=1

(AiBi)− (
n∑
i=1

Ai)(
n∑
i=1

Bi)

]
×

1√
n
∑n

i=1 Ai
2
− (
∑n

i=1 Ai)2

×
1√

n
∑n

i=1(Bi)2 − (
∑n

i=1 Bi)2
, (4)

MAE =
1
n

n∑
i=1

|Ai − Bi|, (5)

RMSE =

√√√√1
n

n∑
i=1

(Ai − Bi)2, (6)

MAPE =
1
n

n∑
i=1

∣∣∣∣Ai − BiAi

∣∣∣∣ , (7)

where n is the number of observations, Ai is the real value
and Bi is the predicted value. In addition, when assessing the
performance of thesemodels, we use the original data without
missing data imputation to ensure fair comparisons.

C. FORECASTING STRATEGIES
Twomajor forecasting procedures, single-step prediction and
multi-step prediction, are extensively used to solve time-
series prediction problems. The rationales of both forecasting
strategies are detailed as below. Assuming a finite segment
of previous values up to time t are available as the training
sample, shown as xt , xt−1, xt−2 . . . , x1. Similarly, the original
values of the testing sample are xt+1, xt+2, xt+3, . . . , xt+m,
where m refers to the size of the testing sample. The single-
step prediction only predicts one value out of the known
data, and no feedback is employed to pursue the predictions.
Differently, multi-step prediction is a recursive procedure that
predicted data is used to apply subsequent predictions [40].
For instance, if a model with three inputs is designed to
forecast m values in the future, as yt+1, yt+2, yt+3, . . . , yt+m,

the procedure of a single-step prediction can be expressed as:

yt+1 = f [xt , xt−1, xt−2],

yt+2 = f [xt+1, xt , xt−1],

yt+3 = f [xt+2, xt+1, xt ],
...

yt+m = f [xt+m−1, xt+m−2, xt+m−3], (8)

where, f [•] represents the model function determined by the
training sample. By contrast, a multi-step prediction re-uses
the predictions as additional data to forecast future values as:

yt+1 = f [xt , xt−1, xt−2],

yt+2 = f [yt+1, xt , xt−1],

yt+3 = f [yt+2, yt+1, xt ],
...

yt+m = f [yt+m−1, yt+m−2, yt+m−3]. (9)

The major distinction between these two procedures is that
single-step only uses the original data, whereas multi-step
starts with the training sample but overlap the training sample
and the predicted values [40]. Therefore, the forecasting error
of the multi-step prediction is large as the prediction error at
each step is the cumulative error of previous steps.

To avoid large cumulative prediction errors, we implement
the rolling-window multi-step prediction to forecastm values
in the future. First, the number of prediction steps is defined
asK . Second, we implement amulti-step prediction to predict
yt+K with the training sample, xt , xt−1, . . . , x1, as model
inputs. Third, we predict yt+K+1 based on the same model,
whereas the inputs are updated to xt+1, xt , . . . , x1. Then,
we update the inputs as xt+2, xt+1, . . . , x1 to predict yt+K+2.
We repeat this procedure until we achieve yt+m. 1

D. FORECASTING MODELS
This section presents the main features of the four forecasting
models. First, a well-known conventional method in mete-
orology and oceanography fields is studied, namely EOF
model, to extract main dominant components of the shoreline
and forecast the shoreline variations. Second, a statistical
forecasting model SARIMA which has been used in many
practically forecasting tasks is investigated. Finally, we con-
sider non-linear model as shoreline changes are non-linear in
general [6]. Two ML methods are considered to improve the
accuracy of our study on shoreline changes, namely NNAR
and LSTM. In this paper, the best model of each forecasting
method is the one with the minimum MAPE over the testing
period.

1) EOF MODEL
EOF model is an important approach to analyze variations
and extract key patterns. In this study, we follow the research

1To fix the prediction steps, we exclude the first (K − 1) predictions from
the forecasting sample.
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TABLE 1. Coefficients of fourier series.

in [4] where EOF model was used to analyze the shoreline
variation of Nha Trang Coast and the forecasting performance
of EOF model will be used as the benchmark.

In EOF model, shoreline position data is decomposed
into two dimensions, i.e., spatial eigenfunction, e(x), and
temporal eigenfunction, c(t). The dominant spatial feature
is determined by the first spatial eigenfunction e1(x), which
describes the trend of shoreline variation at different coast
positions from x = 50m to x = 250m. The temporal
eigenfunction c1(t) explains the shoreline variation in differ-
ent seasons, where t indicates time. The variation of aver-
age shoreline position ȳ(x) is derived from measured data
ym(x, t), and is given as:

y(x, t) = ym(x, t)− ȳ(x). (10)

Next, the EOF analysis is displayed as [10] :

y(x, t) =
∞∑
i=1

ei(x)ci(t), (11)

where i indicates the i− th component.
The contribution rate Qi corresponds to the eigenvalues λi

is given as [10]:

Qi =
λi∑k
n=1 λn

. (12)

Based on shoreline data, the contribution rate of the first
component, i = 1, is 95.20% in our EOFmodel, and the total
contribution rate of the remaining components is only 4.80%,
much lower than that of the first component. Therefore,
the first component responses for nearly the entire of shore-
line variation, and other components are less representative
and negligible [4]. The first spatial eigenfunction e1(x) can
be achieved by the spectral decomposition. This terms reflects
the tendency of shoreline variation at the studied region and
is exclusively determined by the position.

Through applying Fourier series, the first temporal eigen-
function, c1(t), can be decomposed as:

c1(t) =
a0
2
+

2∑
i=1

[ai cos (iwt)+ bi sin (iwt)]. (13)

where a0 is the intercept, and w is the angular frequency
(w = 2π/365 day −1). In terms of our data universe, the esti-
mated coefficients are shown in Table 1.

Therefore, a simulation model is developed based on the
first spatial and temporal component, and it is utilized to fore-
cast shoreline variation. The equation for shoreline prediction

using EOF is presented as:

ym(x, t) = ȳ(x)+ e1(x)c1(t). (14)

2) SARIMA MODEL
For time-series prediction, ARIMA model is a remarkable
algorithm used by a majority of academic studies. ARIMA
is a generalization of Auto-Regressive Moving Average
(ARMA) model introduced by Whittle [15]. Mckerchar and
Delleur [16] further developed SARIMA model that incor-
porates seasonal effects of input variables. SARIMA model
is normally presented as SARIMA(p, d, q)× (P,D,Q)s. The
p, d, q refer to the non-seasonal polynomial orders of auto-
regressive, integrated, and moving average, respectively. The
P,D,Q represent the seasonal orders, and s is the seasonal
period. Technically, the model is presented as:

φp(B)8P(Bs)1d1Dsyt = θq(B)2Q(Bs)εt , (15)

where yt is the input variable (the cross-shore distance in
this study); φp(B) and θq(B) are the seasonal auto-regression
(AR) and moving average (MA) components, respectively;
8P(Bs) and 2Q(Bs) represent the non-seasonal components.
The differentiation factors, 1d and 1Ds, are employed to
mitigate the seasonal and non-seasonal non-stationary.

A large number of SARIMA models based on different
combinations of non-seasonal and seasonal orders are eval-
uated. Despite various metrics are used to identify the out-
performedmodels with data preprocessing, (e.g., ACF, PACF,
Schwarz information criterion (SIC), and Akaike information
criterion (AIC)) [41]–[43], we obtain a standard performance
appraisal through this work. To find the best performing
model, we test various input parameters, p, q,P and Q range
from 1 to 5, d and D range from 1 to 2, with seasonal period
s as 30. We choose the optimal parameters by grid search
approach and select the model yielding the lowest MAPE in
the testing sample forecast as the best one.

3) NNAR MODEL
ANN, a powerful ML method, has been extensively used
and applied in many domains, ranging from data sci-
ence to natural language processing, and computer vision.
A Feed-forward Neural Network (FNN) is one type of ANN
with one or more than one hidden layer and several lagged
inputs. The architecture of an FNN is normally exhibited as
Fig. 9 − the simplest kind of FNN, consisting of a single
hidden layer. In FNN, each layer contains several nodes and
there are several connections among nodes which are from a
specific layer to the next layer. However, the nodes in a given
layer are mutual independent (i.e., no connections among
different nodes in the same layer).

With time series, we put lagged data as inputs to a neural
network, this is the same as we applied lagged inputs in
SARIMA model in Section III-D2. We only consider single
layer FNN, because theoretically, a neural network with sin-
gle hidden layer and multiple hidden neurons can approx-
imate any continuous function [44], and with the increase
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FIGURE 9. FNN with three inputs and one hidden layer with three hidden
neurons.

of hidden layers, the computation time increases. We train
a Neural Network Auto-Regression model called NNAR
(p,P, k)s model, where p is the lagged input, k represents the
number of nodes in the hidden layer, P refers to the order of
seasonal AR, and s shows the seasonal period.
Consistent with the model selection procedure mentioned

above, we vary the values of each parameter to achieve the
best model that performs the lowest MAPE over the testing
period. The input parameters p and P range from 1 to 20,
k ranges from 1 to 5, and seasonal period s is 30.

FIGURE 10. LSTM memory cell topology of the hidden layer.

4) LSTM MODEL
Hochireiter and Schmidhuber introduced LSTM in 1997 [45]
to overcome the vanishing and exploding gradients of Recur-
rent Neural Networks (RNN). Although, RNN can deal with
sequences of inputs, such as time series, text and audio, RNN
has an inherent problem with long data and made the model
less sensitive with longer input data. LSTM model can avoid
this problem thanks to a more complex memory cell. Fig. 10
illustrates the cell structure which is the key design of LSTM
model. Three particular gates are designed including a forgot
gate, an input gate and an output gate. Different from ANN,
the hidden layers of LSTM network are connected with each
other. The inputs of hidden layers include not only the input of
input layer but also the output of hidden layer. LSTM model
has the ability to remember information of long-term, and it
is a desirable approach for long-term dependency tasks.

The information processing mechanism of an LSTM
model is described as:

ft = σ (Wf xf + Rf ht−1 + bf ), (16)

it = σ (Wixt + Riht−1 + bi), (17)

ot = σ (Woxt + Roht−1 + bo), (18)

c̃t = tanh(Wcxt + Rcht−1 + bc), (19)

ct = ft ∗ ct−1 + it ∗ c̃t , (20)

ht = ot ∗ tanh ct , (21)

where the notations are defined in Table 2.

TABLE 2. Parameters and variables in LSTM model.

In order to find the best-performing LSTM model,
the range of hidden neurons is set to 1 to 400, time step
is set to 1 to 20, and batch size is set to 2 to 64. Mean-
while, we adjust the optimizer function, activation function
and loss function. Candidate models with multiple parameter
combinations are iterated through 100 epochs. To avoid over-
fitting problem, an Early Stopping function is applied. Fig. 11
indicates the training process at x = 150m. The plotted
curve decreases and remains stable before 100-step iteration,
therefore, no over-fitting is observed.

FIGURE 11. Training performance for LSTM model at 100 epochs at
x = 150m.

To sum up, we introduce four forecasting models in
Section III-D. In EOF model, parameters are determined by
decomposition and linear regression. In the other models,
we test a variety of combinations of input parameters to find
the best performing models with grid search approach. The
results of single-step and multi-step predictions are reported
in the next section.

IV. RESULTS AND DISCUSSIONS
This section first determines the best imputation method to
obtain continuous time series for training the models. Then,
we evaluate forecasting performance of various models for
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TABLE 3. MAPE of forecasting models based on different imputation methods (The bold values represent the best MAPE for each model).

single-step prediction (one day ahead) and multi-step predic-
tion (up to 50 days ahead). The predictions of each model
are compared to the realities based on four performance
metrics documented in Section III-B. Furthermore, we assess
the predictive ability of various model through line plots.
Lastly, Taylor diagrams are presented to summarize different
performance metrics.

A. MISSING DATA IMPUTATION
As stated in Section III-A, we introduce four missing
data imputation methods, zero imputation, seasonal adjusted
LOCF, seasonal adjusted linear interpolation and KNN.
These four methods have been extensively used by previous
literature [34]–[39].

We select the best imputation approach based on the fol-
lowing process. First, after filling missing values via the
candidate imputationmethods, the time series at each position
now has continued training samples which are available to
train SARIMA, NNAR and LSTMmodel. Then, we measure
theMAPE for thesemodels at each position in Table 3. Lastly,
the filling method yielding the lowest averagedMAPE across
five positions is selected as the best.

Across four filling methods, Table 3 shows that zero impu-
tation method yields the highest MAPE. As this basic method
fills the missing values with zero, which is not consistent
with the nature of series, e.g., the cross-shore distance cannot
be zero in any scenario. Hence, this approach brings a large
amount of bias information into the imputed series. Mean-
while, the seasonality of the original series is weakened by
zero imputation as such a method fails to account for any
seasonal features.

Seasonal adjusted LOCF and seasonal adjusted linear
interpolation method produce better performance than zero
imputation. More specific, linear interpolation outperforms
LOCF. For SARIMA model, linear interpolation method
generates the lowest MAPE at most positions except 200m,
and the average MAPE is the lowest, in comparison with
other filling methods. For NNAR and LSTM models, linear
interpolation method is also the most desirable imputation

approach. It achieves the lowest MAPE at most positions,
and the average MAPE is the lowest across four methods.
This shows that seasonal adjustment is very effective when
seasonality is obvious [46].

KNN shows better performance than zero imputation but
weaker than seasonal adjusted linear interpolation. The aver-
age MAPE of SARIMA with KNN is around 3 % lower than
that with zero imputation, and the average MAPE of NNAR
and LSTM with KNN model is around 2 % lower than the
MAPE produced by zero imputation.

In our study, missing values are imputed by seasonal
adjusted linear interpolation approach. After imputation,
the time series is available for training the models and imple-
menting the predictions.

B. SINGLE-STEP PREDICTION
Various statistical performance metrics including R, MAE,
RMSE and MAPE are applied to make comparisons. Table 4
summarizes forecasting performance of different models,
where real data is used as the benchmark. The optimal
parameters for SARIMA, NNAR, and LSTM are reported
in Table 5, 6, and 7, respectively.

Table 4 shows that EOF model is less accurate than other
models in terms of statistical performance. The MAPE of
this model is the highest at each location. The worst MAPE
occurs at x = 50m as 17.522%. Although EOF model reports
R greater than 0.9 at 50m and 100m as 0.964 and 0.935,
respectively, R reduces to below 0.9 at all remaining positions
whereas the other models do not. Therefore, conventional
EOFmodel is not a desirable forecasting approach that works
for every case.

SARIMA model outperforms EOF model in terms of sta-
tistical performance. Although it generates the second highest
MAPE at all positions except 200m, the superiority is obvious
on average, 6.327%, where the greatest difference is 9.154%
at x = 50m. Meanwhile, this model yields a higher R than
EOF model at each position, where the largest difference is
0.086 at x = 200m. As forMAE andRMSE, thismodel yields
much better performance than EOF model regardless of the
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TABLE 4. Performance metrics of four models for single-step prediction at each position (The bold values represent the best performance for each metric).

TABLE 5. The optimal parameters of SARIMA.

TABLE 6. The optimal parameters of NNAR model.

TABLE 7. The optimal parameters of LSTM network topology.

positions. Therefore, SARIMA model is a more desirable
model than EOF model.

Furthermore, NNAR model outperforms EOF model in
terms of different metrics. This model reports the second
lowest MAPE at x = 100m, 150m and 250m and the low-
est value at remaining positions. The MAPE of NNAR is
less than half of that of EOF at all positions, and around
0.45% lower than that of SARIMA at x = 50m and

x = 150m. Meanwhile, it yields higher values of R than
the above-mentioned models at each position. As for the
other two metrics, NNAR model has better performance
in RMSE than SARIMA and EOF model at all positions,
and it also yields lower MAE than SARIMA and EOF
model at x = 50m, 150m and 200m. This implies that
NNAR model is also a more desirable model than EOF
model.

LSTM displays similar forecasting ability compared to
NNAR model. In terms of MAPE and MAE, LSTM model
outperforms other models at x = 100m, 150m and 250m,
and second lowest values at x = 50m. Similarly, it achieves
the highest R, 0.969, at x = 150m, but slightly lower than
that of NNAR at the remaining positions. For RMSE, this
model displays the best performance at x = 150m and
250m and the second best performance at the remaining
points.

We further focus on line plots of single-step predictions
of EOF, SARIMA, NNAR and LSTM at x = 50m. The left
panel of Fig. 12 plots the forecasting curves, in which the
predicted values exhibit the same trend as realities regard-
less of models. This implies that every involved model can
capture seasonality and patterns, hence, these models are
worth to investigate. More specifically, EOF model presents
the poorest predictive ability as it only captures the trend
but fails to predict the shocks. By contrast, the predictive
abilities of SARIMA, NNAR and LSTM model are superior
to that of EOFmodel. These threemodels can predict not only
the trend but also the shocks during the testing period. The
prediction curves of SARIMA, NNAR and LSTM models
are almost identical. The right panel of Fig. 12 displays
the correlation between prediction and realities, which is
equivalent to R in Table 4. In line with our previous finding,
the R of SARIMA, NNAR, and LSTM are higher than that
of EOF.
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FIGURE 12. Forecasting performance of four models for single-step prediction at x = 50m.

The predictions at the remaining positions also display
similar patterns. We plot the forecasting curves at each posi-
tion in Fig. 13, where the real values are used as the bench-
mark. In each sub-figure, all four models display the same
trend as the real values. Consistent with the results in Table 4,
EOF shows the poorest predictive ability and fails to forecast
any shocks, whereas SARIMA, NNAR and LSTM predict
both the trends and shocks over the testing period. Overall,
the forecasting performance of SARIMA, NNAR and LSTM
is similar.

We further present Taylor diagrams to compare the perfor-
mance of four models in terms of Pearson Correlation Coef-
ficient R, centred Root-Mean-Square Difference RMSDc and
Standard Deviation SD [47]. The definition of R is presented
in (4). SD is used to describe the variation of series. To be

specific, a low SD demonstrates that the values are close to
the mean value. The definitions of SD and RMSDc [47] are
given as:

SD =

√√√√1
n

n∑
i=1

(Bi − B̄)2, (22)

RMSDc =

√√√√1
n

n∑
i=1

[(Ai − Ā)]− (Bi − B̄)]2, (23)

where n is the number of observations, Ai is the real value,
Bi is the prediction, Ā and B̄ are the mean of these two
series.

As shown in Fig. 14, EOF model has the poorest per-
formance as it locates the farthest from the Target point.
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FIGURE 13. Forecasting performance of four model for single-step prediction.

This is consistent with our findings in Table 4, Fig. 12
and Fig. 13. The performance differences among SARIMA,
NNAR and LSTM are not significant as they almost over-
lap at x = 50m, x = 100m and 150m. At x = 200m,
NNAR locates closer to the Target than SARIMA and

LSTM, but the superiorities are still tiny.2 On average,
the differences among SARIMA, NNAR and LSTM are not

2The Taylor diagram at x = 250m shows similar patterns to other
positions.
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FIGURE 14. Taylor diagrams to compare the performance of four models for single-step prediction.

distinct in Taylor diagrams as their positions are close to
each other.

This section summarizes the following highlights. First,
EOF model shows the poorest predictive ability at each loca-
tion regardless of performance metrics. EOF model follows
assumptions that the temporal eigenfunction of shoreline
variation can be decomposed by (13). In this equation,
the first component is used to represent the entire shoreline
variation and the other components are ignored. This is a strict
assumption and may not fit all data, so the prediction curve of
EOF is smooth and fails to predict shocks, as shown in Fig. 12
and Fig. 13. Second, statistical model SARIMA outperforms
EOF model and is proved to be a reliable forecasting method.
ML models NNAR and LSTM exhibit similar predictive
abilities to SARIMA on average. Different from EOF model,
these three models are based on data characteristics rather
than physical theorems, so they are able to predict the trends
as well as the shocks. Therefore, to achieve accurate results
for single-step prediction, SARIMA, NNAR and LSTM are
more desirable models than EOF for forecasting shoreline
changes.

C. MULTI-STEP PREDICTION
While most existing forecasting methods only focus on
single-step prediction, we are the first to forecast the shore-
line changes in Nha Trang Coast very far into the future.
In this section, we study the performance of up to 50-day
ahead prediction to see how our models perform in a long
term. The parameters in each model are consistent with
single-step prediction as determined in Section IV-B, and
multi-step predictions are evaluated by using the data at
x = 50m. The forecasting step K ranges from 10 to 50 with
an interval of 10 steps. Table 8 reports the long-term fore-
casting abilities among SARIMA, NNAR and LSTM mod-
els. Compared to single-step prediction, multi-step prediction
shows worse results due to the cumulative errors discussed
in Section III-C.
Table 8 shows that SARIMA model presents a decreasing

performance ability with K increasing from 1 to 50. The
performance of ML models exhibits similar changes to that
of SARIMA model. The forecasting ability of both NNAR
and LSTM reduces with the increase of forecasting steps.
NNAR displays the best predictive ability in terms of four
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TABLE 8. Performance metrics of models for multi-step prediction at x = 50m (The bold values represent the best performance for each metric).

FIGURE 15. Comparisons of performance metrics for multi-step prediction at x = 50m.

metrics from K = 10 to K = 40. It yields the highest
R, the lowest RMSE, MAE, and the lowest MAPE across
three models. Differently, at K = 50, LSTM model reports
the lowest RMSE and MAPE, but its R is still lower than
NNAR, and its MAE exceeds that of NNAR. Overall, for
long-term forecasting, NNAR is slightly better than the other
two models, despite the superiorities are not significant in
every performance metric. This further supports our above-
mentioned conclusion that the predictive ability of SARIMA
is comparable to that of the ML models as discussed in
Section IV-B.
To display the dynamic of predictive ability for multi-step

prediction of each model, Fig. 15 plots the changes of perfor-
mance metrics with the increase of prediction steps K . The

forecasting performance decreases gradually, not suddenly
at some points. That shows the robustness of forecasting
models. The line charts further support that the differences
among SARIMA, NNAR, and LSTM are not significant. The
R of SARIMA and LSTM shows larger reduction than that
of NNAR. The RSME and MAE of NNAR model increase
less than those of SARIMA and LSTM models. The MAPEs
of three models are almost identical until K = 40, but
the MAPEs of SARIMA and NNAR are higher than that of
LSTM at K = 50. Those patterns imply that NNAR yields
smaller prediction errors in the testing periods despite the
differences are tiny on average.

Section IV compares the performance of EOF, SARIMA,
NNAR and LSTM in terms of single-step and multi-step
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forecasting. Multi-step prediction shows worse performance
due to the cumulative errors. However, the forecasting
performance when implementing 10-day ahead prediction
is still desirable (R > 0.875 for all models). When there
is a disaster (e.g., storm), a one-day early warning can
help to execute many necessary plans to avoid critical
damages to community. Despite the multi-step predictions
exhibit the long-term predictive abilities for our mod-
els, the accuracy for a few days ahead prediction is the
most important. In addition, our results also indicate that
SARIMA,NNAR and LSTMpresent similar forecasting abil-
ities and significantly outperform conventional EOF model
studied in [4]. Therefore, statistical forecasting methods, e.g.,
SARIMA model, are still desirable approaches for forecast-
ing tasks, which is in line with previous studies [17]–[19].
Consistent with findings in [21], [29], sophisticated ML
models do not always outperform statistical methods
althoughMLmethods are associatedwith high computational
complexity.

We further discuss the potential reasons that ML meth-
ods, especially deep learning LSTM model, do not show
advanced results. As stated in [29], the characteristic and
the length of specific time series are important factors that
could potentially influence the accuracy of various forecast-
ing models. The performance of different forecasting models
depends on the characteristic of data, and ML techniques
could perform better with high complexity and strong non-
linear time series. In addition, ML methods might lead to
better results than statistical methods when the time series
data is sufficient as their parameters can be trained opti-
mally, otherwise, proper training is hard to be realized with
short time series. In this research, LSTM model might
show greater performance if more observations are avail-
able. This needs to be verified by more experiments with
various lengths of training series for future research. Our
findings highlight the importance of evaluating not only com-
plicatedMLmodels but also statistical models for forecasting
tasks.

V. CONCLUSION
This paper explores four data imputation methods, zero
imputation, seasonal adjusted linear interpolation, seasonal
adjusted LOCF, and KNN, to provide quality coastal data
for feeding the prediction models. The results show that
seasonal adjusted linear interpolation method is the most
desirable imputation approach. More importantly, this work
further investigates reliable models to predict shoreline
variations. Statistical forecasting model SARIMA and ML
models, NNAR and LSTM are applied to perform single-
step and multi-step predictions (up to 50 days ahead).
By comparing different performance metrics, plots and
Taylor diagrams, our results demonstrate that SARIMA,
NNAR and LSTM outperform EOF significantly, and all
these three models can be effectively used for monitoring
coastal variations from video cameras under extreme weather
conditions.
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