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ABSTRACT Rapid expansion of smartmetering technologies has enabled large-scale collection of electricity
consumption data and created the foundation for sensor-based load forecasting on individual buildings
or even the household level. With continuously growing energy consumption, the importance of energy
management including load forecasting is increasing in order to remedy the energy effect on the environment.
Numerous machine learning techniques have been proposed for sensor-based load forecasting but most are
offline approaches: the model is trained once and then used to infer future consumption. However, these
approaches are not able to adapt to concept drift: for example, their accuracy will degrade when the building
use changes or new equipment is installed. Thus, an approach capable of learning from new data as they arrive
is needed. This paper proposes adaptive online ensemble learning with Recurrent Neural Network (RNN)
and ARIMA for load forecasting under concept drift. The RNN part of the ensembles consists of Online
Adaptive RNN as its underlying RNN learner has the ability to model temporal dependencies present in load
data while its online nature enables continuous learning from arriving data. The adaptation to the concept
drift is improved by adding Rolling ARIMA to the ensemble. The performance of the proposed approach
has been examined on the four individual homes with different degrees of concept drift. The results show
that the proposed ensemble achieves better accuracy than its constituent algorithms alone and, moreover,
the analysis demonstrates the need to examine load forecasting approaches in respect to how they handle
concept drift.

INDEX TERMS Load forecasting, concept drift, energy forecasting, ensemble learning, recurrent neural
network, online learning.
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ARIMA Autoregressive Integrated Moving Average
BN-RNN Batch Normalized RNN
CMD Connect My Data
DDM Drift Detection Method
DL Deep Learning
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I. INTRODUCTION
U.S. Energy Information Administration (EIA) estimates that
energy consumption will grow by 50% between 2018 and
2050 [1]. This expansion is largely driven by continuously
increasing economic activities [2]. Economic growth at an
annual rate of 3–4% is not only driving energy demand but
also generating the corresponding CO2 emission and nega-
tively affecting the environment [2]. Energymanagement sys-
tems play a major role in mitigating energy production side
effects by monitoring, controlling, and optimizing energy
consumption and generation.

Load forecasting has been attracting tremendous research
and industry interest because of its essential role in energy
management systems: it is a foundation for energy genera-
tion and distribution planning, operation of supply, energy
budgeting and it is an inseparable part of smart grid develop-
ments [3]. The expansion of smart meters which measure and
record energy consumption has enabled energy forecasting
on the building and even household level. A large number
of smart meters in operation, over 70 million in the USA and
over 96million in China in 2016 [4], created opportunities for
new deeper insights into energy usage patterns and enabled
large-scale load forecasting. However, traditional forecasting
techniques need to be examined in respect to how they handle
diverse energy consumption patterns present among individ-
ual energy consumers aswell as changes in patterns over time.

In recent years, Deep Learning (DL) approaches have
demonstrated great successes in load forecasting because of
their strong generalization capabilities, the ability to model
complex systems, and extract features from raw data [5].
Nevertheless, there is still a gap between conventional offline
deep learning methods and the learning required to obtain
insights from continuously arriving smart meter data. Con-
ventional machine learning (ML) requires that the entire
dataset be available at the start of the learning [6]. Then, this
entire data set is passed repeatedly through the model and
the model’s parameters are adjusted; one pass over data is
referred to as epoch. However, with smart meters, all data are
not available at the start of training as data are continuously
arriving. To acquire knowledge from the new data, the con-
ventional model needs to be re-trained using all historical data
combined with new data. Of course, this is impractical and
computationally intensive as each time themodel is re-trained
from scratch.

Moreover, the underlying distribution of smart meter data
changes over time, producing what is referred to as concept
drift [7]. For example, adding a new appliance or a change
in home occupants behaviour patterns will result in dif-
ferent energy consumption profiles. Nonetheless, traditional
machine learning techniques are static, and in presence of
the concept drift, they exhibit weak and degrading perfor-
mance [8].

Therefore, for energy forecasting with smart meter data,
we need an ML approach capable of learning from new data
as they arrive over time without the need to re-train the
model or keep historical data [9]. Online learning, a machine

learning paradigm that uses data streams for training and
learns one or a few instances at a time, has been proposed
to address this challenge. The ’online’ descriptor reflects the
fact that this paradigm continuously maintains its model and
modifies the model as needed. This learn-as-you-go approach
alleviates the computational load and removes the need for
all data to be present at once [6]. Online learning has been
applied for load forecasting: it has achieved better accuracy
than traditional offline models with significantly reduced
computation time [9]. As noted by Fekri et al. [9], online
learning, because of its online nature, should be better at
handling the concept drift; however, further examination of
forecasting under concept drift is needed [9].

Consequently, this paper proposes an online ARIMA-RNN
ensemble, a load forecasting approach capable of learning
from new drifting data as they arrive. The approach combines
two forecasting techniques: Online Adaptive Recurrent Neu-
ral Network (RNN) is used because of its online nature and
demonstrated high accuracy in load forecasting [9], whereas
Rolling ARIMA contributes to the model performance in
presence of the concept drift as it is able to adapt quickly
to changes in the load. The two techniques are combined
using aggregation techniques ranging from simple averag-
ing to adaptive weighted functions. Results show that the
proposed online ARIMA-RNN ensemble outperforms stan-
dalone Online Adaptive RNN and standalone ARIMA in
terms of overall forecasting error. Additionally, the paper
examines the behaviour of the proposed approach for houses
with different degrees of concept drift and highlights the
importance of investigating algorithms’ behaviour in pres-
ence of concept drift and across diverse consumers.

The remainder of the paper is organized as follows:
Section II presents the related works, Section III discusses
the background, Section IV describes the proposed approach,
and Section V explains the experiments and corresponding
results. Finally, Section VI concludes the paper.

II. RELATED WORK
Machine learning has been used extensively for load fore-
casting [10], [11] with techniques from the RNN category
dominating in recent years.

Memarzadeh and Keynia [12] proposed Long Short-Term
Memory (LSTM) based forecasting algorithm that uses
wavelet transform to handle the fluctuations in electricity
load. Also, their model employs entropy and mutual infor-
mation methods to eliminate the redundant features. The
proposed approach was evaluated on aggregated load fore-
casting for a region, therefore, it was not exposed to high data
variability as is the case with individual households.

Sehovac and Grolinger [13] proposed Sequence to
Sequence Recurrent Neural Network (S2S RNN) with atten-
tionmechanism for load forecasting. The S2Smodel employs
two RNNs, an encoder and a decoder, to map the input
sequence to the output sequence. The attention mechanism
strengthens the connection between the encoder and the
decoder to assist with processing long sequences. Although
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S2S with attention has shown great results, it is computation-
ally much more expensive than LSTM or even S2S without
attention.

Eskandari et al. [14] proposed a CNN-GRU-LSTM model
for hourly load forecasting considering external factors such
as weather, weekday/weekend, and holiday. First, a Con-
volutional Neural Network (CNN) is utilized to extract the
load and temperature features: at this stage, the univariate
data are converted to multidimensional features by applying
two-dimensional convolutional kernels. Next, these multi-
dimensional features are passed to the bidirectional Gated
Recurrent Units (GRUs) and LSTM units to generate the load
forecasts.

Tian et al. [15] introduced Similarity-based Chained Trans-
fer Learning (SBCTL) approach for load forecasting with a
large number of smart meters. The proposed approach trains
the initial model for the first smart meter in a traditional man-
ner. Then, model training for all other meters uses transfer
learning to take advantage of existing, already trained models
based on similarities of consumers’ load profiles. This tech-
nique generates a personalized model for each smart meter.
In the experiment with 456 meters, SBCTL achieved similar
accuracy to traditional individual model training while signif-
icantly reducing training time.

Several other studies also employed RNNs for various
load forecasting tasks. Bidirectional RNN combined with
a deep belief network was proposed for short-term load
forecasting [16], [17]. Lv et al. [18] also used bidirectional
RNN for short-term load forecasting, but they added attention
mechanism and distributed representation of input variables.
Shi et al. [19] employed RNN, specifically LSTM, together
with load profile pooling for residential load forecasting.
LSTM and GRU units were also proposed for distribution
feeder long-term load forecasting [20].

Ensemble techniques have also been proposed:
Wang et al. [21] presented an ensemble learning approach

for short and medium-range load forecasting. Their ensem-
ble integrates a clustering method with LSTM and a Fully
Connected Cascade (FCC) network. A clustering algorithm
first partitions the historical data to train multiple LSTM
models, and then the FCC model is used to fuse the trained
LSTMs. The ensemble increased the prediction accuracy in
comparison to standalone LSTM.

Gungor et al. [22] took an advantage of the ensemble tech-
nique for individual household electricity consumption pre-
diction. In their approach, AutoRegressive IntegratedMoving
Average (ARIMA), Holt-Winters, TESLA (Taylor Expanded
Solar Analog Forecasting), LSTM, and Persistence prediction
algorithms are combined using a feed forward neural network
to construct an ensemble. To decrease the computational cost
of training, they applied pruning by eliminating small-valued
weights from the network.

The reviewed techniques [12]–[23] are based on RNN
variants such as LSTMs and GRUs because of their ability to
model time dependencies. Although they achieved excellent
accuracy in load forecasting, they all belong to the category of

offline learning: once the model is trained, to acquire knowl-
edge from new data, it must be re-trained from scratch with
all historical data. In load forecasting, data from smart meters
are continuously arriving and new data may have different
patterns. Repeatedly re-training the model is computation-
ally intensive and often infeasible. In contrast, our approach
learns from data as they arrive without requiring re-training.
Model parameters, in both Adaptive RNN and ARIMA, are
dynamically adapted to capture the temporal changes in the
underlying data streams. This dynamic nature makes the
proposed ARIMA-LSTM well suited for forecasting under
concept drift.

For wind forecasting, adaptive incremental linear regres-
sion was proposed [24]: as new stream samples arrive,
the model learns gradually and endlessly. When the concept
drift is detected, the window of past observations used for
learning is reduced. Because this approach is based on linear
regression, it is not suited for highly non-linear load data.

For forecasting streaming time series data in the presence
of anomalies and change points, Guo et al. [25] devised an
adaptive gradient learning method for RNNs. The approach
wights the gradients based on the local distribution properties
of new data. Although the approach demonstrated excel-
lent results, it only works for one-step ahead forecasting.
Madireddy et al. [26] highlighted the importance of con-
sidering concept drift for job scheduling in production sys-
tems. They proposed a concept drift aware prediction model:
the location of the concept drift is detected with an online
Bayesian changepoint detection method and then the training
data collected before the drift are transformed by transfer
learning-inspired technique for the model re-training.

Works of Vexler and Kramer [27] and Liang et al. [28]
presented online learning approaches for load forecasting
based on LSTM. Vexler and Kramer [27] combined LSTM
and online density estimation with Hoeffding trees whereas
Liang et al. [28] presented an approach for the smart grid with
the model located at the network edge. Both studies [27], [28]
did not specifically consider concept drift.

Krannichfeldt et al. [29] proposed an online load fore-
casting approach based on a modified Passive Aggressive
Regression (PAR) model. Their technique actually combines
batch and online learning: batch models provide individual
forecasts, and the online ensemble combines their prediction
to achieve adaptability. The proposed approach is well suited
for smooth and convex problems, while non-linearities and a
high level of complexity, including concept drift, are present
in energy consumption data.

Similar to our study, the reviewed online and incremental
learning techniques [24]–[29] learn continuously from data
streams. However, they either do no consider concept drift
[24], [27]–[29] or are limited in respect to concept drift they
consider [25], [26]. Madireddy et al. [26] considered only
abrupt drift while Guo et al. [25] only consider a single
real-world dataset representing Yahoo services, which is a
very different application and does not directly apply to load
forecasting. In contrast, our research considers concept drift
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without a limitation in respect to the type of drift. Moreover,
we consider diverse real-world scenarios and examine the
behavior of the proposed system on data streams with low
and high concept drift presence.

It is important to note that some studies impose assump-
tions that do not apply to residential load forecasting.
Sánchez-Medina et al. [24] proposed a linear model while
the approach proposed by Krannichfeldt et al. [29] is well
suited for smooth and convex problems. On the other hand,
non-linearities and a high level of complexity, including con-
cept drift, are present in energy consumption data and our
study investigates the performance of the proposed approach
on complex real-world data sets.

Finally, Fekri et al. [9] proposed a non-linear approach for
load forecasting and considered concept drift. Their Online
Adaptive RNN uses Batch Normalized RNN (BN-RNN) as
the base learner and combines Bayesian optimization, per-
formance monitoring, and buffering to tune the BN-RNN
model on the fly. As their approach achieved higher accuracy
than the offline LSTM and several other online algorithms,
we use it as one of the algorithms in our ensemble model.
However, Online Adaptive RNN does not respond rapidly to
changes in data when concept drift occurs, and, therefore,
in our approach, it is assisted by rolling ARIMA.

III. BACKGROUND
This section introduces RNNs, ARIMA, ensemble learning,
and Diebold-Mariano test.

A. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) are among the state of
the art deep learning algorithms for learning from sequential
data [30]. They consist of RNN cells which are, in addition
to the connection to neighbouring layers, also connected
with a recurrent connection to the same cell at the previous
time step. These connections together with the cells’ internal
memory make RNNs suitable for modelling temporal depen-
dencies. However, vanilla RN suffers from vanishing gradient
problem: a long data sequence causes exponential reduction
of gradients as they are backpropagated through time and,
as result, the network forgets older information.

To overcome this problem, Long Short Term Mem-
ory (LSTM) network illustrated in Fig. 1 was designed.
In LSTM, added input i, forget f , and output o gates allow for
better control over the gradient flows and assist in maintain-
ing memory for longer periods of time. At the time t , LSTM
computation is given as follows:

it = σ (Wxixt + bxi +Whiht−1 + bhi) (1a)

ft = σ (Wxf xt + bxf +Whf ht−1 + bhf ) (1b)

ot = (Wxoxt + bxo +Whoht−1 + bho) (1c)

ct = ft � ct−1 + it � tanh(Wxgxt + bxg (1d)

+Whght−1 + bhg) (1e)

ht = ot � tanh(ct ) (1f)

FIGURE 1. LSTM cell.

Here, c is the cell state, h is the hidden state, σ is the
sigmoid activation function, and � represents elementwise
multiplication. The Wx’s and Wh’s are the input-hidden and
hidden-hidden weights, respectively, and bx’s and bh’s are the
corresponding biases.

This memory mechanism makes LSTM successful in load
forecasting and energy prediction tasks. However, the LSTM
is still an offlineML technique, and an adaptive online LSTM
is required tomodify itself quickly to reflect the new revealing
patterns in data.

B. ARIMA
AutoRegressive Integrated Moving Average (ARIMA) mod-
els are fitted to past time series data to better understand
data or to predict future values [31]. An ARIMA model is
a combination of three parts: the Auto Regressive (AR) part
represents the variable as a linear combination of its own
lagged values, Moving Average (MA) denotes that the error
is a linear combination of past errors, and Integrated (I) part
refers to differencing applied to transform non-stationary
time-series into stationary. ARIMA(p,d,q) denotes ARIMA
with the order of autoregressive model p, the degree of differ-
encing d , and order of the moving-average model q. For time
series Xt where t is the time step, ARIMA(p,d,q) expresses
the forecast value X̂t as follows:

X̂t =

AR︷ ︸︸ ︷
α1X ′t−1 + α2X ′t−2 + · · · + αpX ′t−p

+ et + θ1et−1 + θ2et−2 + · · · + θqet−q︸ ︷︷ ︸
MA

(2)

where X ′ is the differentiated time series, α and θ are autore-
gressive and moving average coefficients, and e is the error
term.

C. ENSEMBLE LEARNING
Ensemble learning is a machine learning paradigm that com-
bines several base models to improve learning outcomes [6].
The main idea is that when the base models are strategically
combined, the ensemble can achieve better outcomes than any
constituent model.

The three main strategies for combining the base learn-
ers are: bagging, boosting, and stacking. The bagging [32]
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FIGURE 2. Online ARIMA-RNN ensemble.

approaches train several independent base models and then
aggregate their individual predictions by voting or by averag-
ing to obtain the final prediction. Boosting [33] similarly uses
several base models, however, unlike bagging which simply
aggregates the individual independent votes, boosting is an
adaptive technique in which each base model depends on the
previous ones. The final prediction is still obtained following
a deterministic formula. Finally, stacking [34] differs from
bagging and boosting in the way it combines the base models:
the combining is carried out with a meta-model. In other
words, the outputs of the basemodels are the inputs to another
ML model which learns how to combine the base learners for
better predictions.

D. DIEBOLD-MARIANO TEST
Although standard evaluation metrics such as Mean Absolute
Error (MAE) and Mean Squared Error (MSE) are useful
measurements for comparing models’ results, they do not
examine if the difference between the models is significant.
Diebold-Mariano test [35], [36] can be employed to deter-
mine if forecasts are significantly different.

Suppose that we have two forecasts f1, . . . , fn and
g1, . . . , gn for a time series y1, . . . , yn, and we want to deter-
mine if the two forecasts are significantly different. Let ei =
yi − fi and ri = yi − gi be the residuals (errors) for the two
forecasts. The squared-error loss function is then defined as:

L1 =
n∑
i=1

(ei)2 (3)

L2 =
n∑
i=1

(ri)2 (4)

The null hypothesis is given as follows:

H0 : E[L1] = E[L2] (5)

where E is expectation value. Diebold-Mariano test is based
on the loss differentials di:

di = e2i − r
2
i (6)

Equivalently, the null hypothesis of equal predictive accu-
racy is shown as H0: E[di] = 0. Then, the sample mean loss
differential d̄ is:

d̄ =
1
n

n∑
i=1

dt =
1
n
[L1 − L2] (7)

The autocovariance γk at lag k is defined as:

γk =
1
n

n∑
i=1

(di − d̄)(di−k − d̄) (8)

Finally, the Diebold-Mariano statistic is shown as follow:

DM =
d̄√

[γ0 + 2
∑n

1
3+1

k=1 γk ]n−1

(9)

The null hypothesis is rejected at 5% confidence level
every time the DM value is outside the range [-1.96 1.96].

IV. ONLINE ARIMA-RNN ENSEMBLE
This section proposes Online ARIMA-RNN Ensemble,
an ensemble-based load forecasting approach that dynami-
cally learns from evolving data streams and adapts to new
patterns in the data. Online Adaptive RNN [9] is used as one
of the base learners because of its ability tomodel time depen-
dencies, online learning strategy, and demonstrated success
in load forecasting. To improve the ensemble’s ability to
react to the concept drift, an ARIMA learner is added. Dif-
ferent ensembling strategies are explored including dynamic
weighting based on past performance. The overview of the
proposed Online ARIMA-RNN is shown in Fig. 2 with the
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details of the three main components, preprocessing, pre-
diction models, and ensembler, described in the following
subsections.

A. PREPROCESSING
Preprocessing is a traditional step in offline learning and
involves techniques such as normalization and sample ran-
domization. However, traditional data preprocessing tech-
niques cannot always be applied to online learning as all data
are not available at the start of learning. The preprocessing
module in Online ARIMA-RNN Ensemble (Fig. 2) contains
the preprocessing common for both, ARIMA and Online
Adaptive RNN.

The data from smart meters are first transformed using
the sliding window technique as shown in Fig. 3. The first
window contains the firstW smart meter readings and repre-
sents the first training sample. The next sample is obtained by
sliding the window for one time step: it contains the readings
from the time step 2 to W + 1. As in addition to the load
readings, other attributes are used for forecasting such as the
temperature and the day of the week, one sample is of dimen-
sion W × F , where W is the number of time steps contained
in the window, and F is the number of features. So far, this
is the same as in offline learning, with the exception that the
window samples are created gradually as data become avail-
able. Next, the batch is formed by grouping b consecutive
samples created by the sliding window technique.

FIGURE 3. Sliding window technique.

In offline learning, the windowing technique is used for
creating the samples to feed into the model (often neural net-
work). Here, this structure, together with batches, also assists
in monitoring the model performance, and any significant
change in performance triggers the model refinement and/or
tuning. In Fig. 3, the windowsW1 toW4 are before the con-
cept drift, the windows W5 to W9 lie in the drifting period,
andW10 toW14 belong to the new data patterns. Comparing
the model performance across different windows will show
degradation when the concept drift occurs indicating the need
to adapt the model. For example, comparing between W4

and W5 or between W9 and W10 is expected to indicate the
change in data and should trigger the model adaptation.

B. PREDICTION MODELS
This subsection describes the two base learners for the pro-
posed ensemble: Rolling ARIMA and Online Adaptive RNN.

1) ROLLING ARIMA
As described in Section IV-A, data from smart meters are
transformed into overlapping windows and consecutive win-
dows are placed together into batches which proceed to the
prediction models. Therefore, ARIMA should be trained over
a batch rather than a single window. Although the conven-
tional ARIMA could be fitted over every window in a batch,
this cannot take advantage of windows adjacency.

Consequently, the proposed ensemble uses a rolling
ARIMA, an incremental ARIMA model trained in a rolling
fashion such that to obtain the forecast S steps ahead,
the model is fit on the window data and the prediction from
(S − 1) steps. As seen in Fig. 4, the loop of fitting the
model, predicting, and appending is repeated S times to
obtain the prediction S steps ahead. As shown in Algorithm 1,
the ARIMAmodel is fit to the window (line 4), and the model
is used to predict one step ahead (line 5). Next, the obtained
prediction is appended to the window (line 6) and ARIMA is
fit on this expanded window (line 4). The process of fitting,
predicting, and appending is repeated to obtain the prediction

FIGURE 4. Rolling ARIMA example with the forecasting horizon of S steps.
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Algorithm 1: Rolling ARIMA
Input:Window: w, Forecast steps: S

1 Initialization: model = ARIMA(p, d, q)
2 d ← w
3 for n = 1,2,3,. . . ,S do
4 model ← fitARIMA(d)
5 p← model.predict(d)
6 d ← d .append(p)

FIGURE 5. Online adaptive RNN model.

S time steps ahead. To acquire a stream of load predictions,
the process is repeated for each window in the batch.

2) ONLINE ADAPTIVE RNN
Online Adaptive RNN [9] is a deep learning model that can
learn from data streams by updating themodel as data become
available. The overview of the model is shown in Fig. 5
[9]. The model consists of three modules Normalization,
BN-RNN, and Tuning.

a: NORMALIZATION MODULE
As this is a neural network-based technique, it requires nor-
malization as an additional prepossessing step to bring all
features to a common scale, remove large feature dominance,
and improve convergence. However, the traditional normal-
ization is not possible because all data is not available at
the start of the training and the normalization must be done
as data arrive. This is addressed with Incremental Min-Max
Normalization [9]. In this method, the largest and the small-
est values of the features are tracked with currentMax and
currentMin, and updated as needed with the arrival of new
data. The current batch is normalized usingMin-Max normal-
ization with the current values of currentMax and currentMin

as follows:

x̂ =
x − currentMin(x)

currentMax(x)− currentMax(x)
(10)

where x is the original feature value, currentMin(x) and
currentMax(x) are theminimum andmaximumof that feature
from the beginning of the data stream, and x̂ is the normalized
value.

b: BN-RNN MODULE
Online Adaptive RNN is empowered by Batch Normalized
Recurrent Neural Networks (BN-RNN) [37] as the core
learner. The batch normalization in BN-RNN indicates that
the outputs of activation functions in the inner layers are
normalized before passing them to the next layers. In RNNs,
the batch normalization improves convergence and reduces
training time. The BN-RNN is trained with the current batch
and a limited number of epochs to prevent overfitting to the
current batch [9].

c: TUNING MODULE
This module is responsible for tracking the performance
of the model and tuning it when needed. The predictions
obtained by the BN-RNN module are passed to the tuning
module which then uses the Incremental Mean Absolute
Error (IMAE) to determine if tuning is needed. IMAE is
calculated as follows:

IMAEb =
IMAEb−1 +MAEb

b
(11)

where b is the current batch index, MAEb is the MAE error
for batch b, and IMAEb−1 is the IMEA after batch b− 1.
If IMAE starts to increase, a Bayesian tuning mechanism

is activated to adjust the model hyperparameters before con-
tinuing to the next round of training. Note that this assess-
ment accrues after the actual values for batch b become
available [9]. If there is no significant change in IMEA,
the training continues with the current hyperparameters.

C. ENSEMBLER
The ensembler module, Fig. 2, is responsible for combin-
ing the prediction from constituent base models, in this
case, Rolling ARIMA and Online Adaptive RNN, to obtain
the final prediction. In general, an ensemble model is
expected to have higher accuracy in comparison to the sin-
gle algorithm because of its generalization abilities [38].
In the ARIMA-RNN ensemble, the predictionmodels, Online
Adaptive RNN and Rolling ARIMA are trained with each
batch and then used to get the respective prediction values.
While ARIMA hyperparameters (e.g., the degree of differ-
encing, the order of the autoregressive and moving-average
model) remain the same, RNN hyperparameters are opti-
mized as new batches arrive.

As shown in Fig. 2, the final ensemble prediction is a
combination of these individual predictions. The base models
(RNN and ARIMA) prediction errors from the previous batch
are indicators of how good each individual learner is at a
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specific time in the sequence, and therefore, these errors are
considered as a criterion for generating the final prediction.
Four ways of aggregating the final prediction are consid-
ered: average, weighted average, squared weighted average,
and model switching. Fig. 6 illustrates the four aggregation
techniques while the details are described in the following
subsections.

FIGURE 6. Aggregation techniques for the ARIM-RNN ensemble.

1) AVERAGE
This is a simple average method belonging to the category
of bagging ensemble approaches. The final prediction is the
average of the base learner predictions, in our case Rolling
ARIMA and Online Adaptive RNN. Equal weights of 0.5 are
given to both models, and the final prediction PE1 is calcu-
lated as:

PE1 =
PA + PR

2
(12)

where PA and PR are Rolling ARIMA and Online Adaptive
RNN predictions.

2) WEIGHTED AVERAGE
This is an adaptive boosting ensemble approach which uses
Mean Absolute Error (MAE) of the base learners in the batch
n − 1 to determine the weights wA and wR given to the base
learners predictions in the batch n. It is expected that the
model with higher accuracy on the last batch should be given
moreweight on the current batch. TheARIMAweightwA and
Online Adaptive RNN weight wR are calculated as follows:

wA = 1−
e′A

e′A + e
′
R

(13)

wR = 1−
e′R

e′A + e
′
R
→ wR = 1− wA (14)

where e′A and e′R are the previous batch MAE errors for
Rolling ARIMA and Online Adaptive RNN.

These weights ensure that the higher accuracy model from
the last batch has more influence on the final prediction PE2:

PE2 = (PA ∗ wA)+ (PR ∗ wR)

=
((PA ∗ e′R)+ (PR ∗ e′A))

(e′A + e
′
R)

(15)

3) SQUARED WEIGHTED AVERAGE
Like theweighted average, the squaredweighted average uses
the error obtained by each base learner on the previous batch
to determine the learners’ impact on the current batch. In the
weighted average, the learner impact is inversely proportional
to the error while the squared weighted average approach
increases the impact of the better model by squaring the
weighted prediction. The final prediction is calculated as
follows:

PE3 =
√
((PA ∗ wA)2 + (PR ∗ wR)2)

=

√
(PA ∗ e′R)

2 + (PR ∗ e′A)
2

(e′A + e
′
R)

(16)

4) MODEL SWITCHING
The basic idea behind this approach is that the model that
performed better on the batch n − 1 has a high probability
to perform better on the batch n. Therefore, this approach
switches between the two models based on their performance
on the last batch. This way, theweakermodel is removed from
the prediction. When there is no concept drift, it is expected
that Online Adaptive RNN will perform better due to its
ability to model complex patterns, and consequently, this
model will be chosen for the following batch. In the presence
of concept drift, Rolling ARIMA may perform better, and
thus will be selected as the model for the final prediction.

The threshold α has been added to prevent switching
between the models on a minimal difference in error. If on
batch n − 1, the accuracy of one model is higher than the
accuracy of the other model by more than a factor of α,
the better model is used for batch n. Otherwise, the same
model is used on batch n as on n − 1. The final prediction
is as follows:

PE4 =


PA, if e′R − e

′
A > α

PR, if e′A − e
′
R > α

keep last model, otherwise

(17)

where e′A and e′R are errors of ARIMA and RNN on the
previous batch. The threshold α ensures that the model is
not switched on minimal differences in error as that could
indicate a false switch alarm and may not denote a concept
drift. The value of α is determined through experiments as
shown in Subsection V-B3.
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V. EVALUATION
London Hydro, a local electrical distribution utility involved
with this project, developed the first Green Button Con-
nect My Data (CMD) environment to provide secured shar-
ing of energy data with the consumer’s consent. Enhanced
load forecasting will help London Hydro to increase return
on investment from the smart meter infrastructure and will
demonstrate the value of sharing smart meter data with 3rd
parties through a secure Green Button platform. The pro-
posed ARIMA-RNN ensemble was evaluated on proprietary
real-world data from four residential consumers obtained
through the CMD platform. Each consumer’s dataset con-
tained hourly energy consumption for three years, for a total
of 25,560 readings. Additional features such as the day of
the year, the hour of the day, and the day of the week,
were devised from the load reading date/time to assist with
modelling daily and weekly patterns. Weather-related fea-
tures were also added including temperature, wind speed
and direction, pressure, and humidity. The complete list of
features, together with an example of their value, is shown in
Table 1. All non-numeric features are converted to numbers
with one-hot encoding. Energy consumption is the target
variable. Note that we used many features and relied on
the ability of the deep learning model to extract relevant
features. To examine the differences between the four houses
in respect to the temporal patterns present in data, concept
drift analysis is conducted first. Next, the accuracy of Rolling
ARIMA, Online Adaptive RNN, and the ensemble is exam-
ined. Finally, different load forecasting models are compared
and statistical significance is examined.

TABLE 1. Features with data examples.

A. CONCEPT DRIFT ANALYSIS
The presence of the concept drift degrades the performance of
the offlineML algorithms andmay evenmake them unusable.
Although online ML techniques for load forecasting have
an advantage as they can adapt to changes in data patterns,
the examination of the impact of the concept drift on the
load forecasting accuracy has been limited [9]. Consequently,

here we first investigate the four houses with respect to the
presence of the concept drift.

Concept drift detection techniques work on different
principles and detect different types of drifts. Therefore,
to examine different drifts, three techniques have been used:
Drift-Detection Method (DDM) [39], ADaptive-WINdowing
(ADWIN) [40] and Page-Hinkley [41].

DDM, one of the commonly referenced methods, is based
on the Binomial distribution giving the probability for the
random variable representing the error. A significant increase
in the online error indicates drift occurrence. In ADWIN,
the model has an adaptive window w of a variable size:
the window grows when there is no change in the sta-
tistical properties of data and shrinks otherwise. If there
are sub-windows of w with distinct properties, the drift is
detected. Finally, Page-Hinkley keeps track of the cumulative
difference between the time series values and their current
mean. This cumulative sum is compared against its minimum
to detect the concept drift.

Fig. 7 shows the number of concept drifts detected by each
of the four algorithms for the four houses. It can be observed
that ADWIN detected a higher number of drifts for house one
than for house two, while DDM did not detect any drifts for
house one and detected five for house two. Nevertheless, with
most algorithms, houses one and two exhibit a fewer number
of drifts than houses three and four; thus, we will refer to
houses one and two as Low 1 and Low 2 and to houses three
and four as High 1 and High 2.

FIGURE 7. The number of concept drifts detected by DDM, ADWIN and
Page-Hinkley for the four houses.

Figures 8 and 9 show detected concept drifts for homes
Low 2 and High 2. Drift information is overlapped with
actual load data for those houses. DDM detects concept drift
occurrence along with the duration of the drift: sections with
the same colour indicate the data with similar distributions.
In contrast, ADWIN and Page-Hinkley only indicate the time
at which the concept drift starts: the peak location indicates
drift occurrence while the height of the peak depicts the actual
load value at that point. It can be observed that each algorithm
detected a higher number of drifts for house High 2 than for
Low 2.

The DDM algorithm especially highlights this dif-
ference by many differently coloured areas for house
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FIGURE 8. Drifts detected by DDM, ADWIN and PageHinkley - house
High 2.

FIGURE 9. Drifts detected by DDM, ADWIN and PageHinkley - house
Low 2.

High 2 indicating diverse distributions and concept drifts
throughout the time series. These concept drifts create chal-
lenges for online learning as the model must perpetually
change to capture new data patterns.

B. ACCURACY ANALYSIS FOR ROLLING ARIMA, ONLINE
ADAPTIVE RNN, AND ARIMA-RNN ENSEMBLE
Offline learning models are static and thus can be evaluated
on a static holdout set containing samples that were not used
for model training. In contrast, the assessment of the online

models is more complex as the models change over time
by learning from continuously arriving data. Still, the out-
of-sample evaluation approach must be used to achieve real-
istic estimates. We are using the holdout-like technique on
every window: W consecutive time steps with the corre-
sponding load, weather, and date/time features constitute the
independent variables and the load to predict is the dependent
variable. The sample is first used as a test sample by predict-
ing the load value and comparing it to the actual consumption.
Next, the same sample is used for the training. The process
is repeated for the next window and so on. This is similar to
prequential evaluation [9], but in our study, it is used with the
windowing approach.

With traditional machine learning, the larger the training
data set, the higher the model accuracy. For load forecasting
with window sliding techniques, a large window size typi-
cally leads to higher accuracy [13]. However, the model per-
formance under the concept drift depends on discounting or
even removing the insights obtained from the data collected
before the concept drift [42]. Thus, there are opposing needs
to increase window length for accuracy increase and to reduce
the window length for better concept drift adaptation. The
load prediction under the concept drift requires a trade-off
between the prediction accuracy on the non-drifting signal
and the accuracy while adapting to the new concepts. Conse-
quently, this subsection examines the impact of windows size
on the accuracy of Rolling ARIMA, Online Adaptive RNN,
and the proposed ARIMA-RNN Ensemble.

1) ROLLING ARIMA
As the window size increases, ARIMA has more data points
to fit the model, and therefore, it is expected that the pre-
diction accuracy will increase. However, as the window size
increases further, the ability of the model to adapt to the new
concepts may decrease as the adaptation may take longer
because of the presence of older samples in the window.

Experiments were conducted with window sizes from
100 to 600 time steps, with increments of 100. The Mean
Squared Error (MSE) for the four houses as well as the
average MSE are shown in Fig. 10. As expected, with the
increase of window size from 100 to 200, the error decreases
for most houses. With the further increase of the window
size, the error remains the same or marginally increases.
Consequently, window size 200 was selected for use in the
ensemble.

House Low 1 achieved lower errors than the other houses
for all window sizes. This could be explained by the fact
that this home has fewer concept drifts than other homes.
However, house Low 2 had the highest errors of the four
homes despite the low concept drift presence. A possible
reason is the presence of complex dependencies in data not
captured by the ARIMA model.

Fig. 11 demonstrates the ARIMA performance for an
example concept drift: the two graphs showMSE for ARIMA
with window sizes 200 and 600 overlapped with the coloured
region indicating the concept drift according to DDM.
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FIGURE 10. Impact of the window size on MSE for ARIMA.

FIGURE 11. Examples of rolling ARIMA errors for window sizes
200 and 600.

For both window sizes, the errors are low before and after
the concept drift, and the highest spikes are observed during
the concept drift. The height of the spikes during the drift is
slightly lower for window size 200 than for 600.

2) ONLINE ADAPTIVE RNN
Similar to Rolling ARIMA, Online Adaptive RNN accuracy
is affected by the window size, and therefore, the experiments
for Online Adaptive RNN were also conducted with window
sizes from 100 to 600 time steps, with increments of 100. The
architecture of the RNN remains the same through all exper-
iments: one LSTM layer with 64 hidden units. The learning
rate is tuned online, whenever IMAE drops, as described in
Subsection IV-B2.

The results are shown on Fig. 12. Whereas with ARIMA,
the error for all houses decreased with increasing the window
size from 100 to 200 (Fig. 10), for Online Adaptive RNN,

FIGURE 12. Impact of the window size on MSE for online adaptive RNN.

the error remained almost the same (Fig. 12). The aver-
age error only exhibited small oscillations, with the lowest
value achieved for window size 100. Thus, the window size
100 was used for the Online Adaptive RNN in the ensemble
experiments.

As in ARIMA experiments, house Low 2 achieved lower
error irrelevant of the window size. Whereas with ARIMA,
house Low 1 had the highest error rates (Fig. 10), with Online
Adaptive RNN, house Low 1 achieved lower errors than
house High 2 (Fig. 12). This can be explained by the fact that
Online Adaptive RNN is capable of capturing more complex
patterns than Rolling ARIMA. Overall, errors are much lower
for Online Adaptive RNN than for Rolling ARIMA.

An example of Online Adaptive RNN performance in pres-
ence of the concept drift is shown in Fig. 13: graphs show
MSE values for house High 2, window sizes 200 and 300,
with the concept drift indicated with the coloured region. This
house and window sizes were chosen for illustration as its
forecasting error increased significantly when window size
was increased from 200 to 300 as observed from Fig. 12.
At the start of the concept drift, the spikes are higher for the
window size of 300 than for 200. With a large window size,
themodel needsmore time to adjust to the concept drift. In the
later part of the concept drift, errors are lower for the window
size of 200.

Online Adaptive RNN hyperparameters were determined
by trial and error starting from the tuned model presented by
Fekri et al. [9]. Note that the learning rate, the most impor-
tant RNN hyperparameter [9], is tuned online by Bayesian
optimization.

3) ENSEMBLE ARIMA-RNN
Ensemble ARIMA-RNN used ARIMA and Online Adaptive
RNN with parameters determined individually as described
in the previous two subsections. The only ensemble variant
with additional parameters is the model switching aggrega-
tion which uses threshold α for switching between models.
As switching the models too frequently may result in the
degradation of the overall ensemble performance; this sub-
section examines the impact of the α threshold.
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FIGURE 13. Examples of online adaptive RNN errors for window sizes
200 and 600.

FIGURE 14. Impact of α value on ensemble MSE.

The experiments were conducted with α values from 1 to 3,
with increments of 0.25: the results are shown in Fig. 14.
As with Rolling ARIMA (Fig. 10) and Online Adaptive RNN
(Fig. 12), for the ensemble, house Low 2 showed the lowest
errors, and houses Low 1 and High 2 exhibited the highest
errors. The average error decreased as α increased: the homes
with higher errors exhibiting a sharper decrease in errors than
the homes with lower errors. This confirms that between the
participating models, Rolling ARIMA and Online Adaptive
RNN, on small differences in the prediction accuracy leads
to performance degradation. The α value of 3 was used in the
remaining experiments.

C. MODEL COMPARISON
This subsection compares the proposed ARIMA-RNN
ensemble with each of its constituent learning algorithms:
Rolling ARIMA and Online Adaptive RNN. Ferki et al.

FIGURE 15. Comparison of different approaches in terms of MSE.

showed that Online Adaptive RNN achieves better results
than state of the art online and offline models [9] including
deep models such as LSTM. Here we show that, in presence
of the concept drift, the Online Adaptive RNN results can be
further improved by combining Online Adaptive RNN with
Rolling ARIMA. Moreover, we compare ensemble models
with Online Linear Regression [43] and Online Bagging
Regression [44], investigate different aggregation techniques,
and examine the behaviour of the models under different
levels of concept drift.

Figures 15 and 16 compare Rolling ARIMA, Online
Adaptive RNN, online linear regression, and online bag-
ging regression with the four variants of the proposed
ARIMA-RNN Ensemble based on the type of aggregation:
average, weighted average, squared weighted average, and
model switching. Fig. 15 shows MSE while Fig. 16 shows
MAE for the four houses and the average among the four
houses.

As seen from Fig. 15, the lowest average error is achieved
by the ensemble method with simple averaging. This method
also achieved the lowest error for houses Low 1, Low 2, and
High 2, while for house High 1, simple and weighted average
achieved almost the same accuracy. The lowest errors, irrele-
vant of themodel, were achieved for house Low 2, and for this
house, there is very little difference between Online Adaptive
RNN and any ensemble model. However, for house Low 1,
three ensemble variants achieve better accuracy than Online
Adaptive RNN, with the best algorithm being the ensemble
with simple averaging.

All approaches achieved the lowest errors for house Low 2,
followed by High 1, High 2, and Low 1. When houses exhibit
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FIGURE 16. Comparison of different approaches in terms of MAE.

a higher presence of concept drift such as High 2, the per-
formance of all algorithms degrades. Also, errors for house
Low 1 were high for all algorithms what may be explained
with high variability of data. The benefit of the proposed
ensemble is the most evident for houses with higher errors,
Low 1 and High 2, when the difference between the ensemble
with simple averaging and Online Adaptive RNN increases.

Comparing MAEs among houses, Fig. 16, the ensemble
with weighted average achieved overall the best results, but
the difference from the Online Adaptive RNN is smaller than
in the case of MSE. This is caused by the difference between
the algorithms being highlighted with the squaring operation
in MSE.

Fig. 17 shows an example of how each of the considered
algorithms handles the concept drift. During the concept drift
indicated by the coloured region, each of the algorithms
exhibits spikes in the errors. The ensemble approaches show
somewhat lower spikes during the concept drift, which cor-
responds to their better accuracy as observed from Fig. 15.
Also, all algorithms experience some challenges between
time steps 250 to 300 when errors increase without the pres-
ence of concept drift. Although, the DDM did not detect the
presence of the concept drift during that segment, the increase
of errors for all six algorithms indicates that there is a differ-
ence in data between the time steps 250 and 300.

D. STATISTICAL SIGNIFICANCE
The Diebold-Mariano test introduced in Section III-D is used
to determine if the difference in forecasting performance
between algorithms is significant. The null hypothesis is: the FIGURE 17. An example of errors observed during the concept drift.
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FIGURE 18. Diebold-Mariano test: DM values for house Low1.

FIGURE 19. Diebold-Mariano test: DM values for house Low2.

two algorithms are not significantly different. Figures 18-21
show DM values for each pair of algorithms, for houses
Low1, Low2, High1, and High2.

As seen from Fig. 18 for house Low1, the DM values for
all pairs, except for the pair {Ensemble Model Switching,
Online Adaptive RNN}, are beyond the range [-1.96 1.96]
indicating that those pairs of algorithms achieve significantly
different forecasts.

Investigating DM values for house Low2 shown in Fig. 19,
the pairs {Ensemble Weighted Average, Online Adaptive
RNN}, {Ensemble SquaredWeighted Average, Online Adap-
tive RNN}, and {Ensemble Squared Weighted Average,
Ensemble Weighted Average} have the DM values in the
range of [-1.96, 1.96]; thus, for those pairs, the null hypothesis
is not rejected and the superiority of one algorithm over the

FIGURE 20. Diebold-Mariano test: DM values for house High1.

FIGURE 21. Diebold-Mariano test: DM values for house High2.

other is not significant. However, for the remaining pairs of
algorithms, the DV values are significant.

Fig. 20 shows the DM values for house High1. It can be
observed that the DM values for pairs {Ensemble Model
Switching, Ensemble Squared Weighted}, {Ensemble Model
Switching, Ensemble Weighted Average}, and {Ensemble
Model Switching, Ensemble Average} are in the range that
cannot reject the null hypothesis. In other words, one algo-
rithm is not statistically better than the other. However, all
three algorithms involved in those pairs are the variants of the
proposed ensemble and the other pairs have shown significant
differences in their performance.

Finally, for house High2, as seen from Fig. 21, all
approaches have shown significant differences in their
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performance except for pairs {Ensemble Squared Weighted
Average, Online Adaptive RNN}, {Ensemble Squared
Weighted Average, Ensemble Model Switching}, and
{Ensemble Weighted Average, Ensemble Average}.

The overall outcome of the Diebold-Mariano test indicates
that the forecasts obtained by the proposed ensembles are
significantly different from other approaches. The only algo-
rithm that comes close to the proposed ensemble is Online
Adaptive RNN: for house Low2, Online Adaptive RNN
obtains similar forecasts to Ensemble Weighted Average and
for house High2, results of Online Adaptive RNN are similar
to Ensemble Squared Weighted Average. Nevertheless, for
the remaining two houses, the results of the ensemble models
are significantly different fromOnlineAdaptive RNNmaking
the ensemble overall better solution.

E. DISCUSSION
Load forecasting plays an essential role in smart grids
because of its importance in estimating future demand, bal-
ancing production with consumption, designing demand-
response initiatives, energy budgeting, and similar. This
importance is reflected in a plethora of techniques proposed
for load forecasting. Although these techniques have been
achieving great accuracy, they are mostly static and can-
not accommodate changing patterns. Whereas this may be
acceptable when dealing with one or a few models and
re-training them as needed, it becomes unfeasible when deal-
ing with a large number of models (possibly corresponding
to individual smart meters) or fast-changing data. It is imper-
ative that we transition toward more dynamic, online models.

Even these online models can exhibit very different accu-
racy for different entities, such as the four houses considered
in this study. As shown in figures 15 and 16, the accuracy
can vary greatly even among houses, and one technique may
not be achieving the very best results for each of the houses.
This highlights the need to evaluate the proposed algorithms
on different data streams.

Typically, load forecasting approaches are compared in
terms of the average error such as MSE or MAE. As shown
in Fig. 15, the proposed ensemble achieved the best overall
average accuracy in terms of MSE. However, this average
accuracy does not provide a complete picture of the algo-
rithm’s behaviour as the error may vary greatly for different
time periods. This can be observed in figures 11, 13, and 17
for Rolling ARIMA,Online Adaptive RNN, and the proposed
ARIMA-RNN ensemble when the error values spike during
the concept drift and occasionally even outside the drift.

While manymachine learning-based load forecasting stud-
ies have been published in recent years, almost all of them
employ offline learning and, therefore, produce static mod-
els. In contrast, our Ensemble ARIMA-RNN is an online
technique capable of adapting to new data as they arrive.
Like our study, the work of Fekri et al. [9] demonstrated
the importance of moving from offline to online learning in
load forecasting. While Fekri et al. also consider concept

drift, we improve the accuracy in presence of concept drift
by employing an ensemble model.

To enable the use of load forecasting techniques on a large
number of residential consumers (or smart meters) and for
longer periods of time, the approaches must be able to adapt
fast to changes in data. This study examines the proposed
ensemble in respect to how it adapts to concept drift and
illustrates the need to evaluate the load forecasting algorithms
with respect to concept drift.

VI. CONCLUSION
Forecasting on a regional level as well as forecasting for
schools and offices have been achieving high accuracy
because data patterns are well defined and consistent. In con-
trast, residential electricity consumption data exhibits high
variability and the presence of concept drift. Consequently,
for such consumers, online learning is becoming paramount
as the models must adapt to newly arriving data.

This paper proposes combing ARIMA and RNN for load
forecasting under the concept drift. The RNN part is using
Online Adaptive RNN to capture time dependencies and
achieve online learning. The ARIMA component makes use
of the rolling technique to improve the ensemble’s adaptation
to the concept drift. The experiments on four homes with dif-
ferent degrees of concept drift show that the proposed ensem-
ble approach outperforms its underlying algorithms, Rolling
ARIMA andOnline Adaptive RNN.Moreover, the evaluation
demonstrates the importance of examining the performance
of the load forecasting techniques on different data sets, with
different degrees of concept drift and the need to examine,
not only the average error but also the errors occurring during
data drifts.

As currently there are very few studies employing online
learning techniques for load forecasting, these techniques
need to be further examined in diverse scenarios such as
long-term forecasting and aggregated load forecasting. Our
study considered concept drift, and even investigated differ-
ent degrees of concept drift; however, we did not quantify
concept drift or the performance during the drifting period.
Future work will investigate establishing techniques and met-
rics for evaluating the performance of algorithms under the
presence of concept drift. Moreover, the neural network will
be examined as a way of merging individual algorithms.

REFERENCES
[1] U. S. Energy Information Administration. (2019). International Energy

Outlook. [Online]. Available: https://www.eia.gov/todayinenergy/detail.
php?id=41433

[2] Y. Cheng, U. Awan, S. Ahmad, and Z. Tan, ‘‘How do technological inno-
vation and fiscal decentralization affect the environment? A story of the
fourth industrial revolution and sustainable growth,’’ Technol. Forecasting
Social Change, vol. 162, Jan. 2021, Art. no. 120398.

[3] Y. Hong, Y. Zhou, Q. Li, W. Xu, and X. Zheng, ‘‘A deep learning method
for short-term residential load forecasting in smart grid,’’ IEEE Access,
vol. 8, pp. 55785–55797, 2020.

[4] Y. Wang, Q. Chen, T. Hong, and C. Kang, ‘‘Review of smart meter
data analytics: Applications, methodologies, and challenges,’’ IEEE Trans.
Smart Grid, vol. 10, no. 3, pp. 3125–3148, Mar. 2018.

99006 VOLUME 9, 2021



R. K. Jagait et al.: Load Forecasting Under Concept Drift: Online Ensemble Learning

[5] D. Gholamiangonabadi, N. Kiselov, and K. Grolinger, ‘‘Deep neural net-
works for human activity recognition with wearable sensors: Leave-one-
subject-out cross-validation for model selection,’’ IEEE Access, vol. 8,
pp. 133982–133994, 2020.

[6] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz,
‘‘Machine learning with big data: Challenges and approaches,’’ IEEE
Access, vol. 5, pp. 7776–7797, 2017.

[7] E. V. Z. E. Indr liobait, M. Pechenizkiy, and J. Gama, ‘‘An overview of
concept drift applications,’’ in Proc. Big Data Anal., New Algorithms New
Soc., 2016, pp. 114–191.

[8] H.M. Gomes, J. Read, and A. Bifet, ‘‘Machine learning for streaming data:
State of the art, challenges, and opportunities,’’ ACM SIGKDD Explor.
Newslett., vol. 21, no. 2, pp. 6–22, Feb., 2019.

[9] M. N. Fekri, H. Patel, K. Grolinger, and V. Sharma, ‘‘Deep learning for
load forecasting with smart meter data: Online adaptive recurrent neural
network,’’ Appl. Energy, vol. 282, Jan. 2021, Art. no. 116177.

[10] T. Ahmad, H. Zhang, and B. Yan, ‘‘A review on renewable energy and
electricity requirement forecasting models for smart grid and buildings,’’
Sustain. Cities Soc., vol. 55, Apr. 2020, Art. no. 102052.

[11] A. A. Mamun, M. Sohel, N. Mohammad, M. S. H. Sunny, D. R. Dipta,
and E. Hossain, ‘‘A comprehensive review of the load forecasting tech-
niques using single and hybrid predictive models,’’ IEEE Access, vol. 8,
pp. 134911–134939, 2020.

[12] G. Memarzadeh and F. Keynia, ‘‘Short-term electricity load and price
forecasting by a new optimal LSTM-NN based prediction algorithm,’’
Electr. Power Syst. Res., vol. 192, Mar. 2021, Art. no. 106995.

[13] L. Sehovac and K. Grolinger, ‘‘Deep learning for load forecasting:
Sequence to sequence recurrent neural networks with attention,’’ IEEE
Access, vol. 8, pp. 36411–36426, 2020.

[14] H. Eskandari, M. Imani, and M. P. Moghaddam, ‘‘Convolutional and
recurrent neural network based model for short-term load forecasting,’’
Electr. Power Syst. Res., vol. 195, Jun. 2021, Art. no. 107173.

[15] Y. Tian, L. Sehovac, and K. Grolinger, ‘‘Similarity-based chained trans-
fer learning for energy forecasting with big data,’’ IEEE Access, vol. 7,
pp. 139895–139908, 2019.

[16] X. Tang, Y. Dai, Q. Liu, X. Dang, and J. Xu, ‘‘Application of bidirectional
recurrent neural network combined with deep belief network in short-term
load forecasting,’’ IEEE Access, vol. 7, pp. 160660–160670, 2019.

[17] X. Tang, Y. Dai, T.Wang, and Y. Chen, ‘‘Short-term power load forecasting
based on multi-layer bidirectional recurrent neural network,’’ IET Gener.,
Transmiss. Distrib., vol. 13, no. 17, pp. 3847–3854, Sep. 2019.

[18] P. Lv, S. Liu,W. Yu, S. Zheng, and J. Lv, ‘‘EGA-STLF: A hybrid short-term
load forecasting model,’’ IEEE Access, vol. 8, pp. 31742–31752, 2020.

[19] H. Shi, M. Xu, and R. Li, ‘‘Deep learning for household load forecasting—
A novel pooling deep RNN,’’ IEEE Trans. Smart Grid, vol. 9, no. 5,
pp. 5271–5280, Sep. 2018.

[20] M. Dong and L. Grumbach, ‘‘A hybrid distribution feeder long-term load
forecasting method based on sequence prediction,’’ IEEE Trans. Smart
Grid, vol. 11, no. 1, pp. 470–482, Jan. 2020.

[21] L. Wang, S. Mao, B. M. Wilamowski, and R. M. Nelms, ‘‘Ensemble
learning for load forecasting,’’ IEEE Trans. Green Commun. Netw., vol. 4,
no. 2, pp. 616–628, Apr. 2020.

[22] O. Gungor, J. Garnier, T. S. Rosing, and B. Aksanli, ‘‘LENARD:
Lightweight ENsemble LeARner for MeDium-term electricity consump-
tion prediction,’’ in Proc. IEEE Int. Conf. Commun., Control, Comput.
Technol. Smart Grids (SmartGridComm), Nov. 2020, pp. 1–6.

[23] M. Massaoudi, S. S. Refaat, I. Chihi, M. Trabelsi, F. S. Oueslati, and
H. Abu-Rub, ‘‘A novel stacked generalization ensemble-based hybrid
LGBM-XGB-MLP model for short-term load forecasting,’’ Energy,
vol. 214, Jan. 2021, Art. no. 118874.

[24] J. J. Sánchez-Medina, J. A. Guerra-Montenegro, D. Sánchez-Rodríguez,
I. G. Alonso-González, and J. L. Navarro-Mesa, ‘‘Data stream mining
applied to maximum wind forecasting in the canary islands,’’ Sensors,
vol. 19, no. 10, p. 2388, May 2019.

[25] T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer, and K. Funaya, ‘‘Robust online
time series prediction with recurrent neural networks,’’ in Proc. IEEE Int.
Conf. Data Sci. Adv. Analytics (DSAA), Oct. 2016, pp. 816–825.

[26] S. Madireddy, P. Balaprakash, P. Carns, R. Latham, G. K. Lockwood,
R. Ross, S. Snyder, and S. M. Wild, ‘‘Adaptive learning for concept drift
in application performance modeling,’’ in Proc. 48th Int. Conf. Parallel
Process., Aug. 2019, pp. 1–11.

[27] J. Vexler and S. Kramer, ‘‘Integrating LSTMs with online density estima-
tion for the probabilistic forecast of energy consumption,’’ in Proc. Int.
Conf. Discovery Sci., 2019, pp. 533–543.

[28] F. Liang, W. G. Hatcher, G. Xu, J. Nguyen, W. Liao, and W. Yu, ‘‘Towards
online deep learning-based energy forecasting,’’ in Proc. 28th Int. Conf.
Comput. Commun. Netw. (ICCCN), Jul. 2019, pp. 1–9.

[29] L. Von Krannichfeldt, Y. Wang, and G. Hug, ‘‘Online ensemble learning
for load forecasting,’’ IEEE Trans. Power Syst., vol. 36, no. 1, pp. 545–548,
Jan. 2021.

[30] B. S. Prakash, K. Sanjeev, R. Prakash, and K. Chandrasekaran, ‘‘A survey
on recurrent neural network architectures for sequential learning,’’ in Soft
Computing for Problem Solving. Singapore: Springer, 2019, pp. 57–66.

[31] J. Contreras, R. Espinola, F. J. Nogales, and A. J. Conejo, ‘‘ARIMAmodels
to predict next-day electricity prices,’’ IEEE Trans. Power Syst., vol. 18,
no. 3, pp. 1014–1020, Aug. 2003.

[32] A. Rahman and B. Verma, ‘‘A novel ensemble classifier approach using
weak classifier learning on overlapping clusters,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2010, pp. 1–7.

[33] H. Drucker, C. Cortes, L. D. Jackel, Y. Lecun, and V. Vapnik, ‘‘Boost-
ing and other ensemble methods,’’ Neural Comput., vol. 6, no. 6,
pp. 1289–1301, 1994.

[34] M. Graczyk, T. Lasota, B. Trawiński, and K. Trawiński, ‘‘Comparison of
bagging, boosting and stacking ensembles applied to real estate appraisal,’’
in Proc. Asian Conf. Intell. Inf. Database Syst., 2010, pp. 340–350.

[35] H. Chen, Q.Wan, andY.Wang, ‘‘Refined diebold-mariano test methods for
the evaluation of wind power forecasting models,’’ Energies, vol. 7, no. 7,
pp. 4185–4198, Jul. 2014.

[36] P. Xu, M. Aamir, A. Shabri, M. Ishaq, A. Aslam, and L. Li, ‘‘A new
approach for reconstruction of IMFs of decomposition and ensemble
model for forecasting crude oil prices,’’ Math. Problems Eng., vol. 2020,
Oct. 2020, Art. no. 1325071.

[37] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: http://arxiv.org/abs/1502.03167

[38] S. Ahmed, M. R. I. Razib, M. S. Alam, M. S. Alam, and M. N. Huda,
‘‘Ensemble approach for improving generalization ability of neural net-
works,’’ in Proc. Int. Conf. Informat., Electron. Vis. (ICIEV), May 2013,
pp. 164–171.

[39] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, ‘‘Learning with drift
detection,’’ in Proc. Brazilian Symp. Artif. Intell., 2004, pp. 286–295.

[40] I. Frías-Blanco, J. del Campo-Ávila, G. Ramos-Jiménez,
R. Morales-Bueno, A. Ortiz-Díaz, and Y. Caballero-Mota, ‘‘Online
and non-parametric drift detection methods based on Hoeffding’s
bounds,’’ IEEE Trans. Knowl. Data Eng., vol. 27, no. 3, pp. 810–823,
Mar. 2015.

[41] J. Gama, I. Žliobaite, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, ‘‘A survey on concept drift adaptation,’’ ACM Comput.
Surv., vol. 46, no. 4, pp. 1–37, 2014.

[42] A. Liu, G. Zhang, and J. Lu, ‘‘Fuzzy time windowing for gradual concept
drift adaptation,’’ in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE),
Jul. 2017, pp. 1–6.

[43] M. Halford, G. Bolmier, R. Sourty, R. Vaysse, and A. Zouitine. (2019).
Creme, a Python Library for Online Machine Learning. [Online]. Avail-
able: https://github.com/MaxHalford/creme

[44] N. C. Oza, ‘‘Online bagging and boosting,’’ in Proc. IEEE Int. Conf. Syst.,
Man Cybern., vol. 3, Oct. 2005, pp. 2340–2345.

RASHPINDER KAUR JAGAIT received the
B.Eng. degree from the PEC University of Tech-
nology, India, and the M.Eng. degree in software
engineering from Western University, London,
ON, Canada, with a focus on collaborative special-
ization in artificial intelligence (CSAI). She was a
Software Developer at Goldman Sachs, India, and
GroupBy Inc., Canada. She is currently a Software
Developer at Amazon. Her current research inter-
ests include machine learning, deep learning, data

analytics, and big data.

VOLUME 9, 2021 99007



R. K. Jagait et al.: Load Forecasting Under Concept Drift: Online Ensemble Learning

MOHAMMAD NAVID FEKRI received the B.Sc.
degree in software engineering from Isfahan Uni-
versity, Iran, and the M.Sc. degree in artificial
intelligence from the Iran University of Science
and Technology, Iran. He is currently pursuing the
Ph.D. degree in software engineering withWestern
University, Canada. His current research interests
include online machine learning, federated learn-
ing, and the IoT.

KATARINA GROLINGER (Member, IEEE)
received the B.Sc. and M.Sc. degrees in mechan-
ical engineering from the University of Zagreb,
Croatia, and the M.Eng. and Ph.D. degrees in
software engineering from Western University,
Canada. For over 20 years, she has been involved
in the software engineering area in academia and
industry. She is currently an Assistant Profes-
sor with the Department of Electrical and Com-
puter Engineering, Western University. Her cur-

rent research interests include machine learning, sensor data analytics, data
management, and the IoT.

SYED MIR received the B.Sc. degree in com-
puter science from Western University. He is cur-
rently theVice President of Corporate Services and
CIO, London Hydro, where he is responsible for
customer services, meter services, and informa-
tion technology. He is the Chair of Green Button
Alliance. He has vast experience and has served in
various roles in several companies in the energy
sector. His research interests include cloud com-
puting, mobility, and smart grids.

99008 VOLUME 9, 2021


