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ABSTRACT Particle swarm optimization (PSO) is a swarm intelligence-based metaheuristic algorithm
inspired by the natural behavior of birds flocking or fish schooling. The PSO’s main advantages are its
ease of implementation and a small number of fine-tuning parameters. However, the major drawbacks of an
existing PSO are its premature convergence and the lack of a balance of exploration and exploitation searches
in the search space. To address the aforementioned problems, a new concept known as a smart particle swarm
optimization (SPSO) process is introduced and implemented. The smart particle that leads the swarm in the
proposed concept has eidetic memory behavior. The smart particle mainly works under the principles of a
convergence factor (CF) technique, which integrates the memorization of particles positions, comparison,
and leader declaration for the best optimal solution. Additionally, CF uses a particle position vector instead of
a particle fitness or mutation to increase the exploration capability in the search space. The TEAM Workshop
Problem 22, a super conducting magnetic energy storage (SMES) system; and some well-known benchmark
optimization test functions are numerically solved to verify the efficacy of the proposed SPSO. The SPSO
finds a better optimal solution than the other tested algorithms, particularly in the initial computational
evaluation of the generation according to numerical experiments and case study analysis.

INDEX TERMS Smart particle, position vectors of particles, electromagnetic device, particle swarm

optimization, global optimization.

I. INTRODUCTION

Inverse problems are frequently encountered in the design
of electromagnetic devices and are expressed mathematically
as a constrained mathematical programming of a multimodal
cost function. Since deterministic algorithms are inefficient
in achieving the global optimal solution for such problems,
several researchers have focused on stochastic and heuristic
algorithms in the last two decades. In this regard, metaheuris-
tic optimization algorithms provide more advantages than the
previously employed approaches.

Metaheuristic optimization algorithms have a strong
global search capability, do not require gradient informa-
tion, and provide precise solutions early in the evolution-
ary process [1]. There are several metaheuristic algorithms
being available to find the global best solution, including
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swarm intelligence algorithms, human-based algorithms,
physics-based algorithms, including simulated annealing
algorithm, particle swarm optimization (PSO), glowworm
swarm optimization, cuckoo search algorithm, genetic algo-
rithm, ant colony optimization, artificial bee colony, and
differential evolution algorithms. Swarm intelligence (SI)
algorithms have been introduced, using some searching
mechanisms inspired by the cooperative actions of region-
alized and self-organized structures such as insects and ani-
mals [2]. Self-planned is defined as a system’s ability to
progress its representatives or gears into a logical form in
the absence of external support. SI algorithms with a strong
global search ability have thus been applied successfully to
solve different engineering design problems. Nonetheless,
no metaheuristic algorithm, which can provide a universal
solution to all engineering design problems, exists.

The PSO is also based on swarm intelligence principles,
which simulates the societal behaviors of fish schooling
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or bird flocking. The algorithm was first introduced [3]
in 1995 by James Kennedy and Russell C. Eberhart. It is a
well-known algorithm that is extremely useful in many fields
of engineering and science. In a PSO, each particle adjusts its
drifting speed energetically based on its and its colleagues’
flying practices. Each particle adjusts its position based on
its current position, velocity, and the distances between its
current position and the personal best position (Pb) and
the current position distance from the global best position
(Gb) attained by the global best particle. The concept of
neighborhood in PSO differs from that of other optimization
algorithms in that it is fixed and does not change as frequently
as it does in other metaheuristics algorithms [4].

The basic equations for position and velocity updating in a
PSO are,

Vitd = Vitd +c1.11 .(bed — X,td) + C2.r2.(bed — Xitd) (1)
Xitd = Xitd + Vitd (2)

where i represents the i particle, 7 is the generation index,
d is the d™" dimension, Pb; is the best position achieved by
particle i, Gb; is the best position achieved by all particles.
V}, is the velocity of the i particle, X}, is the position of
the i particle. cq(cognitive) and c»(social) are two learning
parameters, c; trying to pull the particle towards the Pb and
¢ pushing the particles towards Gb, r| and r; are two random
numbers lies between 0 and 1.

Obviously, PSO solves problems through social interaction
rather than using the ramp of the problem being optimized.
It means that, unlike classical optimization techniques, there
is no requirement for the problem to be differential in a
PSO [5]. A PSO first initializes the population, then calcu-
lates the fitness value of each particle, updates Pb and Gb
in the third step, and adjusts the velocity and position of all
particles in the fourth step. The second, third, and fourth steps
are repeated until a stopping criteria is met [6]-[8]. The PSO
has many advantages over other swarm-based intelligence
algorithms: it is very simple to implement, has few param-
eters, and is very effective in global searching. As a result of
its ability to search in the entire space for high-dimensional
problems, PSO has become one of the most popular and com-
petent optimization algorithms. As a result, the PSO has been
recognized as a strong stochastic algorithm based on swarm
measurement and aptitude. PSO can be used to optimize
the unbalanced problems that remain piercing and change
over time [9]-[11]. However, in PSOs, the three parameters
(c1, c2 and W) should be carefully determined to maintain
the stability and robustness of the algorithm. Consequently,
it is possible to correct parameter values that are not opti-
mal, preventing the algorithm to prematurely converge in the
search space to the local optimal region. It has a propensity to
outcome in a fast and early convergence in average optimal
facts; it has slow convergence in a sophisticated area of
searching [12], [13]. The key issue in the PSO algorithm is
its premature convergence, especially when it is used in deal-
ing with complex design problems. To tackle this problem,
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various modifications are made by researchers in different
fields like complex networks clustering [14], artificial neu-
ral network [15], power-system [16], signal-processing [17],
steel recycling process [18], control-systems [19], antenna
design [20], deep-learning [21], EEG signals [22], internet
of things [23], error evaluation [24], face recognition sys-
tems [25], energy grid [26], and electromagnetics [27]—-[29].

In [30], three enhancements have been reported, uniform
initialization for avoiding the aggregation of particles at ini-
tial stage. Cosine inertia weight is introduced to adopt a mul-
tilevel approach to balance the exploration and exploitation
in variable-period. A rank-based policy to regulate the inertia
weight of each particle to improve the group’s proficiencies
of exploration and exploitation at the similar period is also
presented.

The constriction factor-based particle swarm optimization
(CFPSO) algorithm is being used in the study to analyze mini-
mum zone form errors, which including straightness, circular-
ity, flatness, and cylindricity. The addition of the constriction
factor contributes in the CFPSO’s convergence attribute being
accelerated. For each form issue, a simple minimum zone
objective function is mathematically formulated and finally
optimized using the proposed CFPSO [31]. PSO with moving
particles (MP-PSO) has been reported [32], where some parti-
cles have the ability to move on a scale-free network and also
variate the collaboration form thru the search space. MP-PSO
indicates superior a flexibility and a diversity. The arrange-
ment of the particles may well change adaptively for the
purpose to balance the exploration and exploitation towards
outsized level. By minimizing geometrical dimensioning and
to tolerance (GD & T) error, the author proposed a particle
swarm optimization (PSO) strategy to maximize the geomet-
rical accuracy of additive manufacturing (AM) parts. Bed
temperature, nozzle temperature, infill, and layer thickness
are employed as inputs, while circularity and flatness error
in the ABS part are used as responses. In terms of process
parameters as design factors, a mathematical model for circu-
larity and flatness error is built using regression methodology.
Minimization of circularity and flatness are formulated as
a multi-objective, multi-variable optimization problem that
is optimized using the particle swarm optimization (PSO)
algorithm and thus improves the geometrical accuracy of
the ABS part for the optimum search of the AM process
parameter values [33].

The most prominent deviations in the PSO is the inclusion
of an inertia weight W, which is used to balance the con-
tribution rate of the particles. In the case of higher inertia
weight, it conveys particle to exploration and a leaser inertia
weight particle drives the search towards exploitation was
introduced in 1998 by Shi, Yuhui, and Russell Eberhart [4].
The main aim of this work aim is to control the impact of
the previous velocity and to control the particle’s behavior
of exploration as well as exploitation. Introduction of the
inertia-weight improves the performance of PSOs in the terms
of convergence speeds and superiority in results [31]. After
the inclusion of inertia-weight (W), the velocity equation is
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updated as
Vi =W.VL +ci.r.(Pbl,— X)) +cr.rn (G, —XE)  (3)

1

In [35], the authors advised that the initial value of W
must be higher than 1.0, it should be ultimately decreased
till lower than 1. The objective of the work was to encourage
exploration at the initial phase and exploitation may occur at
the finishing stage. In [36], another factor of K is introduced
in directive to grow the speed of convergence and to sidestep
particles from sendoff the searching space, and this concept
is called constriction expansion mathematically expressed as,

VL, =KI[V., + c1.r.(Pbly — XL)+c2.r (Gl — X1 (4)

Moreover, for inverse problems in electromagnetic design
optimizations, a standard testing electromagnetic analysis
benchmark “TEAM workshop problem 22 is used to check
the robustness and output of numerous optimization algo-
rithms [37]-[39]. TEAM problem 22 is the optimal design of
a superconducting magnetic energy storage (SMES) device,
to stock substantial energy in the magnetic field via coil
planning [40].

The rest work of this paper has been organized as fol-
lows; Section II contributes to the previously related work.
Section IIT presents the novel SPSO. Section IV numerical
results and comparisons, section V results and discussion,
section VI statistical analysis, where section VII is the con-
clusion of the paper.

Il. THE PREVIOUSLY RELATED WORK

To understand more clearly our proposed approach, we pre-
sented a review of the previously published work in the
following paragraphs. In [41], authors adopt the multi-level
Gaussian mutations with different standard deviations for
the promotion of searching capacity in the feasible region
to ensure the speed of convergence and to avoid prema-
ture convergence. To overcome the premature convergence,
the Euclidean distance method has been reported with a
dynamic inertia weight for each particle in [42]. In [43],
the author describes a new modified particle swarm opti-
mization (MPSO) technique for evaluating geometric prop-
erties that define the form and function of planar surfaces.
Straightness, flatness, perpendicularity, and parallelism are
the four geometric properties of planar surfaces that are split
into four components. For each planar surface geometric
characteristic, a non-linear minimal zone objective function is
mathematically developed. In the APSO, an adaptive method
is applied on the inertia weight to resolve the issue of diversity
damaging and to control the premature convergence. Discrete
optimum aptness rate of a particle which has been selected
from swarm randomly is compared with the current particle,
the greater one is used to apprise the velocity of the particle
to more identify the particles which are dropping into local
optimum [44]. Hybrid PSO with a variable neighborhood
search optimization technique is recorded in [45] to show the
prominent result and the best solution that quickly converge
to global minima without being trapped in local optima. The
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said approach increases the localization precision, as it com-
bines the key features and real abilities of PSO and variable
neighborhood search (VNS). Another innovation is that the
MPSO method uses a modified search equation to generate
new swarm positions and fitness solutions. For the case of
contactless laser scanning, this study models the impact of an
object’s morphology on the accuracy of the scanned data. Two
crucial process parameters are defined using the morphology
of scanned objects, namely the scanning angle and the dis-
tance of the laser beam from the component surface [46].
In [47], a modified-PSO is advised with the mechanism
to update robust and introduced chaos base initialization.
The inclusion of a damping-factor (@) to a PSO with a
cooperation-mechanism for finding the global optimum in
high dimensional and large-scale spaces has been reported
in [48].

In the global particle swarm optimization (GPSO),
the author worked on classical PSO for the purpose to
improve the convergence speed [49]. They incorporated a
new parameter Ep.;; (Experience) and update the velocity
formula of classical PSO. The new parameter is able to hold
the information of the previous generation and this can be
used for searching a global solution to be more accurate. The
value of G,y for any generation at any variable (dimension)
will be selected randomly and will be used for the value of
the velocity. Hence this variable is called Ep,y. The value of
the new parameter is the average value of ¢y and ¢, in “(6)”

Vik+1 = WkVik + cy.11;- (P]l;est—i — Xlk) + .17
X (G]lgextfi - sz) + C3'r3i‘(El]J<est - Xik) Q)

In “(5)”, the last term is called the Improvement Factor
(IF). This IF is able to help the velocity for the positions of
next particles. Thus, GPSO has shown greater performances
as compared to existing PSOs, especially when the problem
is high dimensional. The Improvement Factor for the current
generation is

IF = c3.r3i. (Gl x2 = XF) 6)
where c3 = [%]

RMPSO with the application of a gene regulatory network
has been reported in [50]. In the said work, the fitness value of
each particle has been calculated by “(2)” and *“(3)”. When
the personal best particle is equal to that of the global best,
in such a situation it has been observed from the literature
to retain the current personal best individuals and ignore the
newly obtained global best particle. In RMPSO, the author
said that the current Pb and Gb having equal fitness value
but they may be of different compositions. Hence, a repos-
itory of solutions having the same value of fitness as like a
current Pb and they may be similar repository corresponding
to the existing Gb value. RMPSO concept introduced two
repositories Ppegs_rep and Gpes_rep for the purpose of storing
the solutions corresponding to Pb and Gb respectively. They
updated the repositories in two conditions: ““first update the
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position of the particle as per “(2)” and *“(3)”, then the
value of the fitness will be intended and will be compared
with Pb and Gb. “Secondly after updating the position of the
particle by applying each mutation mechanism on the current
solution, the value of the fitness will be intended and then will
be compared with Pb and Gb. If the current Pb is poorer than
the new one in fitness, clear the current Pb and add the new
one to Gpegr_rep- If new fitness value is the same as that of Gb,
it needs to increase the size of the repository and to add the
new one to Gpesr_rep- The repository comprehends distinctive
results having an identical value of fitness and the matching
solutions will be castoff. The Pb from Ppegs_rep and Gb from
Gpesi_rep Will be randomly selected. In the aforementioned
work they did a mutation process as per Figure 1.

Initially Gbest mutated with Gaussian mechanism
Gbest,,,(d) = Gbesty(d)
+ (Xmax(d)
— Xmin(d)). Gaussian(o, h)

1
ht+1=ht_( )

Gbest mutated with Cauchy mechanism
Gbest,,,(d) = Gbesty(d)

+ (Xmax(d)
— Xmin(d)). Cauchy(o, s)

st+1 — st _ ( 1 )
tmax
Gbest mutated with Opposition based (Dimension
wise) mechanism
Gbest 3 (d) = Xmin(d) - Xmax(d)
— Gbestg (@)
All Gbest mutated with Opposition based
mechanism
Gbest,y = Xnin — Xmax — Gbest,
Gbest mutated with DE based, where X; & X,
having unequal finesses.
Gbest,5(d) = Gbest, + F(X; — X,)

FIGURE 1. 5-Successive mutations in ELPSO.

The inclusion of a swarm leader as a new feature to the
classic PSO was introduced in [51]. The author included some
new mutation techniques with 5-staged successive mutations
in the enhanced leader PSO (ELPSO) to overcome the stated
problem, due to premature convergence in existing PSO,
which is characterized as the convergence of Pb in relation
to Gb. In the said work the swarm leader plays a key role
and 5-successive mutation techniques are incorporated and
checked on each generation of the swarm. The current Gb
of the swarm has been replaced by a new one if the new Gb
coming with better value, thus the leader is enhanced and
trying to pull all the particles in the direction of a promising
region of the searching. In directive to have fewer exploration
aptitudes they applied various mutation strategies such as
Gaussian, Cauchy, Opposition-based and DE-based to find
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the leader with better objective value, and the same process
will continue n times in the anticipation to bargain better
leader, as shown in Figure 1.

In order to solve the real world optimization problems,
a novel idea called modified particle swarm optimization
with effective guides (MPSOEG) [47] is proposed as a con-
tinuation of the leader principle in PSO. An optimal guide
creation (OGC) module has been added to implement the
proposed idea. The key suggestion of the new mechanism is
to maintain a good balance between particle exploration and
exploitation searches while avoiding the computational time
of traditional PSO. The global best particle plays an important
role in leading the swarm to the global optimum solution
when the problem is simple and unimodal. When working
on multimodal complex problems, PSO has a problem with
premature convergence. A new global best particle is created
in the OGC module. The novel global best particle acts
as a leader for the other particles, sharing knowledge with
the learning parameters to boost the evolution process. The
proposed module will control particles from local optima,
especially those falling into local optima; these particles will
be led by the global best leader ““global exemplar.”” The global
exemplar is capable of responding to the speed or velocity of
particles that are about to stagnate. Furthermore, the popu-
lation learns or shares knowledge independently to monitor
particle scattering positions and inspire candidates to the best
solution. The difference between Pb and Gb is high at the start
of the optimization process, as we can see from the veloc-
ity modified equation. At the end of the evolution process,
the majority of the particles are stagnant, and their velocity
which appears to converge to zero, causing the algorithm to
converge prematurely. To address the aforementioned issue,
the “global exemplar” has been implemented in the OGC
module with the goal of balancing the swarm’s exploration
and exploitation searches and dynamically completing the
optimization method based on the spatial location of two
adjacent neighbors of the global best particle. To solve the
second major flaw in a conventional PSO of reducing diver-
sity at the end of the optimization process, the said work
incorporates a local leader ““local exemplar” who updates the
personal best position of its neighbor’s particles and guides
the particle through the search space. For all particles stuck
in local minima, the local exemplar provides an alternative
direction in the search path. The global and local both exem-
plars are changed sequentially based on the search routine
of each particle of the novel idea to better track its search
progress. The novel global best leader provides information
to the other particles in the neighborhood in order to get out of
the local optimal field. During the PSO development phase,
the proposed module increases particle velocity and prevents
stagnation. The proposed algorithm, which is capable of
solving optimization problems with less computational cost
and showing more robustness and stability, was compared
to other variants of PSO using standard mathematical test
functions, and the author showed a wide range of numerical
and simulation performance.
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To summarize, while a lot of efforts has gone into devel-
oping different PSO variants, current PSOs are still unable
to solve all engineering design problems. We introduced a
novel strategy to track the premature convergence, to make
the PSO more robust, and to increase its convergence speed
in the current article.

IIl. SMART PARTICLE SWARM OPTIMIZATION

As explained previously, in recent decades, several novel
versions of the PSO have been published in the literature. The
majority of them have strong searching abilities, but due to
the existence of the static positions of the personal best and
global best particles, they are stuck in local minima during
the early searching generation. Since the basic parameters in
traditional PSO are constant, the algorithm converges to the
local optimum region or space. Consequently, the standard
PSO algorithm has a premature convergence problem for
complex, dynamic, and multimodal problem. The proposed
method’s core concept is to strike a balance between the par-
ticles’ global and local search abilities while also increasing
the individual diversity at the end of the optimization process.
A newly designed algorithm Particle swarm optimization
with smart particles, is thus introduced to improve PSO’s
performance. In the proposed modified algorithm, we devise
a new technique known as the convergence factor (CF). The
convergence factor has three steps to train the particle to
have a smart behavior: memorization, comparison, and leader
declaration.

1) Memorization, or eidetic memory behavior, enables
particles to remember the last position X;_; of all particles,
which is then stored in the memory array for possible use by
the entire swarm.

2) Comparison, in the comparison step, the present particle
position X; are compared to the previous position X;_.

The comparison process mathematically expressed as

Xi if X; is better than X;_
X = i if llS. etter than X;_ N
X;_1 otherwise

If the present position X; towards an optimal solution is
better (whose fitness value is smaller/converges quickly), it
replaces the previous one; otherwise, it retains the earlier
value.

3) Leader declaration, on the basis of the fittest values of
the Ppes, a smart particle is declared as a leader (smart). For
all generations, Py, particles are placed in the memory array,
and the fittest particle is declared to lead the swarm to the
global minima.

The main aim of our proposed work is to ensure that
the best particle survives in future generations and acts as
a leader, guiding all trapped particles through the evolution
process. As a consequence, the entire swarm will eventually
converge to the global best solution. The CF has improved the
PSO’s results during the SPSO evolution process. Accord-
ing to this approach, the smart particle acts as a superior
leader, capable of improving the search process in the same
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FIGURE 2. Flow-chart of SPSO algorithm.

way that a good leader may improve an organization’s or
society’s efficiency. Furthermore, previous algorithms were
unable to generate a satisfactory result in a large population;
they typically used a limited population size, but the proposed
algorithms have also shown good results in a large population.
When compared to previous strategies, the particle following
the proposed strategy will reach the global minima faster,
especially in the initial generations.

In comparison to other well-known existing approaches
and other optimal algorithms, the proposed algorithm is sim-
ple to implement and takes less time. As shown in the next
segment, SPSO can produce more consistent results across
all 100-runs. This is evident from the objective function
values, which show that the values of the objective obtained

VOLUME 9, 2021



R. A. Khan et al.: Modified PSO With Smart Particle for Inverse Problems in Electromagnetic Devices

IEEE Access

TABLE 1. High dimensional classical benchmark functions.

Function’s Name Mathematical Definition Range
N [-5.12,5.12]
Rastrigin filx) = Z x? — 10 cos(2mx;) + 10
=1
" 2 [-5.12,5.12]
Sphere fo(0) = 4 Xi
i=1
N -100,10
fa(X)=x12+1oﬁzx.2 [-100,100]
Bent Cigar - i
=
N -100,100
fuG) = 1047 ) 32 [-100,100]
Discus ‘ i
=2
N N e * [-5,10]
Zakharov fs(x) = ZX,-Z + (Z 0.5ixi> + (Z 0.5iXi>
=1 i=1 i=1
N 2 5 [-10,10]
=- -1 Z i(2x% —x; — 1
Dixon-Price fo() G -D*+ L, i(2x; —x;— 1)
=
N [-5,10]
Rosenbrock f7 () = Z[loo(le —x3)?+ (x; — 1)
i=1
1
z 1 [-100,100]
053" x2 4+ Y™ x;
HappyCat fa00) = Z w2 —n| ¢ @OLEm X TR XD
i=1
1
= n 2 [-100,100]
0.5 x;2 + 3" «x;
HGBat fg(x) = (z xi2)2 _ (Z xi)z + ( 21—1 X ZL,1 x;) 405
i=1 i=1 n
1 D 1 D [-15,30]
Ackley fro(x) = =20 exp | —0.2 Ez x? |- exp(Ez cos(2mx;) +20 + e
i=1 i=1
Schwefel’s Problem 1.2 fi;(x) = X2 (Xy 2)? + foias,» 2 = % — 0 and fyiq5,= -450 [-100,100]°
[-100,100]°

Griewank

z=x—o0and fyig,=-180

1 n n

.

£ = g5 2%~ | 105 () + 14 foae
i=1 i=1 t

by the proposed algorithm are better to those obtained from
other PSO variants. The flowchart of the proposed SPSO
algorithm’s novel strategy is shown in Figure 2.

IV. NUMERICAL RESULT AND COMPARISON

A. BENCHMARK TEST FUNCTION

Twelve well-known benchmark functions are chosen to test
the proposed SPSO algorithm’s performance, and the results
are then compared to those of other PSO variants, i.e., GPSO,
RMPSO, ELPSO, and MPSOEG. A list of benchmark test
functions is given below in Table 1:

In the computational tests, we used the same parameter
values for all variants of PSO algorithms: the maximum
generation is set to 100, the swarm size to 60, W to 1, c|
and c; to 2, and the values of | and r; to 0.5 each. The max-
imum (Max), minimum (Min), standard deviation (Std), and
mean (Mn) values of the final solution for GPSO, RMPSO,
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ELPSO, MPSOEG, and SPSO in 100 trial runs are tabulated
in Table 2 to checked the performance of all algorithms.

V. RESULTS AND DISCUSSION

Table 2 shows that our proposed method produces good
results for the Rastrigin function. The Rastrigin function is a
complicated multimodal function with several local minima
and a single global optimal solution. Sphere function, which
is a complex and unimodal benchmark problem, is similar.
We know that our novel approach outperforms other algo-
rithms based on the tabulation results. Also, on the HappyCat
benchmark function, our updated algorithm produced the best
results. The HappyCat function is a complicated and complex
optimization problem that is commonly used for algorithm
validation. Also, on the HappyCat benchmark function, our
updated algorithm produced the best results. The HappyCat
function is a complicated and complex optimization prob-
lem that is commonly used for algorithm validation. Other
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TABLE 2. Performance comparison of SPSO with GPSO, RMPSO, ELPSO

and MPSOEG for 30 dimension.

TABLE 2. (Continued.) Performance comparison of SPSO with GPSO,
RMPSO, ELPSO and MPSOEG for 30 dimension.

Rastrigin f; Mn -5.5760 2.5224 0.0898 -0.5228 -3.2054
O.F SPSO RMPSO ELPSO  GPSO  MPSOEG HappyCat fg
Max  2.8201 2.8201 2.8201 2.8201 2.3491 O.F SPSO RMPSO  ELPSO GPSO MPSOEG
Min -15.0221 -1.4571  0.0201 -1.1021 -3.3942 Max  1.1937 1.1937 1.1937 1.1937 1.1913
Std  4.5774 1.0881 0.8163 0.9848 1.5538 Min 0.2000 0.5856 0.8922 0.2939 1.1787
Mn  -9.9923 -0.9567  0.3399 -0.7508 -2.9126 Std  0.2071 0.1925 0.1301 0.2496 0.0032
Sphere £, Mn 04793 07032 09770 05112 1.1818
O.F SPSO RMPSO  ELPSO GPSO MPSOEG HGBat f
Max 0.5753 2.8771 2.8771 2.8771 -3.3572 O.F SPSO RMPSO ELPSO GPSO MPSOEG
Min -15.6000 -7.6185  -5.9769 -3.2970 -11.0012 Max 0.5382 0.5382 0.5382 0.5382 -0.3886
Std 29674 2.7173 3.3405 1.3998 1.4819 Min -0.6907 -0.6789  -0.0101 -0.5365 -0.6700
Mn  -11.5073 -2.0705  -3.9874 -1.9769 -9.9934 Std  0.1559 0.2936 0.2753 0.1916 0.0508
Bent Cigar f3 Mn  -0.6500 -0.3902  0.2749 -0.4104 -0.6586
O.F SPSO  RMPSO ELPSO  GPSO  MPSOEG Ackley’s Function fi
Max 143901 143908 143901  14.3908  5.1593 OF SPSO RMPSO TLPSO  GPSO  MPSOEG
Min  2.4193 3.8943 5.1477 8.2158 2.4000 Max 8.3765 8.3765 8.3765 8.3765 2.7983
Std 21706 27173 2.1617 13998  0.9873 Min -1.3950  -0.9963 -0.0364  0.1541  0.4637
Mn 3.1522 9.4423 7.7797 9.5359 3.2485 Std 13298 1.7230 1.9830 2.0657 0.4341
Discus f; Mn  0.2468 0.5508 -0.3174 -0.3697 0.7394
O.F SPSO  RMPSO ELPSO  GPSO  MPSOEG Schwefel’s Problem 1.2 /;,
Max 149662  14.9662 149662 149662  6.5141 O.F SPSO RMPSO _ELPSO GPSO MPSOEG
Min -8.6500  -6.0267 -4.7846  2.6162 -5 Max 5.6066  5.6066  5.60661 5.6066  6.1075
Std 58837 54347 27141 27996 3.4662 Min 0.0629  4.6359 27853 12998  1.7500
Mn -54742 50691  -43990 52564  -1.0678 Std 08924 07813 13546  1.6973 23372
Zakharov f5 Mn 1.0649 4.1199 3.6256 2.1186 2.8389
O.F SPSO RMPSO  ELPSO GPSO MPSOEG Griewank complex f;,
Max  7.6134 23.968 76194 76194 64353 O.F SPSO RMPSO  ELPSO GPSO MPSOEG
Min -5.0933 14.0313 03163  -1.9803  -4.3966 Max 51871 5.18603  5.1823 51823  5.1819
Std 25299 3.0019 1.4000 1.9732 1.6876 Min 5.1678 5.1789 5.1693 5.1803 5.1750
Mn -3.3700 164974 14661  -0.3291  -4.0438 Std 00033 00015 00037 00006 13672
Dixon & Price fe Mn 51689 51806 51708 51808  5.1783
O.F SPSO RMPSO  ELPSO GPSO MPSOEG
Max  0.4054 3.7323 04054 04054  -0.1985
Min  -6.8447 -0.9925  -2.0946  -4.3703  -3.9866 test functions such as the Zakharov, Dixon-Prince, Ackley,
Std  2.3591 13590  0.7802  1.4876 1.0889 Rosenbrock, HGBat, Bent Cigar, and Discus functions can
Mn  -4.6430 05673 09069 32716  -2.9988 also be observed. The above functions are more challenging
and complex, and researchers often use them as benchmark
Rosenbrock f; problems for evaluating algorithm results. As a result, the tab-
O.F SPSO RMPSO  ELPSO GPSO  MPSOEG ulations show that our novel smart PSO outperforms other
Max  5.0960 50960 5.0960  5.0960  -1.4069 well-known modified algorithms on the above mathematical
i optimization problems.
Min 67171 19018~ -0.0986  -1.3932  -4.2300 The proposed SPSO converges to the optimal global region
Std 19115 0.8612  0.7443  1.5702 12653 faster than the GPSO, RMPSO, ELPSO, and MPSOEG,
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particularly in the early generations, as shown by the con-
vergence characteristic curves of the test functions. Sim-
ilarly, the convergence trajectory for other test functions
demonstrates the proposed method’s superiority compared
to other algorithms. In conclusion, the proposed algorithm
finds the global best solution for all test functions, showing
that the novel algorithm is more efficient. According to these
numerical results and the statistical analysis, the proposed
SPSO’s final solution has a substantially higher quality than
GPSO, RMPSO, ELPSO, and MPSOEG. SPSO effectively
converges to global minima in the early stages of the search
operation, unlike other PSO modifications stuck in local
minima.

The convergence characteristics of a typical run for each
algorithm are shown in Figures 3-14 for test functions
fl — £12, respectively. We use the objective function’s loga-
rithm values for comparison in this article because the objec-
tive function values of the test functions in Table 1 are so
small in decimal numbers.
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FIGURE 3. Convergence plot of different algorithms on f;.
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FIGURE 4. Convergence plot of different algorithms on f,.

A. OPTIMIZATION IN ELECTROMAGNETIC DEVICES

1) TEAM WORKSHOP PROBLEM 2

Using the TEAM workshop problem 22 [40], authors have
tested a number of optimization methods for electromagnetic
inverse problems. The performance of the proposed SPSO in
inverse problems of electromagnetic devices has also been
tested using the same problem. For performance comparisons
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with other optimal algorithms, the testing of electromagnetic
optimization benchmark function, workshop problem 22 of a
SMES, containing three parameters of two concentric coils
with currents in opposite directions is used [52], [53].

2) OBJECTIVE FUNCTION

In [40], SMES has a single objective function, but it actually
incorporates two objective functions to correlate magneti-
cally stored energy in a couple of coils Wy,, W,y = 180 M
Joule, Bjorm = 3 m Tesla and By expressed “(9)” with
N =22

B?tray ” Wi — Wm,ref ”
ref Wm,ref

OF =

®)
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where, Byyqy is defined as

PO
o) i= stray i
B stray — N (9)

3) QUENCH CONDITION

It is important to maintain the physical condition of coils in
order to ensure superconductivity within the solenoids when
a magnetic field is produced. Current density is 22.5 A/mm?,
which states that B,,,,, should be less than 4.92 Tesla.

A
Ji < (—6A¢(Bmmjﬂ—%54)<;;;5> (10)
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In ““(10)”, J; represents the current density of the coil, B;,qx
shows the maximum magnetic flux density of i, coil where i
represents the coil number.

4) RESULTS COMPARISONS
In this electromagnetic device optimization of SMES,
the inner solenoid is fixed, r; = 2m, d; = 0.27mand 1/ =
0.8m, while the outer-solenoid geometrical dimension,
2.6 <rp <34mand0.1 < d, < 0.4m are optimized.

For performance comparisons, the case study was solved
using the proposed SPSO and other PSO variants, GPSO,
RMPSO, ELPSO, and MPSOEG. After compiling for
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TABLE 3. Results comparison of SPSO with RMPSO, ELPSO and GPSO on
team workshop problem 22.

Algorithms n d> C.F

GPSO 3.0924 0.3523 0.4243
RMPSO 3.1061 0.3689 0.6115
ELPSO 3.0732 0.3812 0.4247
MPSOEG 3.1103 0.2731 0.0368
SPSO 3.0814 0.2731 0.0294

Note: C.F means cost function

20 random runs, the numerical results of all algorithms are
recorded in Table 3.

When compared to other tested optimum algorithms,
the numerical results show that the proposed SPSO has a
strong convergence.

VI. STATISTICAL ANALYSIS

The Wilcoxon signed-ranks test [54] is a non-parametric
statistical hypothesis test that analyses the ranks for positive
and negative differences in related samples of data sets while

VOLUME 9, 2021

TABLE 4. Statistical results OF paired data sets of SPSO WITH RMPSO,
ELPSO, GPSO and MPSOEG.

Func Meas RMPSO ELPSO GPSO MPSO
tion urem EG
ent
f z -5.066 -5.066 -5.068 -5.068
p .000 .000 .000 .000
1 z -5.133 -5.102 -5.024 -3.901
p .000 .000 .000 .000
5 z -5.176 -2.539 -5.030 -2.486
p .000 011 .000 .013
fa z -5.176 -4.446 -4.437 -2.779
p .000 .000 .000 .005
f5 z -5.169 -4.458 -4.430 -2.606
p .000 .000 .000 .009
fs z -4.957 -4.455 -2.985 -1.262
p .000 .000 .003 .207
1 z -5.063 -5.047 -5.154 -5.157
p .000 .000 .000 .000
s z -4.139 -5.045 -1.286 -5.020
p .000 .000 .198 .000
fo z -5.042 -5.091 -5.089 -2.804
p .000 .000 .000 .005
fio z -2.394 -2.927 -4.463 -4.442
p .017 .003 .000 .000
Sfin z -5.094 -5.084 -4.820 -5.089
p .000 .000 .000 .000
fi2 z -5.051 -3.036 -5.057 -5.065
p .000 .002 .000 .000
*f3 z -2.729 -5.141 -2.993 -4.959
p .006 .000 .003 .000

* fis represent TEAM problem 22.

ignoring the signs. d; is the difference between the two data
sets on the i out of data sets (N = 33) in “(11)”,“(12)".
The variations are ranked by their absolute values. Let R be
the total of rankings for data sets with a positive rank, and R™
be the sum of ranks for data sets with a negative rank. In case
of d; = 0 than ignored [55], [56]:

R+:Zd>

i

1
Zd~<0 rank(d) + > Zd,-:o rank(d))  (12)

i

_1 1
7= TN+ (13)

LN N +1CN+ 1)

1
o rank(d) + =Y rank(dy) (1)

R-

where T is the lower rank of the sum and is stated mathemat-
ically as:

T = min(R*,R") (14)

For all benchmark test functions in Table 1 and TEAM
problem 22, Wilcoxon singed-rank test results were obtained
by considering pairs of proposed algorithms SPSO with
RMPSO, ELPSO, GPSO, and MPSOEG (SMES). On almost
all test functions, SPSO outperformed to RMPSO, ELPSO,
GPSO, and MPSOEG, according to the statistical results in
table 4. Furthermore, if z is less than —1.96, the signifi-
cance of « = 0.05 is rejected, and the null hypothesis is
rejected. The p value indicates the level of significance of the
hypothesis test, indicating that SPSO outperforms other PSO
variations.
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VII.

CONCLUSION

The proposed work introduces a new idea into existing PSOs,
in which the newly introduced smart particle has an eidetic
memory behavior and employs a CF to achieve the best
inverse problem solution in electromagnetic devices. The
mathematical test functions and SMES of TEAM workshop
problem 22 have been used to validate the new PSO algo-
rithm. The SPSO’s experimental results show that it obtains a
better optimal solution than other PSO variants, particularly
at the initial generation in a large population. Furthermore,
future research and testing would be needed to solve inverse
problems in electromagnetic devices using other optimization
techniques to obtain a better optimal solution.
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