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ABSTRACT It is common knowledge that edge disjoint paths have close relationship with the edge
connectivity. Motivated by the well-known Menger theorem, we find that the maximum cardinality of edge
disjoint paths connecting any two disjoint connected subgraphs with g vertices in G can also define by the
minimum modified edge-cut, called the g-extra edge-connectivity of G (λg(G)). It is the cardinality of the
minimum set of edges in G, if such a set exists, whose deletion disconnects G and leaves every remaining
component with at least g vertices. The n-dimensional augmented cube AQn is a variant of hypercube Qn.
In this paper, we observe that the g-extra edge-connectivity of the augmented cube for some exponentially
large enough g exists a concentration behavior, for about 72.22 percent values of g ≤ 2n−1, and that the
g-extra edge-connectivity of AQn (n ≥ 3) concentrates on d n2e − 1 special values. Specifically, we prove
that the exact value of g-extra edge-connectivity of augmented cube is a constant 2(d n2e − r)2b

n
2 c+r for

each integer 2b
n
2 c+r − lr ≤ g ≤ 2b

n
2 c+r , where n ≥ 3, r = 1, 2, . . . , d n2e − 1 and lr = 22r+1−2

3 if n is odd

and lr = 22r+2−4
3 if n is even. The above upper and lower bounds of g are sharp. Moreover, we also obtain

the exponential edge disjoint paths in AQn with edge faults.

INDEX TERMS Fault tolerance, many-to-many edge disjoint paths, interconnected networks, exponential
fault edges.

I. INTRODUCTION
The edge disjoint path problems are applicable in many
areas such as software testing, database design and code
optimization. The edge-disjoint paths problem is a fundamen-
tal problem in networks, consisting of connecting as many
demand pairs as possible in a graph via edge-disjoint paths.
In disjoint paths problems, instead of considering the paired
and unpaired many-to-many disjoint paths cover problem [9],
[13], [20], [30], we focus on the problem of evaluation maxi-
mum number of many-to-many edge disjoint paths of a graph.
Let g be a positive integer. We aim to find the maximum
number of edge disjoint paths linking any two disjoint con-
nected subgraphs with just g vertices in G. Very recently,
the problem of edge-disjoint paths with faulty edges was
investigated for the augmented cube [19], hypercubes and
folded hypercubes [21]. Considering the problem of finding
node or edge disjoint paths is largely concerned with the
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well-known Menger’s theorem [21]. Menger’s theorem is a
description of the edge connectivity in finite graphs according
to the maximum number of edge-disjoint paths that can be
found between any two distinct pairs of vertices.

With the fast development trend of big data, the scale of
parallel and distributed systems is increasing dramatically.
The basic topology structure of a parallel and distributed
system is usually modeled as an undirected simple graph
G = (V ,E) with processors and physical links between
the processors represented as the vertices and the edges of
the G, respectively. We keep to the graph definition and
notation of [1].

Processors and physical links faults may occur in designing
such a system. Thus, it is significant to come up with essen-
tial fault measurements. The vertex connectivity and edge
connectivity of interconnection networks of these systems
are two traditional measurements. For a connected graph G,
the connectivity κ(G) or edge connectivity λ(G), introduced
by Menger [15], is defined as the minimum number of
vertices or edges whose deletion disconnects the graph G.
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TABLE 1. A brief summary of previously known and current results for λg(AQn).

To make a comprehensive evaluation on the faulty intercon-
nection network, in 1996, the concept of g-extra connectivity
κg(G) or g-extra edge-connectivity λg(G) was first introduced
by Fàbrega and Foil [4]. For a connected graph G, an edge
subset F ⊆ E(G) is called as a g-extra edge-cut ofG, ifG−F
is disconnected and every component of G − F has at least
g vertices. The g-extra edge-connectivity of G, written as
λg(G), is defined as the minimum cardinality among all the
g-extra edge-cuts. In recent years, more works about deter-
mining the g-extra connectivity or g-extra edge-connectivity
of famous networks are found in [5], [11], [12], [14],
[26]–[28].

By the well-known Menger theorem, the maximum num-
ber of edge disjoint paths connecting any two disjoint con-
nected subgraphs with g vertices in G can also define by the
minimum modified edge-cut, called (λg(G)). The Menger’s
theorem is often required to find a maximum of edge-disjoint
paths between two given distinct vertices of G. Motivated by
this, we want to go even further, and consider cases on many-
to-many edge disjoint paths of a connected graph G.
The augmented cube AQn, proposed by Choudum and

Sunitha [3], is a variant of hypercubeQn. Compared withQn,
AQn retains some of the splendid properties. Some basic prop-
erties of the augmented cube, such as panconnectivity [17],
[22], [24], pancyclicity [23], hamiltonicity [7], [16], [25],
various diagnosability [2], [10], structure fault-tolerance [8],
several familiar connectivities [18], [29]. The known and cur-
rent results on the g-extra edge-connectivity of n-dimensional
augmented cube AQn, λg(AQn) have been showed in Table 1.
In this paper, we pay our attention on λg(AQn) for exponential
g = 2c, c = b n2c + r , where r = 1, 2, . . . , d n2e − 1, n ≥ 3
which is better to reflect the fault tolerance ability of the
interconnection network than the traditional connectivity. Our
result improves some previously known results on λg(AQn) in
a sense.

In this study, we study the g-extra edge-connectivity of
the augmented cube AQn. Specifically, we obtain the edge
disjoint paths with edge faults. Interestingly, we notice that
for 2b

n
2 c+r − lr ≤ g ≤ 2b

n
2 c+r , where r = 1, 2, . . . , d n2e − 1

and lr = 22r+1−2
3 if n is odd and lr = 22r+2−4

3 if n is
even, the g-extra edge-connectivity of the augmented cube
AQn (n ≥ 3) exists a concentration behavior: as n tends to

infinity, for about 72.22% values of g ≤ 2n−1, the g-extra
edge-connectivity of AQn (n ≥ 3) concentrates on several
special values (2n− 2c)2c, c = b n2c + r .

II. PRELIMINARIES
In a connected graph G, the degree of a vertex v, denoted by
deg(v), is the number of neighborhoods of v in G. A graph
G is k-regular if deg(v) = k for all v ∈ V (G). A graph S
is called a subgraph of G if every vertex and edge in S is
also in G. A maximal connected subgraph of G is called a
component of G. For any edge set F ⊆ E(G), the notation
G − F denotes the subgraph obtained after removing the
edges in F from G. In particular, F is called an edge cut of
G if G − F is disconnected. Given a vertex set X ⊆ V (G),
we denote G[X ] the subgraph of G induced by X , and X =
V (G) \ X the complement of X . For two vertex sets X and
X , we denote [X ,X ] the set of edges of G with one end
in X and the other end in X . If G1 and G2 have the same
nodes and edges, and λi(G1) = λi(G2), i = 1, 2, . . . , g − 1,
λg(G1) > λg(G2), then G1 is more reliable than G2. Let
ξm(G) =min{|[X ,X ]| : |X | = m ≤ b|V (G)|/2c, and G[X ]
is connected}. A connected graph is regarded as λg-optimal
if λg(G) = ξg(G) holds.
The definition of the n-dimensional augmented cube is

given in the following.
Definition 1 [3]: Given n ≥ 1 is an integer. The n-

dimensional augmented cube AQn has 2n vertices, each
labeled by an n-bit binary string a1a2 . . . an. AQ1 is a com-
plete graph K2 with the vertex set {0, 1}. For n ≥ 2, AQn is
obtained by taking two copies of the augmented cube AQn−1,
denoted by AQ0

n−1 and AQ1
n−1, and adding 2 × 2n−1 edges

between the two as follows:
Let V (AQ0

n−1) = {0a2a3 . . . an : ai = 0or1} and
V (AQ1

n−1) = {1b2b3 . . . bn : bi = 0or1}. Two vertices
A = 0a2a3 . . . an of AQ0

n−1 and B = 1b2b3 . . . bn of AQ1
n−1

are adjacent if only and if either
1) ai = bi for every i, 2 ≤ i ≤ n; or
2) ai = bi for every i, 2 ≤ i ≤ n.
Case (1) edges are called hypercube edges while case (2)

edges are called complement edges. Clearly, we can see that
every vertex of AQ0

n−1 has two neighbors in AQ1
n−1. In fact,

AQn can be viewed as AQ0
n−1

⊕
AQ1

n−1 briefly. It has been
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FIGURE 1. Two augmented cubes AQ3 and AQ4.

FIGURE 2. The images of adjacency matrices of AQ6 and AQ7.

shown that AQn is (2n − 1)−regular. Hence, |E(AQn)| =
(2n − 1)2n−1. Choudum and Sunitha [3] have defined and
studied the augmented cube and its properties. For example,
augmented cubes AQ3 and AQ4 are shown in Fig. 1. As the
integer n exponentially grows, the scale of the AQn is more
and more big, the topological structure of AQn is more and
more complicated. Therefore, we use the adjacency matrix of
AQn to represent the adjacent relationship between vertices
of AQn. The images of adjacency matrix of AQ6 and AQ7 are
exhibited in Fig. 2 (in two images, the dark blue pixel at posi-
tion (i, j) corresponds to no edges between nodes A and B).
The exm(G) is twice of the maximum number edges of the

subgraph induced by m vertices in G, also is the maximum
possible sum of the degrees of the vertices in the subgraph
induced bym vertices inG. The exact values for the exm(AQn)
have been given [29], which plays a prominent role in study-
ing the λg(AQn).
Zhang et al. [29] have obtained the followingmajor results:
Lemma 1 [29]: For a positive integerm, 1 ≤ m ≤ 2n, it can

be written that m =
∑s

i=0 2
ti , where t0 > t1 > . . . > ts ≥

0, 0 ≤ i ≤ s. Then

exm(AQn)

= 2|E(AQn[Lnm])|

=

∑s

i=0
(2ti − 1)2ti +

∑s

i=0
4i2ti + δ, (1)

FIGURE 3. The induces subgraph by L14 in AQ4.

where t0 = blog2 mc, ti = blog2(m −
∑i−1

k=0 2
tk )c for i ≥ 1,

and δ = 0 when m is even, δ = 1 when m is odd.
If x = x1x2 . . . xn is a vertex of AQn, we can also be

represented by decimal number
∑n

i=1 xi2
n−i, xi ∈ {0, 1}.

Let Sm be the set {0, 1, 2, . . . ,m − 1} (under decimal rep-
resentation) and Lnm the corresponding set represented by
n-binary strings. Let AQn[Lnm] be the subgraph induced by
Lnm in AQn, Lnm ⊂ V (AQn). AQn[Lnm] and AQn[Lnm] are
connected in AQn. For example, for n = 4, if S14 =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, then L414 = {0000,
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0001, 0010, 0011, 0100, 0101, 0110, 0111,1000,1001,1010,
1011, 1100, 1110}. By equation (1), we will obtain
ex14(AQ4) = 2|E(AQ4[L414])| = (2×3−1)23+(2×2−1)22+
(2×1−1)21+4×0×23+4×1×22+4×2×21+0 = 86.
The subgraph of AQ4 induced by L414 is shown in Fig. 3. The
edges between subcubes isomorphic to AQ1,AQ2 and AQ3

are marked in blue.
In [29], they have introduced a method to construct s + 1

ti-dimensional disjoint augmented subcubes in AQn for 0 ≤
i ≤ s as follows:

AQ0
: 0 . . . 0Zt0 . . . Z1︸ ︷︷ ︸

t0

AQ1
: 0 . . . 01 0 . . . 0Zt1 . . . Z1︸ ︷︷ ︸

t1︸ ︷︷ ︸
t0

AQ2
: 0 . . . 0 10 . . . 01 0 . . . 0Zt2 . . . Z1︸ ︷︷ ︸

t2︸ ︷︷ ︸
t1︸ ︷︷ ︸

t0
. . .

AQ0 is given and note that AQi is taken from a ti−1-
dimensional augmented subcube which is obtained from
AQi−1 by changing the 0 of (ti−1 + 1)th-coordinate of AQi−1

to 1 for i = 1, . . . , s. Hence, V (AQi) ∩ V (AQj) .= ∅ for i 6=
j, i, j ∈ {0, . . . , s} and |V (AQ0)∪ . . .∪V (AQs)| =

∑s
i=0 2

ti =

m. DefineG1 = AQn[V (AQ0)∪. . .∪V (AQs)]. It can be calcu-
lated that the number of edges ofG1 by considering the edges
within AQi,s (

∑s
i=0(2ti − 1)2ti−1) and the edges between

AQi,s (
∑s

i=0 2i · 2
ti ) when ts > 0; similarly, |E(G1)| =∑s−1

i=0 (2ti − 1)2ti−1 +
∑s

i=0 2i · 2
ti when ts = 0. Hence,

exm(G1) = 2|E(G1)| =
∑s

i=0(2ti − 1)2ti +
∑s

i=0 4i2
ti + δ,

where δ = 0 when m is even, and δ = 1 when m is odd.
In fact, G1 = AQn[Lnm].
Lemma 2 [29]: Note that each V (AQi) is connected, for

0 ≤ i ≤ s. Then AQn[Lnm] is connected.
Let F = [Lnm,Lnm] the set of edges of AQn with exactly one

end vertex in Lnm such that AQn−F is disconnected and it has
two components.
Lemma 3 [29]: The subgraph AQn[Lnm] of AQn is

connected.

III. SOME PROPERTIES OF THE FUNCTION ξm(AQn)
The λg(AQn) is closely related to the monotonic intervals and
fractal structure of the function ξm(AQn).We obtain the image
of the relationship between functions ξg(AQ10) and λg(AQ10),
for 1 ≤ g ≤ 29 in Fig. 4, image-magnification on internal
[108, 128] is illustrated below it.

For positive integers g ≤ m =
∑s

i=0 2
ti ≤ 2n−1,

λg(AQn) = min{ξm(AQn) : g ≤ m ≤ 2n−1}. (2)

In view of Handshaking lemma and regularity of an n-
dimensional augmented cube, combining with connectedness
of AQn[Lnm], it follows that

FIGURE 4. The plots of functions ξg(AQ10) and λg(AQ10).

ξm(AQn) = (2n− 1)m− exm(AQn)

= (2n− 1)m− [
∑s

i=0
(2ti − 1)2ti

+

∑s

i=0
4i2ti + δ], (3)

where δ = 0 if m is even, and δ = 1 if m is odd.
For the augmented cube, the g-extra edge-connectivity

of AQn is well-defined for each g ≤ 2n−1. In [29], they
have applied the value of exm(AQn) to obtain the g-extra
edge-connectivity of AQn for 1 ≤ g ≤ 2b

n
2 c(n ≥ 2) and

2n−1+22−f
3 ≤ g ≤ 2n−1(n ≥ 4) where f = 0 if n is even, and

f = 1 if n is odd. In this paper, we further consider the g-extra
edge-connectivities of AQn for other values of g on the basis
of their minds. The following lemmas of some properties of
the function ξm(AQn) are useful, which are need for giving
the conclusions of λg(AQn).
Lemma 4: For every integer h =

∑s
i=0 2

ai , a0 > a1 >
. . . > at > at+1 > . . . > as ≥ 0, t < s, h ≤ 2n−1,
let h = h1 + h2, h1 =

∑t
i=0 2

ai , we can get exh(AQn) =
exh1 (AQn)+ exh2 (AQn)+4(t+1)h2. Proof: As a matter
of convenience, we write h2 = h − h1 = 2at+1 + 2at+2 +
. . . + 2as =

∑s−t−1
i=0 2at+1+i , it is easy to observe that the h1

must be even and the h2 is either odd or even. According to
equation (1), we have

exh1 (AQn) =
∑t

i=0
(2ai − 1)2ai +

∑t

i=0
4i2ai ,

exh2 (AQn) =
∑s−t−1

i=0
(2at+1+i − 1)2at+1+i

+

∑s−t−1

i=0
4i2at+1+i

+δ,

exh1+h2 (AQn) =
∑s

i=0
(2ai − 1)2ai +

∑s

i=0
4i2ai + δ

=

∑t

i=0
(2ai − 1)2ai

+

∑s−t−1

i=0
(2at+1+i − 1)2at+1+i

+

∑t

i=0
4i2ai

+

∑s−t−1

i=0
4(t + 1+ i)2at+1+i + δ

= exh1 (AQn)+ exh2 (AQn)

+

∑s−t−1

i=0
4(t + 1)2at+1+i

= exh1 (AQn)+ exh2 (AQn)+ 4(t + 1)h2.

So the lemma holds. �
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For 0 ≤ m < 2n, by the symmetry of cut, the equation
ξm(AQn) = ξ2n−m(AQn) holds. For any n > n′, 0 ≤ m < 2n

′

,
because the value of exm(AQn) is uniquely determined by the
decomposition of m, so exm(AQn) = exm(AQn′ ).
Lemma 5: Let 2c < m ≤ 2n−1 for 0 ≤ c ≤ n− 2. Then

ξm(AQn) ≥ ξ2c (AQn).

Proof: It is sufficient to show that for 2k < m ≤ 2k+1,
k = c, c+ 1, . . . , n− 2, ξm(AQn) ≥ ξ2k (AQn). Since

ξ2k+1 (AQn)− ξ2k (AQn)

= (2n− 1)2k+1 − ex2k+1 (AQn)

−[(2n− 1)2k − ex2k (AQn)]

= (2n− 1)2k+1 − [2(k + 1)− 1]2k+1 − δ

−[(2n− 1)2k − (2k − 1)2k − δ]

= (2n− 2k − 2)2k+1 − (2n− 2k)2k

= (n− k − 2)2k+1

≥ 0.

Equality holds if and only if k = n−2. Therefore, we may
assume 2k < m < 2k+1. So 0 < m − 2k < 2k . Let m =∑s

i=0 2
ti andm′ = m−2k . Clearly, t0 = k and t1 < k ≤ n−2.

Then m′ =
∑s

i=1 2
ti =

∑s−1
i=0 2

ti+1 < 2k ≤ 2n−2 and

ξm(AQn)− ξ2k (AQn)

= (2n− 1)m− exm(AQn)− [(2n− 1)2k − ex2k (AQn)]

= (2n− 1)
∑s

i=0
2ti −

∑s

i=0
(2ti − 1)2ti

−

∑s

i=0
4i2ti − δ − [(2n− 1)2k − (2k − 1)2k − δ]

= (2n− 1)
∑s−1

i=0
2ti+1 −

∑s−1

i=0
(2ti+1 − 1)2ti+1

−

∑s−1

i=0
4(i+ 1)2ti+1

= (2n− 5)m′ −
∑s−1

i=0
(2ti+1 − 1)2ti+1 −

∑s−1

i=0
4i2ti+1

= [2(n− 2)− 1]m′ −
∑s−1

i=0
(2ti+1 − 1)2ti+1

−

∑s−1

i=0
4(i+ 1)2ti+1 .

For 0 < m′ < 2k , we can get exm′ (AQn) = exm′ (AQk ) <
(2k − 1)m′ and ξm(AQn) − ξ2k (AQn) = [2(n − 2) − 1]m′ −∑s−1

i=0 (2ti+1−1)2
ti+1−

∑s−1
i=0 4(i+1)2

ti+1 > 2(n−k−2)m′ >
0. �

Let f = 0 if n is odd, and f = 1 if n is even. For r =
1, 2, . . . , d n2e − 1, n ≥ 3 and 0 ≤ j ≤ r , we define sr,j as
follows:

sr,j =

{
2b

n
2 c+r if j = 0;

2b
n
2 c+r −

∑j−1

i=0
22r−2i−1+f if 1 ≤ j ≤ r .

One can check that sr,j − sr,j+1 = 22r−2j−1+f , for any
0 ≤ j ≤ r − 1, and sr,r = 2b

n
2 c+r − 22r+1+f−21+f

3 . In fact,

if n is odd, then 22r+1+f−21+f
3 =

22r+1−2
3 ; if n is even, then

22r+1+f−21+f
3 =

22r+2−4
3 . For the sake of simplicity, let lr =

22r+1−2
3 if n is odd and lr = 22r+2−4

3 if n is even. After simple

calculation for sr,j, we can get:
2b

n
2 c+r − lr = sr,r < sr,r−1 < . . . < sr,1 < sr,0 = 2b

n
2 c+r .

We give an example to illustrate the variability of r, j, and
sr,j for n = 9, 10 (see the Table 2). If n = 2, we can get r = 0
and j = 0, so we only consider the situation of n ≥ 3.

TABLE 2. The variability of r , j , and sr ,j for n = 9,10.

Lemma 6: Given n, r and j are three integers, r =
1, 2, . . . , d n2e−1 and 0 ≤ j ≤ r , where f = 0 if n is odd, and
f = 1 if n is even. Then

ξsr,j (AQn) = 2(d
n
2
e − r)2b

n
2 c+r . (4)

Proof: It is easy to check on that ξsr,0 (AQn) =
ξ
2b

n
2 c+r

(AQn) = (2n− 1)2b
n
2 c+r − [2(b n2c + r)− 1]2b

n
2 c+r =

2(d n2e − r)2
b
n
2 c+r .

To deal with f , we note that f = b n2c − d
n
2e + 1. When

1 ≤ j ≤ r , sr,j = 2b
n
2 c+r −

∑j−1
i=0 2

2r−2i−1+f , we obtain

ξsr,j (AQn)

= (2n− 1)sr,j − exsr,j (AQn)

= (2n− 1)(2b
n
2 c+r −

∑j−1

i=0
22r−2i−1+f )

−ex
2b

n
2 c+r−

∑j−1
i=0 2

2r−2i−1+f (AQn)

= (2n− 1)(2b
n
2 c+r −

∑j−1

i=0
22r−2i−1+f )

−ex
2b

n
2 c+r−

∑j−1
i=0 2

2r−2i−1+f (AQ2b
n
2 c+r

)

= (2d
n
2
e − 2r)(2b

n
2 c+r −

∑j−1

i=0
22r−2i−1+f )

+[2(b
n
2
c + r)− 1](2b

n
2 c+r −

∑j−1

i=0
22r−2i−1+f )

−ex
2b

n
2 c+r−

∑j−1
i=0 2

2r−2i−1+f (AQ2b
n
2 c+r

)

= (2d
n
2
e − 2r)(2b

n
2 c+r −

∑j−1

i=0
22r−2i−1+f )

+[2(b
n
2
c + r)− 1]

∑j−1

i=0
22r−2i−1+f

−ex∑j−1
i=0 2

2r−2i−1+f (AQ2b
n
2 c+r

)

= (2d
n
2
e − 2r)(2b

n
2 c+r −

∑j−1

i=0
22r−2i−1+f )
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+[2(b
n
2
c + r)− 1]

∑j−1

i=0
22r−2i−1+f

−

∑j−1

i=0
[2(2r − 2i− 1+ f )− 1]22r−2i−1+f

−

∑j−1

i=0
4i22r−2i−1+f

= 2(d
n
2
e − r)2b

n
2 c+r + [2(b

n
2
c − d

n
2
e)+ 2− 2f ]

×

∑j−1

i=0
22r−2i−1+f

= 2(d
n
2
e − r)2b

n
2 c+r .

Hence, ξsr,j (AQn) = 2(d n2e − r)2b
n
2 c+r . The proof is

completed. �
Lemma 7: For any 2b

n
2 c+r − lr ≤ m ≤ 2b

n
2 c+r , where r =

1, 2, . . . , d n2e−1 and lr =
22r+1−2

3 if n is odd and lr = 22r+2−4
3

if n is even. Then

ξm(AQn) ≥ ξ2b
n
2 c+r

(AQn). (5)

Proof: For 2b
n
2 c+r − lr ≤ m ≤ 2b

n
2 c+r , there exists a

positive integer m′, where 0 ≤ m′ ≤ 22r−2j−1+f and m =
sr,j − m′, from equation (3), we can obtain that

ξm(AQn)

= (2n− 1)m− exm(AQn)

= (2d
n
2
e − 2r)m+ [2(b

n
2
c + r)− 1]m

−exm(AQ2b
n
2 c+r

)

= (2d
n
2
e − 2r)m+ [2(b

n
2
c + r)− 1](2b

n
2 c+r − m)

−ex
2b

n
2 c+r−m

(AQ
2b

n
2 c+r

)

= 2(d
n
2
e − r)2b

n
2 c+r − (2d

n
2
e − 2r)(2b

n
2 c+r − m)

+[2(b
n
2
c + r)− 1](2b

n
2 c+r − m)

−ex
2b

n
2 c+r−m

(AQ
2b

n
2 c+r

)

= ξsr,j (AQn)+ (4r − 3+ 2f )(2b
n
2 c+r − m)

−ex
2b

n
2 c+r−m

(AQ
2b

n
2 c+r

).

In view of Lemma 4,

ex
2b

n
2 c+r−m

(AQ
2b

n
2 c+r

)

= ex
2b

n
2 c+r−sr,j

(AQ
2b

n
2 c+r

)+ exm′ (AQ2b
n
2 c+r

)+ 4jm′

=

∑j−1

i=0
[2(2r − 2i− 1+ f )− 1]22r−2i−1+f

+

∑j−1

i=0
4i22r−2i−1+f + exm′ (AQ2b

n
2 c+r

)+ 4jm′

= (4r − 3+ 2f )
∑j−1

i=0
22r−2i−1+f + exm′ (AQ2b

n
2 c+r

)

+4jm′

= (4r − 3+ 2f )(2b
n
2 c+r − sr,j)+ exm′ (AQ2b

n
2 c+r

)

+4jm′.

Therefore,

ξm(AQn)

= (2n− 1)m− exm(AQn)

= ξsr,j (AQn)+ (4r − 3+ 2f )(sr,j − m)

−exm′ (AQ2b
n
2 c+r

)− 4jm′

= ξsr,j (AQn)+ (4r − 3+ 2f )m′ − exm′ (AQ2b
n
2 c+r

)

−4jm′

= ξsr,j (AQn)+ (4r − 3+ 2f − 4j)m′

−exm′ (AQ2b
n
2 c+r

)

= ξsr,j (AQn)+ [2(2r + b
n
2
c − d

n
2
e − 2j)− 1]m′

−exm′ (AQ2r+b n2 c−d
n
2 e−2j

)

= ξsr,j (AQn)+ ξm′ (AQ2r+b n2 c−d
n
2 e−2j

)

≥ ξsr,j (AQn),

where the equality holds if and only if m′ = 0 or m′ =
22r−2j−1+f . Hence, the lemma follows. �
Remark 1: The upper and lower bounds of m are sharp for

2b
n
2 c+r − lr ≤ m ≤ 2b

n
2 c+r , where r = 1, 2, . . . , d n2e− 3 and

lr = 22r+1−2
3 and f = 0, if n is odd; lr = 22r+2−4

3 and f = 1,
if n is even.

Let m1 = 2b
n
2 c+r − lr , since 2b

n
2 c+r − lr =

2b
n
2 c+r −

∑r−1
i=0 22r−2i−1+f =

∑b n2 c−r−2−f
i=0 2b

n
2 c+r−i−1 +∑r−1

j=0 22r−2j+f + 2f+1, so if n is even, m1 − 1 =∑b n2 c−r−3
i=0 2b

n
2 c+r−i−1 +

∑r−1
j=0 22r−2j+1 + 21 + 20; if n is

odd, m1 − 1 =
∑b n2 c−r−2

i=0 2b
n
2 c+r−i−1 +

∑r−1
j=0 22r−2j + 20.

If n is odd, by Lemma 4,

exm1 (AQn)

= ex∑b n2 c−r−2
i=0 2b

n
2 c+r−i−1+

∑r−1
j=0 22r−2j+21

(AQn)

= ex∑b n2 c−r−2
i=0 2b

n
2 c+r−i−1+

∑r−1
j=0 22r−2j+f

(AQn)

+ex21 (AQn)+ 4(n− 3)

= ex∑b n2 c−r−2
i=0 2b

n
2 c+r−i−1+

∑r−1
j=0 22r−2j+f

(AQn)

+4n− 10,

and

exm1−1(AQn)

= ex∑b n2 c−r−2
i=0 2b

n
2 c+r−i−1+

∑r−1
j=0 22r−2j+f+20

(AQn)

= ex∑b n2 c−r−2
i=0 2b

n
2 c+r−i−1+

∑r−1
j=0 22r−2j+f

(AQn)

+ex20 (AQn)+ 2(n− 3)

= ex∑b n2 c−r−2
i=0 2b

n
2 c+r−i−1+

∑r−1
j=0 22r−2j+f

(AQn)

+2n− 6,

by equation (3), ξm1 (AQn) − ξm1−1(AQn) = 3. If n is even,
by Lemma 4, we can get exm1 (AQn) = exm1−1(AQn) +
ex20 (AQn) + 4[(b n2c − r − 2) + r + 2] = exm1−1(AQn) +
ex20 (AQn)+ 2(n− 1), then ξm1 (AQn)− ξm1−1(AQn) = (2n−
1)m1− exm1 (AQn)− [(2n− 1)(m1− 1)− exm1−1(AQn)] = 1.
Therefore, the lower bound is sharp.

VOLUME 9, 2021 95387



M. Zhang et al.: Many-to-Many Disjoint Paths in Augmented Cubes With Exponential Fault Edges

For any r ≤ d n2e − 3, let m = 2b
n
2 c+r + m0, m0 < 2n−3.

Then

ξm(AQn)

= (2n− 1)m− exm(AQn)

= (2n− 1)(2b
n
2 c+r + m0)− [ex

2b
n
2 c+r

(AQn)

+exm0 (AQn)+ 4m0]

= (2n− 1)2b
n
2 c+r − ex

2b
n
2 c+r

(AQn)

+(2n− 1)m0 − 4m0 − exm0 (AQn)

= ξ
2b

n
2 c+r

(AQn)+ [2(n− 2)− 1]m0

−exm0 (AQn−2)

= ξ
2b

n
2 c+r

(AQn)+ ξm0 (AQn−2),

by equation (3), the inequality ξm(AQn) ≥ ξ
2b

n
2 c+r

(AQn)
holds, so the upper bound is also sharp.
Remark 2: For the interval 2b

n
2 c+r − lr ≤ m ≤ 2b

n
2 c+r ,

the lower bound of m is sharp, but the upper bound of m is
not sharp for r = d n2e − 2, d n2e − 1.
For r = d n2e − 2, d n2e − 1, 2b

n
2 c+r = 2n−2, 2b

n
2 c+r = 2n−1

respectively. By Lemma 6, ξ2n−2 (AQn) = ξ2n−1 (AQn) = 2n.
In fact, if n is even, for r = d n2e−2 and r = d

n
2e−1, the lower

bounds 2b
n
2 c+r− lr = 2n−2− 22(

n
2−2)+2−4

3 = 2n−2− 2n−2−4
3 =

2n−1+4
3 = d

2n−1+2
3 e and 2b

n
2 c+r − lr = 2n−1 − 22(

n
2−1)+2−4

3 =

2n−1+4
3 = d

2n−1+2
3 e respectively. If n is odd, for r = d n2e − 2

and r = d n2e − 1, their corresponding intervals have the
same lower bounds d 2

n−1
+2

3 e. So d 2
n−1
+2

3 e ≤ m ≤ 2n−1

and d 2
n−1
+2

3 e ≤ m ≤ 2n−2 have overlaps. By Lemma 7,

if d 2
n−1
+2

3 e ≤ m ≤ 2n−2, we can show ξm(AQn) ≥

ξ2n−2 (AQn) = 2n. For any integer m, d 2
n−1
+2

3 e ≤ m ≤ 2n−1,
we have ξm(AQn) ≥ ξ2n−2 (AQn) = ξ2n−1 (AQn) = 2n, thus the
upper and lower bounds are sharp.

IV. THE g-EXTRA EDGE-CONNECTIVITY OF AUGMENTED
CUBE
In this section, we get a simple method for calculating the
g-extra edge-connectivity of augmented cube for 2b

n
2 c+r −

lr ≤ g ≤ 2b
n
2 c+r .

Theorem 1: Suppose 2b
n
2 c+r − lr ≤ g ≤ 2b

n
2 c+r , where

r = 1, 2, . . . , d n2e − 1 and lr = 22r+1−2
3 if n is odd and lr =

22r+2−4
3 if n is even, then

λg(AQn) = 2(d
n
2
e − r)2b

n
2 c+r . (6)

Proof: On the one hand, recall that the definition of
AQn[Lnm] and F = [Lnm,Lnm] the set of edges of AQn with
exactly one end vertex in Lnm and the other end in Lnm. Com-
bining with Lemmas 2 and 3, AQn[Lnm] and AQn[Lnm] are
connected. If |V (AQn[Lnm])| = 2b

n
2 c+r , |E(AQn[Lnm])| =

ex
2b

n
2 c+r

(AQn), then F is a g-extra edge-cut of AQn and |F | =

ξ
2b

n
2 c+r

(AQn) = (2n − 1)2b
n
2 c+r − ex

2b
n
2 c+r

(AQn). On the

other hand, for any 2b
n
2 c+r − lr ≤ g ≤ 2b

n
2 c+r , where r =

1, 2, . . . , d n2e − 1 and lr = 22r+1−2
3 if n is odd, lr = 22r+2−4

3

FIGURE 5. Many-to-many edge disjoint paths in two disjoint subgraphs
of AQ3.

if n is even, in view of Lemmas 5 and 7, and Remarks 1 and
2, the minimum value of {ξm(AQn) : 2b

n
2 c+r − lr ≤ g ≤ m ≤

2b
n
2 c+r } is ξ

2b
n
2 c+r

(AQn). Hence,

λg(AQn) = min{ξm(AQn) : g ≤ m ≤ 2n−1}

= min{ξm(AQn) : g ≤ m ≤ 2b
n
2 c+r }

= ξ
2b

n
2 c+r

(AQn)

= 2(d
n
2
e − r)2b

n
2 c+r .

The proof is completed. �
Based on this result, for 2b

n
2 c+r − lr ≤ g ≤ 2b

n
2 c+r ,

where r = 1, 2, . . . , d n2e − 1 and lr = 22r+1−2
3 if n is odd

and lr = 22r+2−4
3 if n is even, we can find the maximum

2(d n2e− r)2
b
n
2 c+r edge disjoint paths linking any two disjoint

connected subgraphs with just g vertices in AQn. In order to
understand this issue, we take an example, for n = 3, g = 2
and g = 3, there are 8 edge disjoint paths marked by different
colours except gray in two disjoint subgraphs of AQ3 shown
in Fig. 5.

Unexpectedly, we find that the g-extra edge-connectivity
of AQn exists a concentration behavior for some exponen-
tially large enough g on the interval length of lr , r =
1, 2, . . . , d n2e − 1 where lr = 22r+1−2

3 if n is odd and

lr = 22r+2−4
3 if n is even. For convenience, we define a set

Nr = {g : ξg(AQn) = ξ2b
n
2 c+r

(AQn) = 2(d n2e − r)2
b
n
2 c+r , n ≥

3, r = 1, 2, . . . , d n2e − 1} on this interval 2b
n
2 c+r − lr ≤ g ≤

2b
n
2 c+r . Taken n = 11 as an example, the Fig. 6 shows the set

Nr on the interval length of lr . From this bar, it can be seen
that as the integer r varies, the integer intervals exponentially
increase for fixed n.
This paper focuses on the g-extra edge-connectivity of the

n-dimensional augmented cube (n ≥ 3) for 2b
n
2 c+r−lr ≤ g ≤

2b
n
2 c+r . Because intervals ld n2 e−2 and ld n2 e−1 have the same

interval ld n2 e−2, so denote that s(n) =
∑d n2 e−1

r=1 lr − ld n2 e−2 is
sum of the number g for integer interval 2b

n
2 c+r − lr ≤ g ≤

2b
n
2 c+r , r = 1, 2, . . . , d n2e − 1 where lr = 22r+1−2

3 if n is
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FIGURE 6. The set Nr on the interval length of lr for n = 11.

FIGURE 7. The function R(n) for 3 ≤ n ≤ 50.

TABLE 3. The values s(n) and R(n) for 3 ≤ n ≤ 20.

odd and lr = 22r+2−4
3 if n is even. Let R(n) = s(n)/2n−1.

Then lim
n→∞

R(n) ≈ 0.7222. The function R(n) for 3 ≤ n ≤ 50
is shown in Fig. 7. We list the values of n, s(n) and R(n) for
3 ≤ n ≤ 20 in Table 3.

V. CONCLUDING REMARKS
The g-extra edge-connectivity is an important subject for
interconnection network’s ability to fault edges. The g-extra
edge-connectivity of G is defined as the maximum number
of edge disjoint paths connecting any two disjoint connected
subgraphs with g vertices in G. The problem of the g-extra
edge-connectivity of AQn is well-defined for each g ≤ 2n−1.
In this paper, we can obtain that for about 72.22 percent
values of g ≤ 2n−1, the g-extra edge-connectivity of AQn
(n ≥ 3) concentrate on several special ξ

2b
n
2 c+r

(AQn), for
r = 1, 2, . . . , d n2e − 1. More specially, we prove that the

values of the g-extra edge-connectivity of AQn are the con-
stants ξ

2b
n
2 c+r

(AQn) = 2(d n2e − r)2b
n
2 c+r for each integer

2b
n
2 c+r − lr ≤ g ≤ 2b

n
2 c+r , where r = 1, 2, . . . , d n2e − 1

and lr = 22r+1−2
3 if n is odd and lr = 22r+2−4

3 if n is even.
Our results provide a more accurate measure for evaluating
a large scale AQn network reliability and availability. Further
research will focus on considering g-extra edge-connectivity
of more generalized networks that also exist a concentration
behavior.
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