IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 13, 2021, accepted July 2, 2021, date of publication July 7, 2021, date of current version July 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3095405

A Small Target Detection Method Based on Deep
Learning With Considerate Feature and
Effectively Expanded Sample Size

JUN ZHANG ~, YIZHEN MENG, AND ZHIPENG CHEN

Department of Computer Science, Tangshan Normal University, Tangshan 063000, China
Corresponding author: Yizhen Meng (ru780065@ 163.com)

This work was supported in part by the Science and Technology Project of Hebei Education Department under Grant QN2020513, and in
part by the Scientific Research Foundation of Tangshan Normal University, China, under Grant 2021B24 and Grant 2020A04.

ABSTRACT As a basic task in the field of computer vision, target detection has been concerned by many
researchers. The performance of target detection method is also directly related to the research in many
advanced semantic fields. Current general target detection methods are not effective in small target detection,
so this paper studies the problem of small target detection and proposes a small target detection method
based on deep learning with considerate feature and effectively expanded sample size. Firstly, according to
the characteristics of convolutional neural network, we improve the current deep network architecture which
performs well in target detection, and introduce considerate multi-feature and multi-scale detection. Then,
we transform the high-resolution images obtained on the Internet by combining two groups of sampling
method, so that the feature distribution of the high-resolution target is closer to that of the low-resolution
target, thus effectively expanding the training data set, solving the problem that small target data is difficult
to be labeled and effectively avoiding overfitting. The results show the effectiveness of the improved method
in small target detection. In addition, in view of the shortage of small target detection review literature, this
paper gives a comprehensive and detailed introduction to the field of small target detection in terms of related

work and future work.

INDEX TERMS Deep learning, target detection, feature extraction, sample size, overfitting.

I. INTRODUCTION

Computer vision originated from the neural network tech-
nology in the 1980s, and has been rapidly developed in
recent years [1]. Computer vision is mainly used for image
classification [2], image detection [3] and image segmen-
tation [4] on behalf of human eyes. From the perspective
of engineering, it can achieve automation of tasks based on
human vision. Target detection is a fundamental computer
vision task that combines two tasks, i.e., target localization
and target recognition. Its purpose is to find several targets
in the complex background of an image, to give an accu-
rate target bounding box, and to determine the category to
which the targets in that box belong [5]. The effect of target
detection directly determines the effect of many high-level
vision tasks such as image semantic understanding and target
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re-identification, and it has good application prospects in
intelligent surveillance systems, medical image analysis, etc.,
so its research has strong theoretical and application values.
In conclusion, target detection has been one of the several
research directions that have received much attention in the
field of computer vision. As shown Figure 1, in which shows
some detection results of plain targets.

Small target detection has a wide range of important appli-
cations in many fields [6]. For example, in the field of
autonomous driving, the pedestrian target or traffic sign in
the high-resolution scene photos collected by the car is too
small, but the accurate detection of these small targets is an
important prerequisite to achieve safe autonomous driving.
In the field of medicine, the successful detection of small
masses in medical images is an important prerequisite for the
early and accurate diagnosis of tumors. Automatic industrial
inspection locating small defects on the surface of mate-
rials also shows the importance of small target detection.
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FIGURE 1. The plain target detection instance.

The analysis of satellite images needs to effectively annotate
objects such as cars, boats and houses that are too small to
be detected. In the criminal investigation images, abnormal
small packages, small pedestrians, small pendants inside the
car, small signs on the clothes, some indoor decorations, etc.,
are the key clues to solve the case. Because more complex
systems are deployed in the real world, small target detection
is of great value. There are two main definitions about small
target [7]. The first is absolutely small object. It is specified
inthe COCO data set [8] that when the number of pixel points
of an object is less than 32 x 32, the object can be regarded as a
small object, as shown in Figure 2. The second is a relatively
small object, which can be considered as a relatively small
object when the target size is less than 0.1 times the size of
the original image in terms of the length and width of the
original image, as shown in Figure 3.

Most of the early target detection algorithms are built based
on manual features. As shown in Figure 4, the basic idea is
to first look for the areas where the target may exist in the
input original image, then extract the features of each area
and send them into the classifier model for judgment, and
finally screen the areas considered as targets by the classifier
model for post-processing operations to obtain the results.
In the absence of an effective image representation at the
time, there was no choice but to design complex feature
representations and use various acceleration techniques to use
up limited computational resources. Since AlexNet proposed
by Krizhevsky et al. [9] achieved significant improvement
in the accuracy of IMAGENET image classification task,
various deep learning methods represented by convolutional
neural network (CNN) have been widely used in many vision
tasks, which also include target detection. Since deep learning
methods usually achieve better results than traditional man-
ual feature-based methods, deep learning methods have now
become mainstream in the direction of target detection, and
most of the research work is centered on CNNS.

However, even though these deep learning-based methods
achieve good results on a generic target detection dataset, they
still do not solve the problem of small target detection well.
For example, Figure 5 is the result of small target detection
about excavator using the proposed method, while the general
target detection method cannot be completed at all.

There are 2 main difficulties in small target detection.

(1) When the target occupies a very small percentage in the
image, the amount of information reflected by the pixels in
the corresponding region is very limited. In the extreme case,
the small target detection task may even degenerate into a
pixel classification task. This makes it difficult to apply some
general-purpose target detection algorithms to small target
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FIGURE 3. The relatively small target.
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FIGURE 4. The traditional target detection pipeline.
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FIGURE 5. Our small target detection partial results.

detection, while some algorithms designed specifically for
small target detection can only be used for specific applica-
tion contexts and lack generality.

(2) The small targets in the labeled images are prone to
errors when used as training data, and subtle errors can easily
have a large impact on the detection results when the targets
themselves are already small, and the labor cost of labeling
the data is also high [10], so there is not a large and com-
plete dataset for small target detection research so far, which
hinders the academic research on small target detection.
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To address the above problems, a small target detection
method based on deep learning with considerate feature
and effectively expanded sample size is proposed in this
paper. This method modifies the network structure accord-
ing to the characteristic of CNN, so that the network can
use both low-level and high-level features for multi-feature
and multi-scale detection. In addition, this paper uses the
high-resolution large target images obtained from online
search engine crawlers for training to solve the problem
of lacking small target training data and avoid overfitting.
Since the data distribution of the high-resolution large-target
training image and the low-resolution small-target test image
are very different, the problem is analyzed by visualization
and then the differences between the training image and
the test image are eliminated as much as possible using the
downsampling and upsampling methods. The experiments
show that the proposed method can indeed solve the prob-
lem of small target detection better. Finally, in view of the
shortage of small target detection review literature, this paper
completes it in two aspects of relevant work and future work.
Specifically, the main contributions of this paper include:

(1) To address the shortcomings of Faster-RCNN in small
target detection, a generic network structure modification rule
is proposed. Concretely, multi-feature and multi-scale detec-
tion are performed using low-level and high-level features to
improve the accuracy of small target detection.

(2) By downsampling and upsampling the target high-
resolution image, the distribution of the data obtained online
is as close as possible to the actual test data, solving the
problem of lacking small target training data.

(3) Although it is a scientific paper with a research nature,
our related and future work, especially in small target detec-
tion method about deep learning technology, is comprehen-
sive and detailed.

Il. RELATED WORKS

Current target detection methods are mainly divided into
two categories: target detection methods based on traditional
artificial features and target detection methods based on deep
learning. In the following, we will introduce these two aspects
separately, in which traditional machine learning methods
only list several very representative methods, while for deep
learning, we will expand the mainstream methods and related
improvements and skills related to small target detection
methods in more detail.

A. TRADITIONAL TARGET DETECTION ALGORITHM

1) VJ-DETECTOR

In 2001, Viola and Jones designed an efficient face detector,
which was dozens of times faster than other detectors at
the time. This was a milestone in the development of face
detection and computer vision. In honor of this work, it was
named Viola Jones (VJ) detector [11], [12]. The VJ-detector
adopts the detection method of sliding window, uses Haar
feature to describe each window, and introduces the integral
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graph to accelerate the extraction of Haar feature, so that
the computational complexity of each window is independent
of the window size. Adaboost algorithm [13] is combined
for feature selection, and the idea of cascading is intro-
duced. In this way, the computation of background window
is reduced and the computation of face target is increased,
and the computation scale is reduced while the accuracy is
improved.

2) HOG FEATURE

Histogram of Oriented Gradient (HOG) feature [14] was
originally a local feature proposed by Dalal et al for pedes-
trian detection. As the name implies, HOG feature accumu-
lates the gradient values in different directions in a certain
area of an image to form a histogram, which serves as the
feature of this area. HOG feature can better extract the local
details of the image, and has good feature invariance in the
case of image geometry, deformation, optical distortion, etc.
Therefore, HOG feature has been the basis of many target
detectors and various computer vision systems for many
years.

3) DPM

In view of the poor performance of HOG feature in handling
the occlusion problem, Felzenszwalb ef al. [15] proposed
Deformable Part Model (DPM) algorithm in 2008, and then
combined with Felzenszwalb et al., made various improve-
ments [16]-[18]. They performed well at that time and won
the VOC Challenge 2007, 2008, and 2009 continuously.
DPM algorithm adopts a divide-and-conquer idea, which can
regard the training and detection process as the collection
of learning and detection of each component of the object.
It also improves HOG feature, cancelling the block in the
HOG feature and retaining only the unit. In the subsequent
improvement, it combined some other important technical
ideas to improve the accuracy, such as hard case mining,
boundary box, regression, etc., which still has a profound
impact on the present.

B. TARGET DETECTION ALGORITHM BASED ON DEEP
LEARNING

In view of the main technical difficulties of traditional
machine learning methods mentioned above in small target
detection, many scholars have begun to study the improve-
ment and skills of deep learning-based target detection tech-
nology in small target detection methods.

1) PRINCIPAL METHOD

Regional Convolutional Neural Network (RCNN) [3], [8], [9]
is a representative work on target detection using deep learn-

ing methods. The RCNN proposed by Lin er al. [8] is a

pioneering combination of candidate region generation and

deep learning classification methods. RCNN generates some

candidate regions by over-segmentation [10], and then uses

CNN to extract features for each candidate region separately,

and finally sends them to the classifier to determine the class
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and regress the edges. This method is very slow because of the
repeated convolution of different candidate regions. Learned
from the spatial pyramid pooling network (SPPNet) proposed
by Viola et al. [11] and the localization idea proposed by
Viola et al. [12], Krizhevsky et al. [9] proposed Fast-RCNN.
This method introduces region of interest pooling (ROI pool-
ing) on the basis of RCNN, which is actually a single-layer
pyramid pooling layer that allows the network to generate
features of the same size for different sizes of input images,
ensuring the dimensional invariance of the input images.
It also extracts the features of the candidate regions directly
on the feature map of the whole image by the feature mapping
method, which avoids repeated convolution and outperforms
RCNN in terms of accuracy and speed. After Fast-RCNN,
the main constraint on the speed of this method becomes
the over-segmentation used for candidate region generation.
Subsequently, Ren et al. [19] proposed Faster-RCNN on the
basis of Fast-RCNN. This method uses anchor to generate
candidate regions and leaves the candidate region genera-
tion to the deep network, which further improves the speed
and accuracy. So far, the use of deep learning for target
detection is unified by RCNN into a deep framework. After
RCNN, Redmon ef al. [25] proposed a faster target detection
method, i.e., YOLO (you only look once). YOLO differs
from RCNN in that it treats target detection as a regression
problem by directly regressing the target bounding box and
the class to which it belongs on the divided grid. Because the
complex and time-consuming candidate region generation is
eliminated, YOLO is very fast, but its detection accuracy is
low and its generalization ability is weak for very close or
small targets. Combining the anchor idea of RCNN and the
regression idea of YOLO, Liu et al. [26] proposed the SSD
(single shot multi-box detector). SSD has the advantages of
accurate localization of RCNN and fast speed of YOLO, and
because of the introduction of multi-scale detection [27],
it has a better detection effect for targets of different sizes.
The detection speed and accuracy are further improved.

These three types of methods mentioned above have good
accuracy for the general target detection problem, however,
the detection accuracy for small targets is not satisfactory for
all of them. In fact, the targets that are not detected by these
methods are often not some complex targets, but some smaller
targets, such as the bottle in the PASCAL VOC dataset [10].
This indicates that it is not the lack of learning and representa-
tion ability of the deep network, but the information that can
be represented by the small target features extracted by the
deep network is too little [28].

In addition, there are some researchers who have specifi-
cally studied the detection of small targets. Takeki et al. [29]
proposed a small target detection method combining image
semantic segmentation, which combines the fully convolu-
tional network (FCN) and its variants with the CNN to inte-
grate the results of all three with support vector machine
(SVM). However, this method is only applicable to the task
of detecting small birds in a pure sky background, and it is
difficult to apply to the task of detecting multiple types of
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targets in complex backgrounds. Chen et al. [30] improved
RCNN so that RCNN can generate smaller candidate regions,
which is a great improvement to RCNN for the task of small
target detection, but the complexity of the algorithm is high.
Eggerteral. [31]alsoimproved RCNN, and they investigated
the relationship between feature map resolution and detection
effectiveness. In the context of the problem of company logo
detection, the improved anchor box generation method is
used to improve the effectiveness of RCNN for detection
using high-resolution feature map.

It can be seen that although some work has been done for
small target detection, those methods can only be used in
the context of specific problems or are less effective than the
previous three methods for general target detection and lack
some generality.

2) TIP1: 10U THRESHOLD MATCHING
Intersection over Union (IOU) refers to the ratio of intersec-
tion and union between the predicted bounding box and the
real bounding box. that is, the overlap degree [32] between
the object bounding box and the ground truth. IOU is defined
as a standard to measure the accuracy of object positioning.
In target detection, the threshold of IOU is set to 0.5 by
default, that is, as long as IOU is greater than or equal to 0.5,
it will be considered as a positive sample. If the IOU threshold
is set low, the quality of samples is difficult to guarantee;
In order to obtain high-quality positive samples, the IOU
threshold can be increased. However, the number of samples
will decrease, resulting in imbalance [33] of positive and
negative samples, and higher IOU threshold is easy to lose
small-scale target boxes.

To solve the above problems, literature [34] proposed
a multi-stage cascade structure. By continuously increasing
the threshold value of IOU, it can ensure the number of
samples without affecting the quality of samples. Finally,
a high-quality cascade R-CNN detector is trained. The
IOU thresholds of candidate boxes are gradually increased
(the thresholds are 0.5, 0.6 and 0.7 respectively) in three
detection model stages. When the candidate box threshold is
close to the training threshold, the sample will get closer to the
ground truth value to adapt to the multi-level distribution with
each regression. Therefore, the candidate box resampled in
the previous stage can be more suitable for the next stage, and
samples meeting the corresponding threshold can be obtained
while solving the over-fitting in training. Experiments show
that the cascade R-CNN structure is used on the reference
detector to achieve good detection results on the MS COCO
data set, and the detection accuracy for small targets is also
improved. At the same time, Liu er al. [35] also proposed
the idea of improving small target pedestrian detection by
increasing IOU threshold. In SSD-based pedestrian detec-
tion, a single IOU threshold is used for training to define
positive and negative samples. To avoid the limitations of
a single-stage detector, the ALF module is proposed. The
idea of cascade network is used for multi-step prediction
to gradually locate, and a network base on that ResNet-50.
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The original image is sampled at 8, 16, 32 and 64 times
to extract multi-scale feature maps. The regression anchor
frame is used instead of the default anchor frame optimization
predictor in each stage, and multiple positioning models are
trained by using the continuously increasing IOU threshold to
generate more accurate positioning, thus solving the limita-
tion of single-stage detection model SSD on pedestrian detec-
tion and improving the detection performance of small-scale
pedestrians.

According to the cascade idea, the above two methods can
obtain high-quality positive samples by continuously increas-
ing the IOU threshold, which can improve the detection effect
of small targets to a certain extent. However, the number
of matched anchors decreases, resulting in missed detection
with the continuous increase of the IOU threshold. The IOU
threshold is reduced from 0.5 to 0.35 in literature [36], and
the method of reducing the threshold is used to ensure that
each target can have enough anchor frame detection. At the
same time, in order to solve the problem that the sample
quality cannot be guaranteed due to the increase of positive
samples, the method of maximizing background label is pro-
posed. In the lowest level classification, the background is
divided into multiple categories instead of two categories.
Anchors with IOU greater than 0.1 are sorted, and the back-
ground value is predicted three times for each box. The
maximum value in the background probability is taken as the
final background. By improving the classification difficulty,
the problem that the quality of positive samples cannot be
guaranteed is solved and the detection accuracy of small
targets is improved. However, this method may lead to the
problem that the IOU threshold is too low, resulting in too
many invalid positive samples, which leads to an increase in
the false detection rate.

For different detection tasks, if there is little difference
between the scales of the targets to be detected, that is,
most of the targets in the data set are of the same scale,
the IOU threshold can be appropriately lowered before selec-
tion, so as to extract the features of small targets to the
greatest extent. In practical application, the detection in the
same scene cannot only contain targets of a single scale,
and there is a large difference in the scale span of different
targets. If the IOU threshold is fixed for unified detection and
screening, the problem of sample imbalance will be brought
about, and the features of small targets are most likely to be
discarded by the strict IOU threshold. Therefore, it is more
universal to set dynamic IOU threshold as target detection
of different scales. It is dynamically adjusted according to
different sample numbers. When the number of negative sam-
ples is too high, the IOU threshold is continuously increased
to balance the number of samples, thus avoiding missed
detection caused by directly setting too high IOU threshold
and the trained model has stronger generalization.

3) TIP2: ANCHOR FRAME DESIGN
In the introduction, it is mentioned that most of the traditional
target detection algorithms are affected by sliding windows,
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which need to traverse sliding windows position by position
to generate different preset borders. With the emergence of
deep learning, anchor frame was initially applied to Faster
RCNN [37] model, which to some extent solved the dis-
advantages of low efficiency caused by traversing sliding
windows. When the Faster RCNN model uses RPN (region
proposal networks) to generate candidate detection boxes, an
anchor with a minimum scale of 128 x 128 and the average
size of the candidate box is more than 100 x 100. That is,
the set minimum anchor is much larger than the small target
to be detected. However, if the input image is considered to
be enlarged to match the Anchor in order to detect the small
target, the large target may be continuously enlarged so that
there is no corresponding Anchor for detection. Therefore,
Faster RCNN considers the detection of targets of different
scales and the designed Anchor should cover all targets in the
training set as much as possible. That is, each target can be
matched to one or more Anchors.

With the advent of anchor frame technology, anchor has
been widely used in mainstream target detection networks
such as SSD and YOLO. In order to better detect small
targets, SSD designs anchors with different sizes for different
convolution layers. For shallow convolution conv4_3, 6 small
anchors with different scales of 60 are used, and for deep
convolution convl0_2 and convl1_2, 4 large anchors with
different scales of {228, 270} are used. Through this method
of setting anchor according to the size of the target in training,
taking into account the small and dense anchor owned by the
small target and the large and sparse anchor owned by the
large target, SSD obtains better small target detection results
than Faster RCNN. YOLO uses the data of the full connection
layer to complete border prediction [38], and regards object
detection as a regression problem. However, YOLO will lead
to the loss of more spatial information, resulting in inaccu-
rate positioning, and is not good at detecting dense small
objects. YOLOv2 [39] abandons the full connection layer
and introduces anchor mechanism to predict bounding box.
In order to effectively reduce the initial loss, YOLOv2 did not
directly use manual design of anchor frame size, but clustered
the training set through K-means algorithm [40]. Through
clustering, the anchor frame size which is more in line with
the target size distribution characteristics in the data set is
found, which reduces the difficulty of border regression to
a certain extent, converges faster, and is more conducive to
network training. YOLOv3 [41] also uses clustering to obtain
9 anchors instead of 5 anchors of YOLOV2, and the size of
the small anchor frame on the feature map can be as small
as 10 x 13. Through clustering, the complexity of the model
and the IOU area are balanced, and the detection performance
of small objects is improved. Since then, YOLOv4 has also
borrowed the anchor frame mechanism of YOLOV3.

In addition, anchor is also used in the improved algorithm
of mainstream target detection framework to improve the
accuracy of small target detection. The SNIP framework [42]
filters anchor by analyzing the relationship between the
small-scale target and the scale of the pre-training model.
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If the ground truth box is located in a given candidate area
range, it is judged to be a valid box. Otherwise, it is an invalid
box; If the overlap between an anchor and an invalid box
exceeds 0.3, the anchor is determined to be an invalid anchor.
At the same time, SNIP introduces multi-scale training,
corresponding to three different resolution images. During
training, invalid anchor is not backpropagated, but targets of
appropriate size are selectively selected for gradient update.
Therefore, small targets always have the opportunity to par-
ticipate in training within the appropriate scale range, so as
to realize the normalization of target scale and features and
improve the detection effect of small-scale objects. In order
to improve the recall rate of small targets, literature [43] also
proposes a new dense anchor frame strategy. Specifically,
Adensity — pscalejpinterval - here Adensity represents the den-
sity of anchor, Ascale represents the anchor scale, and Alnterval
represents the anchor interval. Aseale 530 %32, 64 x 64, 128 x
128,256 x 256, 512 x 512 respectively, and Ai"e™al js 32 32,
32, 64, 128 by default, then Adensity jg 1. 2.4, 4, 4, Obviously,
the density of anchor is different at different scales, and the
small-scale anchor frame in shallow network is sparser than
the large-scale anchor frame in deep network. Aiming at the
problem of unbalanced anchor frame density, the shallow
small anchor frame is densified. For example, the 32 x 32
small-scale anchor is densified four times to ensure that the
Anchor of different scales has the same density, so as to
improve the recall rate of small-scale targets. Literature [44]
also starts from anchor’s point of view, the sampling step size
of anchor related to feature mapping is reduced by increasing
the feature mapping scale in the network model and the
anchor density is increased around the original predefined
anchor center. The number of anchors matching with the
small target ground truth is increased, thus making up for
the deficiency of poor detection performance for small tar-
gets. Literature [36] points out that the detection effect of
small target face based on anchor is not ideal, i.e., there is a
mismatch problem between receptive field, designed anchor
and small target face, and the size of small target is much
smaller than the designed anchor. Since the size of anchor
is not continuous while the size of face is continuous, the
number of anchor available within a certain set range will
be reduced, and too small or too large targets cannot match
enough anchor. If anchor is added blindly to detect small
targets, the increase in the number of negative samples is
not ideal for the detection effect. Therefore, anchors with
different scales are set for different feature layers to solve the
problem of lack of available anchors, the size of anchor is
adjusted at equal proportional intervals to set the size from
16 to 512. The size value of anchor can roughly cover the
range of effective receptive fields, ensuring that each feature
layer has a corresponding anchor, and satisfying that targets
of different sizes can be matched to appropriate anchor for
detection.

Anchor frame design is widely used in small target detec-
tion. By designing an anchor frame that is more in line with
the target size distribution characteristics in the data set,
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the scale value of the anchor frame matches the range of the
effective receptive field as much as possible, thus improving
the recall rate of small targets and improving the detection
effect of small targets. However, the anchor frame suitable for
detecting one small target may not be suitable for detecting
other small targets because the small target detection scene is
usually complex and there are many types of small targets;
However, if the number of anchor frames is increased to
detect small targets of different types and sizes, the number
of negative samples will increase, resulting in an increase in
the false detection rate.

4) TIP3: NARROWING TARGET DIFFERENCES

In 2014, the core idea of GAN (Generative Adversarial Net)
put forward by Wang et al. [45] originated from Nash equi-
librium of game theory. GAN has become a hot research
direction in the field of deep learning in recent two years, and
is widely used in image super-division reconstruction [46],
representation learning [47], style transfer [48] and other
tasks. GAN network mainly consists of two parts: Genera-
tor (G) and Discriminator (D), each of which has its own role
in the game.

For detecting small targets, literature [49] proposes to use
Perceptual GAN to enhance the feature expression of small
targets. The traditional generator in GAN learns the map-
ping from noise distribution to data, while Perceptual GAN
is responsible for finding structural associations between
objects of different scales. In the generator, the original
poor small target features are converted into super-resolution
expression forms by introducing low-level fine granularity
features so that the generator can generate large-scale targets
from fake small-scale targets, and reduce the representation
differences between objects. Make small objects and large
objects have similar feature representations; The discrimi-
nator is used to distinguish whether it is a real object fea-
ture or a feature generated by the generator. The alternate
training of the two sub-networks finally achieves a balance,
which improves the detection accuracy of small targets in
the detection of the Tsinghua-Tencent 100K traffic sign data
set [50] and the Caltech pedestrian data set [51], and which
has excellent results.

In addition, literature [52] proposes a multi-task genera-
tive countermeasure network MTGAN to detect small targets.
This framework can be applied to any existing detector. The
generator G generates high-quality images with the help of
super-resolution network, and the discriminator D discrimi-
nates whether it is a real picture or a super-divided picture.
At the same time, the classification loss and regression loss
of the discriminator D return to the generator through back
propagation, prompting the generator G to have more detailed
information of small object images. The two compete with the
training method of learning through alternate iteration until
the data generated by G is false and true, which makes D
unable to distinguish accurately. The AP value of MTGAN
in small target detection is increased by 1.5% compared with
baseline detectors Faster RCNNand Mask-RCNN [53].
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So as to improve the effect of small target detection, images
with high resolution and obvious feature information of small
targets can be obtained with the help of GAN network,
and the scale of data sets can be increased. However, using
GAN network to detect small targets may lead to unstable
training. Specifically, if some features in the result generated
by G are approved by D at a certain time, G will think that the
output is correct and will continue to output similar results.
In fact, the result generated by G is not good, resulting in
incomplete missing features in the final generated result and
poor detection effect. Therefore, the GAN network is used
for small target detection. It is suitable for scenes with single
type of small targets and obvious feature information.

5) TIP4: HYPERPARAMETER TUNNING
Model parameters based on depth learning are mainly divided
into parameters and hyperparameters. Parameters are usu-
ally automatically obtained from data and do not need to
be manually set, while hyperparameters are configuration
variables outside the model and usually need to be manually
set. Hyperparameters mainly include learning rate, batch size,
iteration times (epoch), number of hidden layers, selection
of activation function, adjustable coefficient of partial loss
function and regularization coefficient, etc. Hyperparameter
optimization is a key step in target detection based on depth
learning. It is even more necessary to select the optimal
hyperparameter by means of parameter optimization combi-
nation in small target detection, so as to give full play to the
maximum performance and better detection of small targets.
At present, according to the implementation mechanism
and advantages and disadvantages, there are four methods of
hyperparameter tuning, i.e., manual adjustment, grid search,
random search and Bayesian optimization algorithm. Com-
pared with manual adjustment methods that require some
knowledge and previous experience, the automatic hyperpa-
rameter optimization method can more effectively select the
relatively better super-parameter combination for the model.
However, most of the existing automatic hyperparameter
optimization cannot get rid of the fixed network model struc-
ture and data set. The adaptive adjustment has the problem
that the optimal hyperparameter combination obtained in one
small target detection model may not be applicable to another
small target detection model, and the specific model still
needs to be optimized.

ill. THE PROPOSED METHOD
A. MULTI-FEATURE AND MULTI-SCALE DETECTION
In a multi-layer convolutional neural network, the features
in the lower layers tend to represent the detailed information
of the texture and edges of the image well, while the higher
up the hierarchy, as the receptive field of neurons expands,
the features in the higher layers tend to represent the semantic
information of the image well, but accordingly some detailed
information is ignored [54].

When the target is very small, the semantic information
that can be reflected from only pixels is very limited, and
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targets that are too small do not require neurons with large
receptive fields at all, so we generally have to rely more on
detailed information from the lower layers in order to identify
small targets. To prove this conclusion, we use gradient ascent
to reconstruct the image features [55] as a way to visual-
ize how the features of small targets extracted by different
layers of the deep network differ. As shown in Figure 6-8,
the excavator in the border in Figure 6 is a small target to be
detected, and we extract its features through the VGG16 net-
work and reconstruct the image with the features extracted
from the convl_2 and conv5_3 layers; Figure 7 is the result
of reconstructing the features in the convl_2 layer of the
VGGI16 network, and it can be clearly seen as an excavator;
while Figure 8 is the result of reconstructing the image with
the VGG16 network conv5_3 layer features, and only the
outline can be seen. Therefore, for the problem of small target
detection, the low-level features of the CNN are often more
effective than the high-level features.

FIGURE 6. The image with small target.

FIGURE 7. The reconstructed result using the conv1_2 layer of VGG16.

FIGURE 8. The reconstructed result using the conv5_3 layer of VGG16.

In the original Faster-RCNN approach, candidate regions
are generated by the RPN, and the features of the candidate
regions are obtained by pooling the target regions by the
last convolutional layer only, and there are obviously more
problems in detecting small targets using such high-level fea-
tures. Therefore, we introduce multi-feature and multi-scale
detection to Faster-RCNN, i.e., instead of relying on the
feature map of the last layer alone for detection, we gen-
erate candidate regions for multiple scales of feature map
in the network. The specific process is shown in Figure 8.
The input image is extracted by a CNN, and the multiple
feature map of different scales extracted from different lay-
ers are sent to their respective RPNs to generate candidate
regions, and the RPNs corresponding to different scales are
different, because the receptive field of the neurons in the
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lower layers is small, the corresponding anchor box size
should also be small, so the lower the features of the lower
layers the smaller the candidate regions are. The specific
anchor settings will be explained in detail in the experimental
section IV. After getting the generated candidate regions,
the feature map mapping is obtained, and then the features
are turned into uniform size by ROI pooling and finally fed
into the classifier, so that the low-level features can be fully
utilized for the detection of small targets. Such a structure
is applicable to different feature networks, and we improve
Faster-RCNN method using two feature networks, ZF [56]
and VGG16 [57], respectively, in the experimental part. For
the ZF network, the outputs of the three layers convl, conv2,
and conv5 are fed into the candidate region generation net-
work and the ROI pooling layer for multi-scale detection. For
the VGG16 network, the outputs of the five layers convl_2,
conv2_2, conv3_3, conv4_3, and conv5_3 are fed into the
candidate region generation network and the ROI pooling
layer for multi-scale detection. The other specific parameter
settings will be explained in the section IV.

B. EFFECTIVE TRAINING DATA TRANSFORMATION

The improvement of the network structure solves the problem
that it is difficult to detect small targets using only high-level
network features. Aiming at the problems of small targets
that are difficult to label and lack of training samples, we use
images obtained from the Internet as the training data, a total
of 7804 images. However, images retrieved by search engine
keywords tend to be subject to targets. Compared with small
targets in the test images, the targets in these images have
higher resolution. For example, what we retrieve by excavator
are generally images with excavator as the main body, and
the target of the excavator occupies a very large proportion
of the image, while the proportion of the target in the test
image is very small. The number of pixels between the two is
not the same, and the amount of information reflected is also
not the same, so there may be differences in the distribution
of data. As shown in Figure 10-12. Figure 10 shows some
of the training images of large targets acquired online with
high resolution, Figure 11 shows the training images after
sampling and processing, and Figure 12 show some of the
test images for small target detection.

To show that the distribution between high-resolution (HR)
targets and low-resolution (LR) targets does differ, we use
the method from T-SNE [58] to reduce the target features
in these two types of images. We validate with the original
Faster-RCNN structure, and the feature extraction network is
VGG16. We train the network with the target low-resolution
image, and then test it with the target low-resolution image
and the target high-resolution image. The feature vectors
of the same size obtained after the ROI pooling layer are
reduced in the dimensionality and the visualization results
are shown in Figure 13, where the purple dots represent
the low-resolution target and the blue crosses represent the
high-resolution target, which shows that there is indeed a
great difference between the two.
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FIGURE 9. The flowchart of proposed method.

FIGURE 10. The image taken from the internet.

To address such a distribution difference, we prepro-
cess the training data using downsampling and upsampling.
The used downsampling methods include maximum pool-
ing and average pooling, which reduces the information of
the high-resolution images. The used upsampling methods
include linear interpolation, region interpolation and near-
est neighbor interpolation, which reduces the image to its
original size and introduces some noise. From the visual
point of view, the sampled training image is more similar to
the test image. We have experimented with the combination
of these six sampling methods in the section IV and the
training images after the best sampling method are shown in
the Figure 10. The experiments demonstrate that downsam-
pling and upsampling can effectively improve the detection
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FIGURE 13. The feature distribution of high-resolution targets and
low-resolution targets.

accuracy of the model trained with high-resolution target
images to detect low-resolution target images. The effects
of different downsampling and upsampling methods on the
detection results are explained in the section I'V.

IV. EXPERIMENT

A. EXPERIMENTAL SETUP

The data set used in the experiment consists of two parts,
and the small target for detection is the excavator. One part
comes from the images taken by the monitoring cameras on
the towers of the base station, with a total of 15,477 images,
in which the excavators are usually very small; the other
part comes from the high-resolution images of large targets
obtained by searching the keyword excavator through the
search engine, with a total of 7804 images, in which the
excavators are usually large, as shown in Figure 9.

In order to compare the accuracy of the methods, two back-
bone networks, ZF and VGG16, are used as feature extraction
networks for the experiments. Because the detection target
is an excavator, the scale parameters of the anchor box are
set to 0.7, 1, 1.4. Each scale of feature map corresponds to a
different anchor size of the candidate region generation net-
work. For the ZF network: the scale parameters of conv1 layer
are 2, 4, 8; the scale parameters of conv2 layer are 4, 8, 16;
the scale parameters of conv5 layer are 8, 16, 32. For the
VGG16 network: the scale parameters corresponding to the
convl_2 layer are 2, 4; the scale parameters corresponding to
the conv2_2 layer are 4, 8; the scale parameters corresponding
to the conv3_3 layer are 4, 8; the scale parameters corre-
sponding to the conv4_3 layer are 8, 16; the scale parameters

VOLUME 9, 2021

corresponding to the conv5_3 layer are 8, 16. The rest of the
parameters are the same as the original Faster-RCNN.

In order to compare the computational complexity of
the methods, the following settings were made based on
the experimental setup for comparing the accuracy. For the
ZF network, the complexity of the methods using only the
convl feature, the conv2 feature, the conv5 feature and all
three at the same time were tested separately. For the VGG
network, the complexity of the method with only the conv1l_2
feature, the conv2_2 feature, the conv5_3 feature and all three
at the same time is tested separately. The average detection
time of a single image is used as the evaluation index of the
computational complexity, and s(second) is used as the unit.

B. THE EXPERIMENT RESULT AND ITS ANALYSIS

The target low-resolution dataset was divided into 2 parts,
i.e., 7739 for evaluating the model performance and 7738 for
training alone or with the target high-resolution images for
training, and the detection results obtained under different
feature networks are shown in TABLE 1.

TABLE 1. Comparison of modified method and conventional method.

Method ZF  MFMS- VGG MFMS-
ZF 16 VGG16
High 12.2 20.7 17.2 30.4
resolution
Low 50.2 57.4 54.1 58.7
resolution
Low & High 46.7 48.7 50.2 514
resolution

The first column indicates the used network structure,
and those with MFMS prefix indicate the improved model
using our multi-feature and multi-scale detection. After that,
the first row of each column denotes the training data.
High resolution denotes the target high-resolution images
obtained from the web, Low resolution denotes the 7738 tar-
get low-resolution images used for training, and the rest of
the values denote the detection accuracy of the model trained
under the corresponding data, respectively. The metric is
mean average precision (mAP), which in this case is actually
the AP of the excavator.

From TABLE 1, the following conclusions can be drawn:

(1) The detection accuracy of small targets can be effec-
tively improved by using the method of multi-feature and
multi-scale detection regardless of whether high-resolution
images or low-resolution images are used as training
data, which indicates that the method of multi-feature and
multi-scale detection combining low-level and high-level fea-
tures in deep networks is indeed feasible.

(2) The detection effect of the model using only high-
resolution images as training data is poor, and the detection
effect of the model using only low-resolution images as
training data is better, while the performance is compromised
when the two are combined, which indicates that it is not
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possible to train directly using high-resolution images of
targets obtained online, and the differences existing between
the training set and the test set, i.e., the differences between
high-resolution targets and low-resolution targets, must be
resolved if we want to use this part of the data.

The average detection time of 7739 test images was used
as a metric to evaluate the computational complexity, and the
detection results obtained under different feature networks
are shown in TABLE 2.

TABLE 2. Performance comparison of different layers.

Layer ZF VGG16
Convl 0.357 0.484
Conv2 0.224 0.354
Conv5 0.072 0.081
All 0.613 0.757

The first row indicates the network structure used in the
model, and then the first column of each row indicates which
layer of features is used for testing, and ALL indicates that
all three features are used. For better illustration, VGG’s
convl_2, conv2_2 and conv5_3 are abbreviated as convl,
conv2, and conv5, respectively.

From TABLE 2, the following conclusions can be drawn:

(1) The average detection time using high-level features is
less when only one feature is used for detection, which indi-
cates that large low-level features, although suitable for small
target detection, bring additional computational overhead.

(2) The increased computational overhead of using multi-
ple features at the same time is still within an acceptable range
for tasks with low real-time requirements.

The new training data is obtained by downsampling and
upsampling the target high-resolution image, and the detec-
tion accuracy of the model trained with the new data is shown
in TABLE 3.

The meanings of the characters in TABLE 3 are basically
the same as those in TABLE 1. The two suffixes after the
training data high-resolution/low-resolution indicate differ-
ent combinations of downsampling and upsampling opera-
tions, and the first suffixes Max and Average denote the two
downsampling methods of max pooling and average pooling,
respectively, with a pooling operation window of 2 x 2 and a
sliding step of 2. The second suffixes Area, Linear, and Near-
est denote the three upsampling methods of area interpola-
tion, linear interpolation, and nearest neighbor interpolation,
respectively.

From TABLE 3, it can be seen that:

(1) The accuracy of the model trained from the target
high-resolution image can be significantly improved by sim-
ply downsampling, which indicates that the downsampling
approach can eliminate to some extent the effect of data
differences between the target high-resolution image and the
target low-resolution image.
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TABLE 3. Performance comparison of different layers.

Method MFMS- MFMS-
ZF VGG16
High resolution 20.7 304
Low resolution 57.4 58.7
Low resolution 58.5 61.4
+High resolution-
Max-Linear
High resolution- 47.2 51.9
Max
High resolution 47.7 51.5
-Max-Average
High resolution 49.5 54.9
-Max-Linear
High resolution 45.7 49.5
-Max-Nearest
High resolution 433 43.4
-Average
High resolution 42.7 43.1
-Average-Area
High resolution 43.8 46.0
-Average-Linear
High resolution 36.7 37.9

-Average-Nearest

(2) Max pooling is generally better than average pooling in
the context of such a problem.

(3) The use of linear interpolation upsampling on top
of downsampling can slightly improve the accuracy of the
model, for reasons that cannot yet be explained theoretically,
but may be due to the fact that this adds noise and prevents
over-fitting to some extent.

(4) The detection accuracy of the model trained by com-
bining the sampled transformed target high-resolution image
and the target low-resolution image is higher, and instead of
decreasing in accuracy like in TABLE 1, the accuracy has
been improved, which shows that the sampling transforma-
tion of the target high-resolution image can indeed eliminate
the effect of the difference between the target high-resolution
image and the target low-resolution image data. In the case
that the small target detection data is difficult to label and
the training data is lacking, the amount of training data can
be increased in this way simply and quickly to improve the
detection accuracy. Some of the detection results are shown
in Figure 14.

FIGURE 14. Our small target detection partial results.
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Similarly, to show that the sampling transformation of
the target high-resolution image can eliminate the effect
of the difference between the target high-resolution image
and the target low-resolution image data, we use the
T-SNE [58] method to downscale the features of the tar-
get before and after the sampling operation. We perform
the validation using the MFMS-VGG16 structure with the
best experimental results. The network is trained with the
target low-resolution image, and then tested with the target
low-resolution image, the target high-resolution image and
the target high-resolution image after sampling operation.
The feature vectors of the same size obtained after the ROI
pooling layer are downscaled by the T-SNE method. The
visualization results are shown in Figure 15, where the purple
dots represent the low-resolution target, the blue crosses rep-
resent the high-resolution target, and the red forks represent
the high-resolution target after sampling, which shows that
the feature distribution after the sampling operation is indeed
closer to the feature distribution of the target low-resolution
image than the feature distribution before the sampling
operation.

FIGURE 15. The feature distribution of processed high-resolution targets
and low-resolution targets.

C. COMPARISON WITH OTHER METHODS

In order to better illustrate the novelty and superiority of our
method, this section compares the proposed method with the
previous classical small target detection methods. The results
of the comparison are shown in TABLE 4. Currently popular
small target detection algorithms based on deep learning can
be divided into three categories to some extent [64]. The first
category is a one-stage algorithm that uses a CNN to directly
predict different target categories and positions. One-stage
algorithms do not need to use candidate boxes. Instead,
it transforms the problem of target frame positioning into a
regression problem, so as to generate the category probability
and position coordinate value of the target directly. Finally,
the final detection result can be obtained directly after a single
detection. This kind of algorithm is fast but less accurate, and
it is shown in the shaded form in TABLE 4. The second type
is the algorithm based on candidate regions and this algo-
rithm is two-stage. It needs to first use the Region Proposal
Network (RPN) to generate candidate regions, then conduct
classification and regression on the candidate regions, and
finally get the final detection results through two stages. This
kind of method has high accuracy but slow speed, and it
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TABLE 4. Performance comparison of different methods.

Method mAP
Literature [65] 39.1
Literature [66] 50.7
Literature [67] 53.6
Literature [68] 57.7
Literature [69] 60.8

Our method 61.4
Literature [70] 65.7

is shown in bold form in TABLE 4. The third type is the
multi-stage algorithm, which iterates the two-stage detector
and uses different detection heads and preselect boxes in the
iteration process. Iteration greatly increases the size of the
model, which requires greater computational support during
training. Due to hardware constraints, the current three-stage
algorithm has higher accuracy and slower speed due to
more complex implementation process. It is shown in italics
in TABLE 4.

It can be seen from TABLE 4 that the performance of
the multi-stage method is better than that of the two-stage
method and that of the single-stage method. The method in
this paper has achieved a good score of the second place in
the comparison method, which proves the effectiveness of the
method in this paper. The reason why further investigation
is inferior to literature [70] may lie in its higher network
deepness.

V. FUTURE WORKS

Small target detection is a difficulty in target detection, and
has important application value in real life. For example,
in the field of criminal investigation, small packages on the
table, small pedestrians in the corner of surveillance video,
small marks on clothes, etc., are all clues to solve crimes.
Small target detection has important research significance.
For the research of small target detection, small target detec-
tion is faced with great challenges due to the few features
carried by small target itself. This section points out the future
research direction in view of the difficulties of small target
research:

(1) Small target detection is carried out with traditional
methods. Although the method based on deep learning has
been the mainstream in recent years, a lot of work shows
that because small targets contain little information and lack
sufficient semantic information, features extracted by deep
convolutional network have insufficient semantic informa-
tion, but the effect is not very good for small targets. Consider
to study some features that are more capable of representing
small targets, and combine some non-deep learning methods
for feature extraction, such as random forest and local rank of
images, which may play a better role.

(2) Introducing attention mechanisms. In this paper, our
multi-feature and multi-scale detection network can make
good use of the feature information from the shallow layer of
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the network, but the shallow feature also contains noise infor-
mation from the image background. Considering the intro-
duction of attention mechanism for detection, it can help to
reduce unnecessary shallow feature information and improve
the detection effect of small targets. For example, SENet [59]
proposed by Jie et al. as an attention mechanism on channels,
strengthens the features of important channels while weakens
those of non-important channels, and can be flexibly embed-
ded in various network structures to improve the effect. As a
lightweight structure, it requires relatively little additional
computation. In addition to the attention mechanism on the
channel, there is also the attention mechanism of the spatial
direction. Through the transformation of the spatial direction,
the local spatial features of the target sample are easier to be
learned. Compared with the channel direction, the amount of
calculation is slightly increased, but higher accuracy can be
obtained. It can be considered to combine the two to design
the structure flexibly for small targets, so as to obtain lower
calculation cost and higher precision.

(3) Minimize the interference caused by complex envi-
ronment to small target detection. At present, small target
detection mostly relies on specific scenes, such as military
monitoring [60], aviation, sea surface [61], oil field well
site [62] and other complex operation fields. In the case of
complex background noise, the information of a small target
will be concealed by the noise of other large objects, or it will
be integrated with the background and lack obvious image
contrast [63], which is also one of the factors causing the
difficulty of small target detection.

(4) Research on small target detection based on anchor-
free. Although the current anchor-based target detection
method has been excellent and widely used in both
single-phase and two-phase methods, there are still many
shortcomings. Due to the method based on the anchor has
a set of pre-defined scale box, lead to less sensitive to small
scale target, or need special door frame of the scale of the
default in view of the small target, but that very high require-
ments for hardware, the default frame of the scale of the
more negative samples at the same time, easy to cause the
imbalance of positive and negative samples which influence
the training effect. Therefore, the anchor-free method should
be considered for small target detection. Some recent studies
have proved that the anchor-free method can achieve the
same effect as the Anchor-based target detection method.
The application of the anchor-free method to small target
detection may also promote the research on small target
detection.

(5) The model is lightweight to improve the real-time per-
formance, accuracy and robustness of the detection system.
With the development of the times, the demand for detection
of small and medium-sized targets in various fields is gradu-
ally increasing. However, in the current research, in order to
improve the accuracy, the models are often very redundant.
For example, the addition of super-resolution modules leads
to a significant increase in the amount of computation. Accu-
racy and robustness Therefore, how to ensure the lightweight
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of the model without losing accuracy will also become a
research hotspot in the future.

(6) Build a more perfect small target detection data set.
Although the existing VOC data set COCO data set has been
widely recognized by researchers, the development of deep
learning methods is always inseparable from data. Samples
of small target and the data set is still inadequate, the sample
equilibrium, the sample size is not enough, all hinder the
development of the small target detection, so still need to
consider to set up a special small target detection data sets,
or to use some data to enhance way to establish a small target
simulation data set, also can yet be regarded as a good way to
supplement the training sample.

VI. CONCLUSION

Atpresent, the core problem of small target detection research
based on deep learning is how to improve the feature expres-
sion of small target to make it contain rich semantic infor-
mation, which is also the key to improve the performance
of small target detection. Compared with the detection per-
formance of large and medium targets, there is still a big
gap in the detection performance of small targets. Therefore,
based on the analysis of existing target detection methods,
this paper proposes a small target detection method based
on deep learning with considerate feature and effectively
expanded sample size. According to the characteristics of the
convolutional neural network, the deep learning structure of
the mainstream target detection model is modified, so that
the network can use considerate features for target detection,
and the accuracy of small target detection task based on
low-level features is improved. At the same time, in order to
avoid the over-fitting problem caused by the sample size, the
data obtained from the Internet are used to train the model.
Because the distribution of these training data is different
from that of the task test data, two sampling methods are
used to transform the high-resolution training image of the
target, so that the feature distribution of the training image
and the test image are more similar. Experimental results
show the effectiveness of the proposed method. In addition,
the related work and future work in this paper are also quite
comprehensive and detailed
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